
PHYSICAL REVIEW D VOLUME 38, NUMBER 11 1 DECEMBER 1988

Transverse-momentum distribution of Higgs bosons at the Superconducting Super Collider
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We consider the transverse-momentum distribution of Higgs-boson production in gluon-gluon
fusion. Using resummation techniques we obtain a result valid at all transverse momenta. The re-

sulting distributions are compared with those from the WW fusion mechanism and with those pro-
duced by event generators.

The ability to detect the standard-model Higgs boson
has become one of the benchmarks for high-energy had-
ron co11iders. The Higgs boson is produced by two mech-
anism: gluon+gluon~H via a virtual quark loop' and
the so-called 8'8' fusion process quark+ quark
~H+quark+quark. The relative importance of these
two mechanisms depends upon the Higgs-boson and top-
quark masses. For a top quark of mass of order 40 GeV,
the former dominates for Higgs-boson masses less than
about 300 GeV. If the top mass is close to its maximum
allowed value of 180 GeV, then the gluon-fusion process
is dominant out to Higgs-boson masses of order 1 TeV
(see Fig. 1).

At lowest order in QCD perturbation theory, the
gluon-gluon-fusion process produces a Higgs boson with
almost zero transverse momentum (pj ) {the intrinsic
transverse momentum of the gluon in the proton is negli-
gible). The WW fusion process, however, produces a
Higgs boson with transverse rnomenturn of order M~',
the pi is balanced by the recoiling quark pair. The distri-
bution in transverse momentum is important when a stra-
tegy is devised to detect the Higgs boson. The main
background in the decay channel H~ZZ~4l, where I
denotes either an electron or muon, arises from the pro-
cess qq ~ZZ (Ref. 3). In the event of a detection system
with poor resolution on the lepton-pair invariant mass,
the process gg ~Z +tt followed by the semileptonic de-
cay of both the top quark and antiquark can produce an
additional "fake" Z. In the latter case the transverse mo-
menta of the real and "fake" Z do not balance, and this
mismatch may be used to reject this background if it is
important. It has been suggested that, in the WS'fusion
case, the additional quark jets can be used as a tag to in-
crease the background rejection.

In this paper we will discuss the transverse-momentum
distribution of the Higgs boson from the gluon-gluon
process, will show that it is quite broad, and in particular
that the average pi is comparable to that from the WW
fusion process for Higgs-boson masses of 500 GeV or
more.

The process gg ~H proceeds at order a, . A Higgs bo-
son can be produced at large pi from the processes

gg ~Hg, gq ~qH, and qq ~Hg which occur at order a, .
The first two processes are divergent as pi tends to zero.
In this region it is necessary to take into account
multiple-gluon emission which generates terms of order
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FIG. 1. The total cross section for the production of a Higgs
boson at &s =40 TeV. The solid line corresponds to the WW
fusion process and the dashed (dotted) to the gluon-gluon fusion
with pl top 180 (50) GeV.

na,"In (MH /p i )

pz

with m ~2n —3. The largest of these terms, those in the
double leading-log approximation (rn =2n —3), can be
resummed, as was originally done in the case of Drell-
Yan production. The procedure has been extended to
include terms which are less singular. For the purposes
of studying a typical Higgs-boson event it is necessary to
have a description of the pi distributions which is valid at
all pi: that is, one which correctly reproduces the
lowest-order result at large pi and the resummed result at
small pi. A procedure for doing this has been given and
applied to the production of W bosons at the CERN SppS
collider. '

The rest of this paper is organized as follows. We first
derive the pi distribution valid over all pi. In doing this
we shall simplify the task by assuming that the heaviest
quark contributing to the loop is large. The formulas
simplify enormously in this limit. The accuracy of the
approximate formulas in the large-pi region have been in-
vestigated in detail elsewhere. In practice the approxi-
mation is good to better than a factor of 3 or so if
me)(MH+p|)' /4. (See Figs. 5 —7 of Ref. 6.) In this
paper we are primarily interested in the shape of the dis-
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tribution, not its absolute normalization. We then
present the p~ distribution noting the severe numerical
problems which arise in its computation. Finally, we
compare the distribution with that arising from the 8'8'
fusion process, ' and also with that given by some popu-
lar event generators"' which are used for simulation
events at the Superconducting Super Collider (SSC).

In the limit where the internal quark mass is large the
process gg~gH which proceeds via an intermediate
quark loop (see Fig. 2) has the differential cross section

3Aa, s +t +u +MH

dt stu

Here s, t, and u are the usual Mandelstam variables and
A =—„',(a~a /M~). This can be used to generate the p~
distribution of the Higgs boson in the process pp ~H +X
using the usual parton model formula, viz. ,

0' 6 26
dp&dy s &r+e~ x~ x

~

1 dx2
Gx*, , Gx2,

S V~+e

(2)

Here the following variables have been introduced; the
incoming proton momenta are p, and p2 and pH is the
momentum of the Higgs boson, which has rapidity y.
Then

FIG. 2. Feynman diagrams showing contributions to the pro-
cess gg ~gH.

The partonic cross section s da ldt is evaluated at the
momentum transfers appropriate to the subprocess, i.e.,
s =sx, xz, t =x

&
(t —MH )+MH, u =xz(u —MH )+MH

In Eq. (2}, G(x, Q ) is the distribution of gluons in the
proton. The scale Q appearing in the gluon distribution
and in a, is ambiguous. The sensitivity to this ambiguity
can only be reduced by investigation of order-a, effects.
Provided that this formula is used in the region p~ -Mz,
the results obtained by using the choices Q =MH or
Q =p~ will not be too different. We shall return to this
issue below.

The modifications to Eq. (2) in order to make it valid
over all p~ are as follows. ' We must break it into two
pieces, one of which is singular as p~~0, the other of
which is not. First, write the partonic cross section Eq.
(1) as

s =(p, +pz), t =(p, pH), u =(—pz pH)—
r=MH ls r+ =(p,'/s)'"+(r+p /s}'

x &+ =(MH —u)/s, xz+ =(MH t)/s, —

x f =(x~x,+ r)/(xq —x~+ )—,

x~ =(x,x ~+ r)l(x, —x ~+ )
—.

~do'
3A

s'
dt 2~

s
2

pj.
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The x, integral of Eq. (2) may now be rewritten as

4

dv
dp pe

3Aa ) dx) 1 s.H(xi, xz )
— 1+ 1—

2m v'r+ey x, —x~+ p~ X)X2

4

X)X2

4

2rH(x»xz) . —

dx )3Aa, 3 A a
rH(x, ,xz )+

~p Q~+ e) x —x 27TS V

2pi —4 1—
s X)X2

'2

H(x„xf ) .

Here we have added and subtracted terms which are
singular as p~ ~0, and have introduced the variables
x& =&re, xz =&re, and H(x,y):G(x, Q )G(y, Q ).—
The remaining singularities at p~ =0 are canceled by the
virtual corrections to the lowest-order process gg~H
which are of the form

do2 2 O O—A 5(p j )H (x, ,x ~ ) .
dp gdy 2K

dp', . (6)

I

After integration over p~, we obtain the total Higgs-
boson production rate to order a, . In view of this we can
regulate the singularities in Eq. (4) by replacing 1/pj by
(1/pi )+, where the (+) is defined so that

f~ ..dp', f(p', ) ft,. f(p', ) —f(0)
(Pl )+ Pi

The upper limit of the p~ integration (p,„) in these dis-
tributions can be taken to be either MH or the maximum
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from Eq. (4). Here Pss(z) is the Altarelli-Parisi splitting
functions'

+z(1—z) +~6(1—z),P s(z)= 6 +

where a = —", n—I/3 and ni is the number of light flavors.
Following this manipulation (and adding the xz integral),
we get

(9)=X+Y,
dp jdy

s z P K Q Q

2K zi z
(7)

where

allowed pi. We will choose the former so as to avoid
terms proportional to ln(pi, „/Mtt ) which can be large.

We have not computed the virtual contributions and
wi11 not therefore include them in what follows. This
omission means that the integral over p] of our final re-
sult, although of order a„does not reproduce the full
order-a, rate. However, this is not important since we
are interested only in the shape of the distribution.
Furthermore, the mean value of pi is given correctly at
order a, without the inclusion of these virtual correc-
tions.

We now add and subtract the term

3Aa, w

&in(Mtt/pj ) — H(x&, xz)+ z f Pss(z)H(x&/z, xz)+(1~2) (10)

and

3Aa, ] dx]
2ms v'~+e& x& x &+

2pi —4 1—
s X]X2

'2

H(x„x~ )+(1~2)

'44 r

3Aa, 1
'

] dx], s
+ .H x&xz — 1+ 1—

2m pi v~ e& x& x& s X]X2 X]X2

P
'4

Q 43Aa 1 i dxi
Q

7H x &,x 2 p
1 + 1 +2' pi xi X)Xi

—2H (x, ,x z )r .+(1~2)

2rH (x,—,x q ) + (1~2)

4A a 1 u+us
3 277 p j s

Following manipulations similar to those above,

=X +Y
dp 2d~

(13)

3 A a, r ( 1 —x,+ )( 1 —x q+ )
&4 =

z
H (x „xz )In

pz (1—x 1 )(1—x&)

Note that Y = Y& + Y2 + Y3 + Y4 is finite as pi ~0. Before proceeding further it is necessary to include the terms from
the process gq ~Kq for which the partonic cross section in the large-fermion-mass limit is

(12)

4A
Y =—q=

3p2 2

1 dX)
q(x, )G(xz) +t—u/(s+t —M& X1S + g ~H2 S

dX2f ] Q+ q(xz)G(x', ) +u—~/(s+u —M~) X2S+

+~G(x, )f 0 q(xz)[1+(1—xz /zx) ]+rG(xz) f q(x, )[1+(1—x, /x, ) ], (14)
x& X2 Xl

a,
q p2 2

where

G(x& )f Psq(z)q(xz/z)+(1~2)
Z', Z

x
&
=[—xzu M&(1 —z)x]/(xz —st +—Mtt),

x~ =[ x, t Mtt(—1 —xi)]/(xmas+—u Mtt), —
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and

4 1+(1—x)
3 x

The final contribution from the process qq~Hg is finite as p~~O. It is small numerically, contributes to Y only,
and is not written explicitly.

We now have

Xq Xg Y] + Y2 + Y3 + Y4 + Yp
dp pe

We now perform the resummation on the term X =X +X . Perform a Fourier transform

d b —~b.
(16)

We have

~max dX(b)= ArH(x &,xz) 1+ f [Jo(bp) —1] ln(MH/p )——
p

+ A~ ln(MHb ) f P s(z)H(x, Iz, x2)+ f Ps (z)q(x, Iz)G(xz)+(1~2)
2~ x', Z

(17)

Here Jo(x) is a Bessel function. Had we included the virtual (order-a, ) terms, there would be further terms in the equa-
tion proportional to Aa, but independent of b. The structure functions appearing in Eq. (17) are to be evaluated at
Q =mH. Notice that the solution of the Altarelli-Parisi equations is

T

G(x, l/b )=G(x, Q )+ '
ln(Q b ) f Ps(z)G(xlz, Q )+f P (z)q(xlz, Q ) +0(a, ) . (18)2' x Z X Z

Hence, we may rewrite
T

3(x dp 2

X(b)= grH(x &,xz, 1/b ) 1+ ' f [Jo(bp) 1][ln(M—H/p ) —a/3]
p

(19)

The resummation of the dominant terms at small p~ leads
07, 8

X(b)~A~H(x, ,x2, 1/b )e

where

(20)

dp
Jo bp —1 lnMH p —~ 3

p

The full result is then

S(b)=

dcT = Yi + Y2+ Y3+ Y4+ Y
dpi /dp

b —|(b )+Ax e 'H(x x )e (21)

The process qq~Hg (Ref. 6) is finite as p~~O and,
hence, needs no resumming, and can be added to Eq. (21).
Numerically it is insignificant, but we have included it in
the values shown in the figures. Equation (21) can now be
evaluated numerically to obtain a distribution which is
valid at all p~. At small values, the terms in Y are negli-
gible and those of X alone control the distribution. At
large p~ there is a very delicate cancellation between X
and Y in order to recover the lowest-order result. In or-
der to undeistand this, notice that the dominant term in
Y is Y3, since the structure functions fall rapidly with x
and it has the lowest lower limit in the integrals over x,

I

and x2. This produces a term proportional to 1/pj since
there is no pj dependence in the integrals. The full
lowest-order result falls much more rapidly since tl r+e"
which in the lower limit on the integral in Eq. (2) in-
creases with p~.

This dominant term is canceled by appropriate terms
in X. Notice that this cancellation involves the term of
Eq. (17) which is an approximate solution (18) to the
Altarelli-Parisi equations for the evolution of structure
functions. Since X is evaluated using a set of structure
functions which are obtained by an exact solution, small
differences will arise which destroy the cancellation. The
main difference is that (18) is a solution to the Altarelli-
Parisi equations assuming the a, is a constant. The full
solution to

a, ( Q') i dz
G(x, Q )= f [G(x/z, Q )P (z)

d lnQ 2m x z

+q(xlz, Q )Psq(z)]

(22)

will differ slightly.
The numerical values for the structure functions also

need to be much more accurate than the few percent nor-
ma. l in a parametrization. The dilculty caused by the
f; '»re of this extremely delicate cancellation can be seen
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in Fig. 3 where the result of Eq. (21} is compared to the
order-a, result mH =200 GeV. There is a region of pt
where the curves come together, and a region at larger p~
where the numerical cancellation fails and the evaluation
of Eq. (21) fails to reproduce the lowest-order result. In
obtaining Fig. 3 Eichten-Hinchliffe-Lane-Quigg (EHLQ)
set-2 (Ref. 14) structure functions were used. The a, (p)
appearing in A was evaluated at p =MH, while that ap-
pearing explicitly in $(b) was evaluated at p =1/b and
that in Yat p, =pj. This choice, although arbitrary, is a
reasonable one. Calculation to order a, are needed in or-
der to reduce the ambiguities inherent in these choices.

In order to circumvent the numerical problem, we
adopt the following prescription. Choose a value of
p~=pj where the two curves in Fig. 3 overlap. Then
define

a
CL'a

b
a

10

100
p (GeV)

10 I I i I I I I I i I I

0 50 150 200 250

d cr

dp tdp

P r

1 f — [Eq. (21)]

+f (lowest order),Pz

.Pl .

(23)

where f(1)=0.5 and f(x) goes rapidly to zero (one) as x
falls below (rises above) the point x =1. There is little
sensitivity to pt provided that it is chosen in this way.
Notice that the value of p~ is different for each value of
MH, the choice p~ =MH /3 works well.

It is worth remarking that similar problems can aIIIict
applications of the same technique to computation of the

pt distribution of Wand Z bosons at the SppS and Fermi-
lab Tevatron colliders. Here the numerical cancellations
are dificult for p~) 20 GeV and the above prescription
should be adopted in this case also.

Figure 4 shows the pj distributions of Higgs bosons on
mass 100, 200, 400, and 800 GeV. From these figures we
can determine the average pz..

FIG. 4. The cross section do /dp, dy at y =0 for the process
pp~H+Xat &s =40 TeV for mH=100, 200, 400, 800 GeV.

(pj ) -[60+0.12(MH —100}]GeV (24)

with mH in GeV. This average (60 GeV) is larger for a
100-GeV Higgs boson than that for the production of a Z
at SSC (35 GeV). This larger value is due to the different
production mechanisms. The Z is produced by qq and
the H by gg annihilation. The gluon has a larger color
charge than the quark and so radiates more gluons,
which generate the nonzero p~, than do the quarks.

For comparison we show in Fig. 5 the p~ distribution
from the WW fusion process. Here the p~ is balanced by
the outgoing quarks. The characteristic scale for this
process is M~, since the internal W' have invariant mass
of this order. Hence, the p~ of the Higgs boson is of or-
der M~ and does not grow appreciably as the Higgs-
boson mass is increased. There will be an additional con-
tribution to this pz due to the radiation of gluons off the

incoming quarks, but this will not be large since the
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FIG. 3. The cross section der!dp&dy for the production of a
Higgs boson from the gluon-gluon process at y =0 for mH =200
GeV and &s =40 TeV. The solid line corresponds to the
resummed result of Eq. (21); the dashed to the lowest-order re-
sult. The failure of the curves to agree at large pz is discussed in
the text.

FIG. 5. A comparison of the distributions da /dp~dy at y =—0
for Higgs-boson production at the SSC from the WW (histo-
gram) and gluon-fusion (lines) processes. The solid (dotted)
curves are for MH =200 (800) GeV. The curves are normalized
to the same area.
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quark color charge is smaller than that of the gluon and
the characteristic scale of the process is m ~ as opposed
to MH in the gluon-gluon case.

Finally, we would like to compare the pj distribution
that we have obtained with that produced by the event

FIG. 6. A comparison of the p, distribution (1/N)dN/dpj at

y =0 for mH=200 GeV. The histogram is the result of the
IsAJET (Ref. 11) Monte Carlo simulation. The solid line is our
result. The curves are normalized to the same area. The distri-
bution for PYTHIA (Ref. 12) is similar to that of ISAJET.

generators PYTHIA (Ref. 12} and ISAJET (Ref. 11}which
are often used to simulate events for SSC studies. These
generators incorporate the process gg ~H and allow the
incoming gluons to radiate other gluons (initial-state ra-
diation). It is this radiation which is responsible for the
Q dependence of the structure functions, and it also gen-
erates a nonzero p~. This will be an approximation to the
true p~ distribution discussed above. The partonic pro-
cess gq ~Hg and qq ~gH and gg ~gH are not included
explicitly in the generators. It can be seen from Fig. 6
the p~ distribution obtained by us has a different shape
from that given by these Monte Carlo generators. How-
ever, the average pj is very similar. It is clear that the
distributions given by these event generations are prob-
ably adequate for signal/background studies. In con-
clusion, we have investigated the p~ distribution of the
Higgs boson from the gluon-fusion process and have
shown that the average value ofp~ is quite large.
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