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The Schwinger mechanism of particle production in a strong and uniform electric field for an
infinite system is generalized to the case where the strong field is confined between two condenser
plates separated by a finite distance. The production rates, for both bosons and fermions, are ob-
tained by solving the Klein-Gordon equation and the Dirac equation in a linear vector potential.
They are expressed in terms of parabolic cylinder functions for bosons, and in terms of the confluent
hypergeometric functions for fermions. Numerical evaluation of these results shows large devia-
tions of the production rate from what one deduces with the Schwinger formula, indicating a large

finite-size effect in particle production.

I. INTRODUCTION

The Schwinger mechanism of pair production,' first
put forth to examine the production of electron-positron
pairs in a strong and uniform electric field, has been ap-
plied to many problems in contemporary physics.>~’
Many different derivations of the Schwinger results have
been put forth.®~!' In the physics of black holes, the
Schwinger mechanism has been invoked to understand
Hawking’s predictions of black-hole quantum evapora-
tion.>!2 If one assumes that the wave function is analytic
near the horizon, then the spectrum of created particles
as obtained by such a mechanism is consistent with
Hawking’s thermodynamical interpretation of the prop-
erties of a temperature and a physical entropy.? In the
physics of macroscopic electronic circuits, the effect of
particle production is hindered by the small size of the
transition energy as compared to barrier height which is
of the order of the electron mass. There is a recent sug-
gestion of using the resistively shunted Josephson junc-
tion to lower the barrier height through quantum fluctua-
tions to allow the occurrence of pair production.®

The Schwinger mechanism has often been invoked to
study particle production in QCD (Refs. 3-5, 9, and 10).
As applied to nucleon-nucleon or e t-e = collisions, the
field between a quark and an antiquark is represented, as
an approximation, by an Abelian gauge field, in the same
form as the constant electric field between two condenser
plates in quantum electrodynamics (QED). Particles are
produced when a quark from the negative-energy sea tun-
nels through a barrier and emerges as a quark in
positive-energy states. Such an application has met a
high degree of success. In particular, one can explain
qualitatively the falloff of the transverse momentum of
the produced particles, the suppression of the strangeness
and baryon production, the K /7 ratio® and the time de-
lay in particle production after a collision takes place.
Recently, with the advent of relativistic heavy-ion beams,
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there is much interest in the particle-production mecha-
nism in nuclear collisions>!*~!° which is a complicated
problem in quantum chromodynamics (QCD). The
Schwinger mechanism has been used to study some as-
pects of possible collision scenarios.'® !

Because of the various applications of the Schwinger
mechanism, it is worthwhile to reexamine the basis of the
Schwinger results and the domain of their applicability.
We note that the original case considered by Schwinger is
for a uniform electric field extending to all regions of
space, in contrast with the situation where for many ap-
plications the linear potential fields are often finite in ex-
tent. Here, we wish to consider the case where the strong
field is confined between two condenser plates separated
by a finite distance. We would like to examine how the
finite spatial separation affects the pair-production rate.
We expect that in line with similar problems in quantum
physics, the rate of particle production will show a finite-
size effect which will manifest itself as large fluctuations
and deviations from the Schwinger results when the sepa-
ration between the plates becomes small. This problem
of condenser plates with a finite separation may also be
useful to provide an understanding of the time delay in
particle production observed in nuclear collisions.!>!*

We shall treat the case of both bosons and fermions in
a strong linear vector potential between two parallel
plates separated by a distance L. The original treatment
of Schwinger for an infinite system made use of the
Green’s function and its behavior under gauge transfor-
mations. We shall use an alternative approach here by
solving the single-particle Klein-Gordon and the Dirac
equations. In Sec. II we study the problem of bosons in a
linear vector potential bounded by two parallel plates.
We solve the Klein-Gordon equation and obtain the solu-
tion for the region between the plates in terms of the par-
abolic cylinder functions.? The transmission amplitude
for an incoming negative-energy state is then obtained by
matching the wave functions at the boundaries. In Sec.
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III we study the same problem of a fermion in a linear
vector potential between two plates. The fermion case
for particles with no transverse momentum was solved
previously.?! We shall study here the more general case
including the transverse-momentum degree of freedom
with a slightly simpler method. The solutions of the
Dirac equation for the incoming negative-energy states
are expressed in terms of confluent hypergeometric func-
tions with complex arguments and parameters. The
transmission amplitude is obtained by matching the wave
functions at the boundaries. In Sec. IV we discuss how
the transmission amplitude is related to the pair-
production rate. We compare our results with
Schwinger’s and show how the two results agree at the
midpoint between the plates when the separation be-
comes very large. A correction to the Schwinger formula
for particle production at this midpoint is obtained. Us-
ing the pair-production process in QCD as an illustrative
case, we give numerical results for particle-production
rates as a function of the coordinates between the plates
in Sec. V. As expected, however, for finite separations,
the deviations of the numerical results from Schwinger’s
results are large. Section VI concludes the present dis-
cussion.

II. BOSONS IN A LINEAR VECTOR POTENTIAL

We consider a boson with a mass m in a static linear
vector potential 4 =(0, 4,(z)) of the form [Fig. 1(a)]

0 for z <0 (region I),
—kz for 0<z <L (region II),
—«kL for L <z (region III) .

Ag= 2.1

Such a potential arises, for example, for charged bosons
in the electric field of two parallel condenser plates
separated by a distance L. The strength parameter « of
the vector potential is then related to the charge of the
particle e and the electric field 6 by k= |e& |. It also
arises in an approximate treatment of particle production
in QCD. When a pair of quarks and an antiquark ¢q are
stretched, the field between the quark and the antiquark
is represented as an approximation by an Abelian gauge
field. The strength parameter « is then related to the
string tension.> The case of fermions will be studied in
the next section. We examine here the Klein-Gordon
equation (#i=c =1) for the particle given by

[(p—A4)P—m?1¢=0. 2.2)

The potential does not depend on the transverse coordi-
nates x and y. The wave function in the transverse coor-
dinates is just a plane wave with transverse momentum
Pr=(p,,p,). The solution of the Klein-Gordon equation
can be written in the form

¢p=expli(pyx +p,y —EN]f(2), (2.3)

where E is the energy of the state under consideration.
We make the transformation from z to a dimensionless
length &:

E=V2E +k2)/Vk . 2.4)

The corresponding dimensionless length coordinate &,
for the left condenser plate at z=0 becomes

£, =V2E/Vk 2.5)

and the dimensionless length coordinate for the right
condenser plate at z =L becomes

Er=V2(E +kL)/Vx . (2.6)

The solutions of Eq. (2.2) in regions I and III are just
plane waves. We need only to find the solutions of Eq.
(2.2) in region II. In this region and in terms of the di-
mensionless length coordinates, Eq. (2.2) becomes the fol-
lowing Schrodinger-type equation:

dZ
—d—§2-+a—%§2 f(&=0, 2.7)
where
m2 m2_+_ 2
a=_t M TPT (2.8)

2k 2

The Schrodinger-type equation is formally the same as
that for an effective potential V 4(&) of an inverted para-

Ag@*+me? | . POSITIVE ENERGY CONTINUUN
Ao 0l L z
Ag(2)=mc2 [ e -

NEGAT|VE ENERGY STATES -
l 1] (@

/‘0 \ Eotf

Vett(€)

(b

FIG. 1. In (a) the solid curve shows the linear vector poten-
tial in region II (between 0 <z < L) and the constant potential in
region I (z <0) and region III (z > L). The upper-dashed curve
shows the location of the vector potential plus the rest mass
Ao(z)+mcz, above which lies the positive continuum, and the
lower-dashed curve shows the location of the vector potential
minus the rest mass A,(z)—mc?, below which lies the negative
continuum. In (b) the Klein-Gordon or the Dirac equation for
the potential of (a) is rewritten in a Schrddinger-type form in
terms of dimensionless coordinate £, and the linear vector po-
tential of (a) then gives rise to an effective potential of an invert-
ed parabola with an effective energy E.;= —a for the Klein-
Gordon case and E 4= —a*i/2 for the Dirac case. The top of
the barrier in (b) is located at the coordinate corresponding to
the point at which E = 44(z) in (a). A negative-energy state in
region I can tunnel through the barrier and be transmitted as a
positive-energy state in region III.
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bola — L& which is joined to —1£7 on the left at &, , and
joined onto —1£% on the right at £ [Fig. 1(b)]. We note
that the transverse momentum provides an additional
effective mass which must work against the strong field
for a tunneling event to occur. Thus, with this additional
contribution, the rest mass becomes the ‘‘transverse
mass” m, =(m2+p%*)"/2. The effective energy E. in
this inverted parabola problem is then —a. In this region
of an inverted parabola (region II), the solutions of Eq.
(2.7) are well known.?> They are the parabolic cylinder
functions E(a,£) and E*(a,£) (Ref. 20). Tunneling is
possible if

—a>—£/4 and —a>—E%/4. 2.9

These conditions imply that tunneling can take place
only when

L>2m,/k (2.10)

and

—m, >E>—kL +m, . (2.11)

Thus, there is a separation threshold 2m  /k below which
no particle will be produced. This minimum separation is
proportional to the transverse mass m, and inversely pro-
portional to the strength of the field k. We shall solve the
Schrodinger-type equation (2.7) for states within this lim-
it of Eq. (2.11), appropriate for incoming negative-energy
states with an energy E <O incident to region I from the
left (z=—o0) and are transmitted as positive-energy
states with energy (E +«L) >0 propagating to the right
(z =+ o). We shall label the wave function of one such
state n (&) where n stands for a negative-energy state in
region I. The solution of Eq. (2.2) is

a 4k expli(k & —kgr&g)]

region I, ”1(§)=1018_ikL§+RaRe+ikL§ :
region II, n,(§)= AE(a,§)+BE*(a,§) ; (2.12)
region III, n,(£)=Tape "%°;
where
kr r z(%gi,R —a)'”? (2.13)

and the functions E(a,§) and E*(a,§) are parabolic
cylinder functions®® which should not be confused with
the energy E. The constants a;, ag, and ay are normali-
zation constants such that incident, reflected, or
transmitted plane waves @; and @; with momenta p; and
p; and energies E; and E; in the asymptotically free re-
gions are orthonormalized according to**

*

()= [’ 1978,0,— (3,07 p;]

=6(p,-—pj)E,-/|E,-| . (2.14)
Explicitly, the normalization constants are
ay=ag=1/|E|"* and ay=1/|E +«kL |'*. (2.15)

Note that the velqci?f of the incident wave in region I
represented by e—lkL points to the positive z direction,
even though the current propagates to the opposite direc-
tion because the energy E and the density are negative.
We set the amplitude I to be unity to obtain T as the
transmission amplitude and R as the reflection amplitude.
After matching the wave functions and their derivatives
at the boundary points &; and &g, we obtain the
transmission amplitude T as given by

T ar (Ej—ik ELNEY —iknEf)—(E} —ik, Ef \Eg —ikgEg) ’

where we have abbreviated

EL,R =E(a,€L,R) and El‘.,R =dE(a,§)/d§ at §=§L,R .

The reflection amplitude R is

(2.16)

(2.17)

Ej +ik  EL\E}' —ikgEf)—(E} +ik Ef \Ep —ikg Eg)

a; (
=a—exp( —ik; & —ikgéR)

R (Ej —ik E{ \E}' —ikg EX)—(E}' —ik, E} Ep —ikgEg)

In the above equation, the factor (a; /ag) is equal to uni-
ty. They are retained here to show the similarity of the
results for bosons and fermions in a later comparison
[with Eq. (3.21) below].

With the wave functions as given in Egs. (2.3) and
(2.12), we can obtain the incident, reflected, and transmit-
ted currents as follows:

J1=pII*I/|E| N
Jr=prR*R/|E |,
JTZPTT*T/lE—i"KL | N

(2.19)

(2.18)

|
where

Pr=(ps,py, — ‘/E(kL ), Pr=(pPx ’Py"/E;kL ),
and

pT=(px’py7‘/—2~‘—(kR) .

From Egs. (2.14) and (2.16), we can use the properties of
the parabolic cylinder function® to obtain the relation-
ship

2
|R| —1+ kLEl

|T |2, (2.20)
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where E'=FE +«L is the energy of the particle in the
transmitted region (region III) and should not be con-
fused with the derivative of parabolic cylinder function
E'(a,£). We note that the ratio | kg E /k; E'| is equal to
the ratio of the speed of the particle in the z direction in
region III to the speed of the particle in the z direction in
region I. From Eq. (2.19) we see that Eq. (2.20) expresses
the conservation of current in the z direction, i.e.,

(JI+JR).eZ=JT'ez . (2.21)

III. FERMIONS IN A LINEAR VECTOR POTENTIAL

The results in the last section have been obtained for
bosons. For fermions, we need to solve the correspond-
ing Dirac equation. This can be carried out in the same
way as in Ref. 21 with some modifications. We consider
a fermion with a mass in a static linear vector potential
A =(0, Ay(z)) as given in the previous case by Eq. (2.1)
and shown in Fig. 1(a). The Dirac equation for the fer-
mion (in the notation and convention of Bjdrken and
Drell, Ref. 24) is

[v"p,—A4,)—m]Pp=0.

We introduce a spin function ¢ to write the solution of
the Dirac equation ¥ in the form

(3.1

Y=[v*p,—A4,)+ml$, 3.2)
the Dirac equation then becomes
[(p—4P—m*—io"(p,—A4,)p,—A4,)]6=0. (3.3

With the vector field as given by Eq. (2.1), Eq. (3.3) be-
comes

[(p— AP —m?—ika;]¢=0 . (3.4)

As in the boson case, the wave function in the transverse
coordinates is just a plane wave with transverse momen-
tum p, =(p,,p,). The solution of the Dirac equation can
be written in the form

¢=expli(pyx +p,y —Et)]n(z) . (3.5)

We expand the wave function in terms of the components
f» and spinor p, as

4
n(z)= 3 filz)u,, (3.6)
A=1
where
1 0
o 1!
”1_1/5 1l “2—‘/5 0 s
0 —1
1 0
1 |0 1 |1
#3’__72_ -1/ and p,= V72 0
0 1

These spinor states u; are chosen to be diagonal in a;:

A3y ="M 3.7)

where the eigenvalues of a; are
n=+1for A=1,2 and n=—1 for A=3,4.

To write down the solutions of the Dirac equation, we
make the transformation from z to a dimensionless length

&:
E=V2UE +kz)/Vk . (3.8)

The solutions in regions I and III are just plane waves.
We only need to find the solutions in region II. For re-
gion Il (0 <z <L), the Dirac equation (3.4) becomes the
Schrodinger-type equation

2

—T?+ —1& | fr(§)=0, (3.9)

atns

where the quantity a is defined as before by Eq. (2.8).
Equation (3.9) is in the same form as Eq. (2.7) for the bo-
son case, except that the term a for bosons now becomes
the complex quantity a=a + i /2 for fermions. Similar
to the boson case, the Schrodinger-type equation for fer-
mions is formally the same as that for a potential of an
inverted parabola V 4(£)—1£* which is joined to —1&7
on the left at £, and joined to —1&% on the right at &,
[Fig. 1(b)]. For the fermion case, the effective energy E .4
in this inverted parabola problem is then
—a=—(a +mi/2). In this region of an inverted parabo-
la (region II), although the solutions of Eq. (3.9) with a
complex parameter a can be formally written in terms of
the parabolic cylinder functions, there are no tables and
numerical procedures for their evaluation. It is more
convenient to write down the solutions in terms of the
confluent hypergeometric function F; (Ref. 20). The
two independent solutions for f, for A=1 and 2 are

. a. l i
M (a,&)=expli&?/4),F, 3:,5,_352 (3.10
and
N(a,&)=Eexpli£2/4),F, 1“;“’,%,—%52 3.11)

For A=3 and 4, the two independent solutions are
M*(a,£) and N*(a,£). We shall solve the Schrédinger-
type equation (3.9) for an incoming negative-energy state
with an energy E <0 incident to region I from the left at
z = — o and is transmitted as a positive-energy state with
an energy E'=FE +«kL >0 to the right at z=+ . We
shall label the wave function of one such a state as n (§),
where n stands for a negative-energy state in the asymp-
totic region I. The wave functions for regions I and III
are given as follows:

region I, n,(g)zle—IALg)(, +Re+'kL§)(R ,

+ikg

(3.12)

region III, n;(&)=Te gXT , (3.13)

where kL’ r are defined as before, and I, R, and T are the
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coefficients for the incident, reflected, and transmitted
waves, respectively. The X-spinors X are given by

Xg=ag(ypx+m,, K=ILR, and T, (3.14)

where ag are normalization constants such that X}X K is
normalized to unity and the four-momenta in Eq. (3.14)
for regions I and III are

P1=(E:PX,P}” _pz) ’

Pr=(E,ps,p,,p;) » (3.15)

pr=(E",py,py,p;)
with p, =V'2xk; and
pi= (B —m?—pl—p}) =V IRy

The quantities p, and p, in Eq. (3.15) are chosen to be
positive so that the currents associated with the incident
wave and the transmitted wave propagate to the right
along the z axis, and the reflected wave propagates to the
left opposite to the direction of the z axis. With these
choices, the signs of the exponential factor k& in the vari-
ous terms of Egs. (3.12) and (3.13) are then obtained as in-
dicated. In terms of the momenta, the normalization
constants are

a;=[2E(E +p,)]"'"?,

ar=[2E"(E'—p))]" 2.

The solution in region II (0 <z <L) is given by

ny(§)= |yXE +"Z)—(YIPX+7/2py)+iy3§; +m

X[ AM (a,)+BN(a,8)]u; , (3.17)
where A4 and B are complex coefficients and the first fac-
tor of operators on the right-hand side is to ensure that
n,(&) satisfies the Dirac equation.

From Eq. (3.4), we observe that spinors with different
components of A are decoupled from one another. A
solution of the wave function can be characterized by a
single component of A and by an eigenvalue 1 [Eq. (3.7)].

The coefficient of the incident wave I can be taken to
be unity without much loss of generality. The unknown
coefficients can be obtained by matching the wave func-
tions at the boundaries. The boundary conditions for the
Dirac equation are that the spinor wave functions are
continuous across the boundary at z=0 and L. When
these conditions are explicitly written out, they involve
the Dirac ¥ matrices. We can consider first the case of
A=1 and 2. From the independence of the y matrices,
one finds that the matching conditions have the same
form as those of the boson case except that the function

(3.16) E(a,£) has been replaced by M (a,£) and the other in-
ag=[2E(E —p)17'2, dependent function E*(aq,§) has pec?n replace.d by
N{(a,&). In consequence, the transmission coefficient T
and for fermions is
J
_ 4kpexpli(k & —kpér)] (3.18)
ar (M; —ik My ) Ny —ikgNg)—(N; —ik N, My —ikgMg) ’ '
where we have abbreviated
M r=M(a,§; ), M;p=dM(a,§)/dE at §=& ¢ , (3.19)
NL,R =N(a’§L,R ), N[I"R ZdN(a,g)/dg at §=§L,R . (3.20)
The reflection amplitude R is
a (M] +ik; M; (Ngp —ikgNg)—(N; +ik; N, Mg —ikgMp)
:—I—exp(—ikLgL—ikRé'R) L LM \Ng RIVR L LV R RMpg 3.21)

ag (M —ik, M, XN —ikgNg)—(N; —ik N, \(Mp —ikgMp)

Note that in the above equation for fermions, the factor
(a; /ag ) differs from unity, in contradistinction from the
boson case. With the wave functions as given in Egs.
(3.12)-(3.15), we can obtain the incident, reflected, and
transmitted currents as
Pr Pr Pr
—I*I, Jo=—R*R, J;=—-T*T.
E R E T~ E

For the problem of particle production probability un-
der consideration, only the product T*T and R *R are in-

J, = (3.22)

f

volved. It is easy to show that these products have the
same value when the function M is replaced by M * and N
is replaced by N* in Egs. (3.20) and (3.21). Thus, the
transmission probability T*T and reflection probability
R *R are the same for the cases of A=1,2 and the cases of
A=3,4. Therefore, it is, in fact, not necessary to specify
the quantum number 7 or the different A states.

By a direct substitution of the special functions M and
N and making use of the following properties®® of the
confluent hypergeometric function F,:
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ilF](a,Y,x)=

a
. 7,F1(a+1,y+l,x) ,

d
1 dx

) Fila,y,x)=Fla,y—1,x), (3.23)

lFl(a,y,x)ze"]Fl(Y—a,% —x),

we can prove that

4 _ 8 _aN*
dé 2 M(a,8)= (a,8)
and (3.24)
Ed-g_i% N(a,E)=M*(a,§) .
We can then show from Egs. (3.18)-(3.21) that
krE
2_1_ R 2
|R |*=1 K, E |T|*. (3.25)

This differs from the boson case in the sign of the term in-
volving | T | 2. This expresses the expectation that for a
fermion system, particles in a negative-energy state are
reflected with an intensity smaller than the incident in-
tensity, while for a boson system, a similar reflection of
negative-energy states will give rise to a reflected wave
with a greater intensity. This constitutes the so-called
“Klein paradox” and corresponds to the possibility of
particle-antiparticle creation in a strong field.>%°

We note again that the ratio |kzE/k;E'| in Eq.
(3.25) is equal to the ratio of the speed vy of the particle
in the z direction in region III to the speed v; of the par-
ticle in the z direction in region I. From Eq. (3.22), we
see that Eq. (3.25) expresses the conservation of current
in the z direction: i.e.,

(JI+JR).ez=JT.ez (3.26)

IV. PAIR-PRODUCTION PROBABILITY

The transmission amplitude is related to the probabili-
ty of pair production.? We shall follow the derivation of
Damour? to obtain such a relationship. With the poten-
tial of Fig. 1, it is possible to separate out incoming and
outgoing states in the asymptotic regions as negative- and
positive-energy states, depending on whether the energy
is less than or greater than the asymptotic potential.
These “‘negative’” and ‘“positive” energy states n; and p;
form a complete basis in the asymptotic region. For our
problem, we can take the incoming states as coming from
the left (region I). The states satisfy the following ortho-

normality relations:
8;j=0(n; ,n "), 4.1)

(4.2)

(p"pj")=
(pi"n =0,
where the sign function 8 is + 1 for fermions, and, in ac-
cordance with the orthonormality condition (2.14), 6 is

— 1 for bosons in a negative-energy state. We can expand
the quantized field as

®(x)= 3 [a/"p1"(x)+(b™ ni"(x)] 4.3)
with the commutator relations
[ai" (a™'). =[bi" (bIM']. =5, , 4.4)

where the anticommutators with the plus sign are for fer-
mions and the commutators with the negative sign are for
bosons. The ““in” vacuum is defined by

a/™ | vac™) =b"| vac") =0 . 4.5)
We are interested in outgoing states in region III which
also consist of positive- and negative-energy states. The
outgoing states satisfy relations similar to those of Egs.
(4.1)-(4.5) and the field operator can be similarly expand-
ed in terms of a complete set of outgoing positive- and
negative-energy states in region III:

D(x)= 2[0"“‘ 0u(x) +(b2") n o (x)] . (4.6)

From the orthogonality conditions and Egs. (4.1), (4.2),
and (4.6), we get

2[(p°“‘,pk Dy (petnimy (b . 4.7

The phenomenon of particle creation consists of finding
the outgoing positive-energy states in the “in” vacuum.
The mean number of out particles in the out state p*

that is found in the “in”’ vacuum is given by

N, ={vac™ | (a®*")Ta?" | vaci") . (4.8)
Hence, from Egs. (4.5) and (4.7), we have

N,= 2 [ (pP*,ni™y |2 . 4.9)

We can label the incoming state and the outgoing state by
the energy E so that the n'"(E) tunnels only into the
p°"'(E) state with the same E. For example, in the boson
case the incoming negative-energy state n'"(E) is
represented by Eq. (2.12) and the outgoing positive-
energy state p°“(E) by exp(ikg&). In such a case, the
number of positive-energy out particles created is

E)=|T(E)|? 4.10)

The ratio of the transmitted current of positive-energy
particles to the incoming current is, therefore,

rl
‘JR| 153

where the ratio of the speeds (positive quantities) vy /v,
in region III and in region I is

kLE’

L \1E)? (4.11)

VR

vr

In consequence, the rate of producing a positive-energy
outgoing particle is, therefore,

, dp,dpr v
AN _ axay [Pz Z=OPT R (4.12)

K 2
= oy UL|TE)| .
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Thus, the quantity (vg /v, )| T(E)|? is proportional to
the rate of production of a particle with energy E and
transverse momentum p; per unit time, unit transverse
area, unit transverse momentum, and unit energy inter-
val:

AN 1 g
AtAxAyAprAE  (27) vg

|T(E)|?%. (4.13)
In this process of particle production due to the tunnel-
ing from the negative-energy state, a positive-energy par-
ticle is created, leaving a hole in the negative-energy con-
tinuum which can be taken to be an antiparticle moving
in a direction opposite to the direction of the created par-
ticle. The created pair of particles is characterized by the
energy E. For such a pair, one cannot, strictly speaking,
specify a particular point as the location where the pair is
produced, although this pair of particles begins to emerge
at the points z; =(—E —m)/k and zp=(—E +m)/k.
Nevertheless, one can roughly associate the point
z =—E /k as the location in the vicinity of which a pair
of particles is produced. With this approximate associa-
tion, the energy of the produced particle is then identified
by an approximate location, and the energy interval also
can be related (approximately) to a spatial interval at
which the pair of particles is produced. From Eq. (4.13),
the rate of production per unit volume and transverse
momentum is then

AN K Ur

AtAxAyAzAp;  (27) v,

| T(E,pp)|%. (4.14)
Roughly speaking, the above results for the production
probability and the production rate correspond to the
lowest-order expansion in powers of | T | 2. One can ob-
tain the higher-order corrections by studying the vacuum
persistence probability. The vacuum persistence proba-
bility Q is the probability for finding the vacuum after the
system has evolved over a period of time ¢ and with a
volume V containing the strong field. We can consider
the initial vacuum as the state in which all the negative-
energy states in region I are filled, so that there are no
particles in the positive-energy states and no holes in the
negative-energy states. For a single particle in a particu-
lar negative-energy state, this vacuum persistence proba-
bility has the same meaning as the reflection coefficient
| R | which is the probability of finding the outgoing
negative-energy state in region I if a particle from the
negative-energy state comes from the left. Taking into
account all the different states with different spins z, ¢,
and pr, the vacuum persistence probability is, therefore,

o=1IIIIIII |R(ZYPT)'2

spin z ¢t pp

—exp édedtde S In|R(z,pp)|? (4.15)

spin

Because | R |2 is greater than unity for bosons and less
than unity for fermions [Eqgs. (2.20) and (3.25)], the vacu-
um persistence probability is less than unity for fermions
and greater than unity for bosons. This difference is due

to particle production. From Eq. (4.15), we define the
pair-production rate per unit volume, unit time, and unit
transverse momentum p as

dN K

v
dVdtdp; 8 v,

63 In 1—euR | T(E,p;)| 2| .
L

spin
(4.16)

A comparison with the previous result of Eq. (4.14)
shows that the more general result of Eq. (4.16) contains
Eq. (4.14) as the lowest-order expansion. If one interprets
| T | % as proportional to the probability of creating a sin-
gle pair, then the result of Eq. (4.16) can be described as
including additional effects of producing more than one
pair.

We shall consider the limit of very large separation in
order to compare our results with those of Schwinger.
The transmission probability is an oscillating function of
the energy (or correspondingly, the approximate location
of pair production). It is also a function of the length of
the separation L. We shall only consider the transmis-
sion probability at the midpoint between the two plates
because the transmission probability at other locations is
much more complicated. Using the asymptotic expres-
sion for the cylinder parabolic function E(a,&) and the
relation between E (a,x) and E(a,—§) (Ref. 20), [Eq.
(19.18.3), (19.21.1), and (19.21.8) of Ref. 20], it is easy to
show that when the separation L is very large, we can ex-
pand T in powers of 1/L and obtain for bosons the
transmission probability at the middle between the plates:

kg E
k,E’

lT‘2:e~2rm

1+§5(1+e‘2’"’)1/zsin2¢

+0(§-“)] , 4.17)

where
E=|&L | =6r=Vk/2L

and
2
¢=%—a ln§+%argl‘(%+ia)+% .

For fermions, we need to expand the confluent hyper-
geometric function for large values of the argument &.
Following the formulation of Ref. 25, we obtain the fol-
lowing expansion formula:

]F,(a,y,x)z?(%’(%)&_)ex |x | a—yg—ila—y)m/2
e
+% |x | ~Ge —ian/2
X éo %%x‘" : (4.18)
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After considerable manipulation, we obtain the transmis-
sion probability at the midpoint between the plates as
given by

kg E 2a
kRE' l T ‘ 2=e—21ra ll_ii_a_(l_e—Zrm)l/Zsin2¢
L
+0(§—4)l , (4.19)
where
2
¢=§I—aln§+%afgr(ia)_% :

Equation (4.17) for bosons and Eq. (4.18) for fermions
give the corrections to the usual WKB result>* of barrier
penetration. We see that in both cases the transmission
probability has a modulation due to the finite length of
the separation. The magnitude of this modulation de-
creases as L increases. In the limit of L — o, the
transmission probability becomes e 2™ which is the
WKB result. The reflection probability then becomes

R |*=1—@e 2™ (4.20)
and we have, for L — o,
dN K
di= g B e
><fo“’dprlng1—9exp[—n(m2+pzr>/x]} ,
(4.21)

where s is the spin of the quanta under consideration.
When we carry out the integration over p; for this case,
we obtain

dN__ &’
dvdt g2

()" !
2

—mnm?¥/x
b

(2s+1) 3

n=1 n

e (4.22)

where the sign 8 is + 1 for fermions and —1 for bosons.
This result is identical to that of Schwinger,l and Brezin
and Itzykson.8 From Eq. (4.21), we can infer the pair-
production rate per unit volume, unit time, and unit
transverse momentum for the case of infinite spatial ex-
tension as

dN _K_

Wdtdp, — g3 3 +DOI(1—6e =),
T T

(4.23)

This “Schwinger” result will be compared with the “ex-
act” results of Eq. (4.16), using the transmission ampli-
tude of Eqgs. (2.16) and (3.18).

V. NUMERICAL EXAMPLES

It is useful to calculate the pair-production probability
for a few cases of practical interest to see how the proba-
bility may depend on the finite size of the system in-
volved. We shall examine the case of pair production
when a quark g and an antiquark g are separated from
each other by a distance L. Following Casher, Neuberger
and Nussinov, we shall approximate the QCD problem
by a problem in an Abelian gauge field in the same form

as charged particles in a constant electric field between
two parallel condenser plates in QED. The strength of
the electric field is then related to the string tension of the
“string” joining the quark and the antiquark. This string
tension between g and g, defined as the energy stored be-
tween the two particles per unit length, has been given
previously by Casher, Neuberger, and Nussinov to be
0=0.913 GeV/fm, based on the Regge slope parameter.
Using the flux-tube model and Gauss’s law, we can relate
this string tension constant o to the potential parameter
k of the vector potential. The energy per unit length
stored in the flux tube is related to the longitudinal field
strength & and the cross-sectional area of the tube A by

a=%62.>4 . (5.1
Gauss’s law relates the chromoelectric flux to the quark
charge e:

EA =e . (5.2)

From Egs. (5.1)-(5.2), we obtain, therefore,
k=|e&| =20=1.826 GeV/fm .

This is the field strength « for a static problem without
particle production. However, as shown by Glendenning
and Matsui,” when particles are produced, the final-state
interaction between the quark g and the antiquark g of
the produced g7 pair will result in an effective string ten-
sion which is only half of the field strength for a string
without particle production. This reduction is easy to
understand. For a stretched quark and antiquark system
represented by a string, a quark in the produced gg pair
will interact only with the antiquark at the end of the
string, while the interaction with the other quark at the
other end is canceled by the final-state interaction with
the newly produced quark. Hence, for numerical pur-
poses, we shall use a string tension k=0.916 GeV/fm and
shall treat the quark as a massive particle with a mass* of
m=350 MeV. With these parameters, the minimum
length above which particles can be produced with pr=0
is 0.78 fm.

We calculate numerically the production rate for both
the bosons and the fermions with Eq. (4.16), using the
transmission amplitude of Egs. (2.16) and (3.18). The
parabolic cylinder functions E (a,£) and E *(a,§) are con-
structed with the formulas given in Ref. 20. For the
confluent hypergeometric function ,F,(a,y,x) with small
values of |x |, an expansion in powers of x is used.?’
However, for large values of L, it is necessary to use an
expansion in power of 1/x as given by Eq. (4.18). As an
independent check, we also numerically calculate the
reflection probability R *R and find that the relations of
Egs. (2.20) and (3.25) for T*T and R *R are satisfied to a
high degree of accuracy.

We show in Figs. 2 and 3 the particle-production rate
dN /dV dtdpr (per unit time, unit volume, and unit
transverse momentum) obtained as a function of the local
coordinate z'=z —L /2, measured relative to the mid-
point between the plates. As we remarked earlier, the lo-
cation for the production of a pair cannot be sharply
specified. What can be specified is the energy of the pro-



356
~ 0.20
S BOSONS L=1
(g PT-O GeV
< 0.5 |-
£
o 3¢
g o010 | "
[
1o
B Schwinger
2 005 F
3
y4
©  0.00 ' 1 L
-2 -1 1 2

0
z (fm)

FIG. 2. We show here the particle-production rate (per unit
volume, per unit time, and unit transverse momentum) for bo-
sons when the plates are separated by L=1, 2, and 3 fm. The
particle-production rate is plotted as a function of the location
z'=z —1/2, which is measured relative to the midpoint between
the plates. The strength of the field is set to be k=0.916
GeV/fm and the mass of the boson is taken to be 0.350 GeV/c2.
For comparison, the Schwinger result deduced for an infinite
system is shown as a horizontal line.

duced particles E which is related to the location by
E = —kz. When we refer to a location z (or z'), we
should, therefore, associate this location with the corre-
sponding energy. Figure 2 shows the “exact” results of
the production rate for bosons obtained with Egs. (2.16)
and (4.16). The approximate “Schwinger” result of Eq.
(4.22) is shown as the horizontal line. The rate of particle
production is an oscillating function of the local coordi-
nate. As the separation between the parallel plates in-
creases, the rate at the midpoint between the plates
comes quite close to the Schwinger result. The deviations
from the Schwinger result are the greatest near the edges
which are still some distance away from the plate. At the
edges, the rate is about twice the Schwinger result. The
spatial gaps between the edges of particle production and
the location of the plates come about because there is a
separation threshold for the occurrence of particle pro-
duction. The potential difference needs to be as large as
the sum of the rest masses of the produced particles for
the process to take place. As the minimum separation for
pair production is 0.78 fm, the case of L=1 fm has a sep-
aration just above the minimum distance for particle pro-
duction. In that case, the deviation from the Schwinger
result is large.

We show in Fig. 3 the “exact” particle-production rate
for fermions dN /dV dt dpr (per unit time, unit volume,
and unit transverse momentum) as a function of the local
coordinate z obtained from Eqgs. (3.18) and (4.16). Again,
the Schwinger result is also shown as a horizontal line.
On the average, the rate of particle production for fer-
mions is greater than that for bosons by a factor of 2
which arises from the spin degree of freedom. The rate of
particle production as deduced from the Schwinger for-
mula agrees approximately with that at the midpoint
z'=z—L /2~0 for the case of L=2 and 3 fm, as it
should be. However, for L=1 fm and in other regions of
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the coordinate, the production rate is quite different from
the Schwinger result. For fermions, the deviation is of
the order of 25% in different regions of the coordinate
(Fig. 2). The deviation is, however, much greater for
small separations near the threshold when the length of
the separation is only slightly larger than the minimum
length to allow the occurrence of particle production, as
in the case of L=1 fm. For the same separation, the per-
centage of deviation from the Schwinger result is greater
for the bosons than it is for the fermions.

To exhibit the dependence on the transverse momen-
tum, we integrate the production rate dN/dV dtdp,
with respect to the thickness z from z=0 to z =L and ob-
tain dN /d A dt dp; where d A is the transverse area ele-
ment. In Fig. 4, we show the results for the production
rate dN/d A dt dpy (per unit time, unit area, and unit
transverse momentum) as a function of the transverse
momentum | py| for bosons. The dashed curves with
open symbols are the Schwinger results obtained from
Eq. (4.23) while the solid curves with solid symbols are
“‘exact” results obtained with Egs. (2.16) and (4.16).
Curves with the diamond symbols are for the cases with
L=3 fm, curves with the triangle symbols are for the
cases of L=2 fm and curves with the square symbols are
for the cases of L=1 fm. One observes that the
Schwinger result and the “exact” result are proportional
to each other for large values of the thickness (L=3 fm).
In the semilogarithmic plot, the shapes of the two curves
are similar to each other. The difference of the magni-
tude arises mainly from the fact that in the “‘exact” treat-
ment, there is a region of the longitudinal coordinate for
which particle production is not allowed. Hence, the
Schwinger results are greater than the corresponding “‘ex-
act” result. For small values of the thickness, the
difference between the Schwinger result and the “exact”
result is large.
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FIG. 3. We show here the particle-production rate

dN /dV dt dpr (per unit volume, per unit time, and unit trans-
verse momentum) for fermions when the plates are separated by
L=1, 2, and 3 fm. The particle production rate is plotted as a
function of the location z'=z —1/2, which is measured relative
to the midpoint between the plates. The strength of the field is
set to be k=0.916 GeV/fm, and the mass of the fermion is taken
to be 0.350 GeV/c2. For comparison, the Schwinger result de-
duced for an infinite system is shown as a horizontal line.
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FIG. 4. We show here the particle-production rate
dN/d A dtdpr (per unit area, unit time, and unit transverse
momentum) for bosons as a function of the transverse momen-
tum pr=|pr|, which is obtained by integrating
dN /dV dt dpy over the longitudinal coordinate z between the
plates. The solid curves with the solid symbols are the “exact”
results obtained from the present work and the dashed curves
with the open symbols are the Schwinger results. To distinguish
the different cases with different thicknesses of the strong field,
we use the diamond symbols for the case of L=3 fm, triangle
symbols for L=2 fm, and the square symbols for L=1 fm.
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In Fig. 5, we likewise exhibit the dependence of the
production rate on the transverse momentum for fer-
mions by integrating the production rate dN /dV dt dpy
with respect to the thickness z from z=0 to z =L and ob-
tain dN/dA dtdpy; as a function of the transverse
momentum | pr |. The dashed curves with open symbols
are the Schwinger results obtained from Eq. (4.22) while
the solid curves with solid symbols are “exact” results ob-
tained with Egs. (3.18) and (4.16). As in Fig. 4, curves
with the diamond symbols are for the cases with L=3
fm, curves with the triangle symbols are for the cases of
L=2 fm and curves with the square symbols are for the
cases of L=1 fm. Again, one observes that the
Schwinger result and the “exact” result are proportional
to each other for large values of the thickness (L =3 fm).
In the semilogarithmic plot, the shapes of the two curves
are similar to each other. The difference of the magni-
tude arises mainly from the fact that in the “exact” treat-
ment, there is a region of the longitudinal coordinate for
which particle production is not allowed. Hence, the
Schwinger results are greater than the corresponding “‘ex-
act” results. For small values of the thickness, the
difference between the Schwinger result and the “exact”
result is again large.

Our comparison with the Schwinger result indicates
that the Schwinger results for a uniform electric field of
infinite extent give a good approximation to the particle-
production rate in the central region between the plates
when the separation between the plates is large. There
are large deviations for other regions, especially at the
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FIG. 5. We show here the particle-production rate
dN/dAdtdpr (per unit area, unit time, and unit transverse
momentum) for fermions as a function of the transverse momen-
tum py= |pr|, obtained by integrating dN/dV dtdpr over
the longitudinal thickness between the plates. The solid curves
with the solid symbols are the “exact” results obtained from the
present work and the dashed curves with the open symbols are
the Schwinger results. To distinguish the different cases with
different thicknesses of the strong field, we use the diamond
symbols for the case of L=3 fm, triangle symbols for L=2 fm,
and the square symbols for L=1 fm.

edges of the production region, and when the separation
threshold is just exceeded.

VI. CONCLUSIONS AND DISCUSSIONS

Starting from the Klein-Gordon equation and the
Dirac equation, we have obtained the particle-production
rate when the strong field is confined between two con-
denser plates separated by a finite distance. Our results
complement those of Schwinger’s which were obtained
for an infinite system. The derivation presented here
differs from the Green’s-function approach of Schwinger
but has the advantages of simplicity and the possibility of
writing the results in simple closed forms. The produc-
tion probability is obtained by solving exactly the Klein-
Gordon or the Dirac equation, as the case may be, and
matching the boundary conditions at the joining surfaces.
The transmission probability is then extracted from the
wave functions. We then relate the transmission proba-
bility to particle-production probability and obtain the
production rate per unit volume, unit time, and unit
transverse momentum. In the case of a boson field, the
rate is given in terms of parabolic cylinder functions
E(a,x) and E*(a,x). In the case of the fermion field, it is
written in terms of the confluent hypergeometric function
F,. We find that there is no production of particles until
the separation between the plates exceeds a minimum
threshold of 2mc?/|e& |. When the separation is large,
the production rates at the midpoint between the plate
agree with the Schwinger results. However, there is a
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finite-size effect which shows up for finite separations as
large deviations from Schwinger’s results for infinite sys-
tems. In particular, the deviations are large at the edges
of the production zone. This edge effect is greater for the
production of bosons than it is for the fermions. The de-
viations are also large when the separation between the
plates exceeds just slightly the threshold separation for
particle production. Thus, the Schwinger result is only a
poor approximation when the separation is not large.

In view of various applications of the Schwinger
particle-production mechanism, it will be of interest to
see how the new results may be applied to particle-
production processes in finite systems, such as in the de-
cay of highly excited resonances, or to the production of
particles in a strong Coulomb field, or ir et-e” and
nucleon-nucleon collisions. For these phenomena, the
observable prediction of the present calculations are that
(1) there is a threshold of the thickness of the strong field
below which particles cannot be produced and (2) the en-
ergy spectrum of the produced particles has large varia-
tions due to the finite thickness of the strong field. The
first consequence is a well-known result of the model.
And, if we apply this result to high-energy collisions, one
would expect that there is no particle production until
the two sources producing the strong field have separated
to a sufficient distance (above 1 fm). This feature agrees
qualitatively with the experimental observation that par-
ticle production appears to occur at a time later than the
instant at which a nucleon-nucleon collision takes
place.!>!* The second prediction of the present calcula-
tion has not yet confronted experimental tests. In
lepton-hadron and e *-e ~ collisions, there is a recent pro-
posal to measure the shape of an excited hadron by the
use of the Bose-Einstein effect.?® If this technique is
found useful, then, it may be possible to correlate the en-
ergy spectrum of the produced particles with the longitu-
dinal length of the decaying excited hadron and test the
second prediction of the present calculation.

There are other interesting related problems which
should be examined carefully if one wants to understand

the particle production process in detail.”” For example,
the geometry of a flux tube has a finite extension in the
transverse direction, while the present “condenser plate”
problem is concerned with a transverse dimension which
is infinite in extent. It would be of interest to see how a
quantized motion in the transverse direction for a flux-
tube geometry would affect the production rate. Another
interesting problem is related to particle production in
the collision of et and e~ or in nucleon-nucleon col-
lisions where the starting point of the production process
involves a relative motion of the two quarks or the two
leading particles. In contrast, the present study is static
in nature. It will also be of interest to generalize the
present study to examine particle production in systems
where the two parallel plates are moving relative to each
other. In the present analysis, the external field is ideal-
ized to be unaffected by the particle-production process.
However, in reality, particle production will dissipate en-
ergy. If the strong field is generated by two leading parti-
cles, particle production will slow down the leading parti-
cles. To understand the so called “stopping of the lead-
ing particles,”!”2=3% it will be useful to show how the
production process is coupled to the dynamics of the
leading particles so that the motion of the leading parti-
cles during the process of particle production can be fol-
lowed.
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