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Nonstandard neutral weak boson and elastic electron-proton scattering
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The prospect of using a precision measurement of parity violation in elastic electron-proton
scattering in the GeV range to detect manifestations of the nonstandard neutral weak boson Z' is
investigated in some detail. The numerical results indicate that, for an assumed Z' mass of about
300 GeV, the deviation of the predicted parity-violating beam and target asymmetries from those
given by the standard Glashow-Weinberg-Salam electroweak theory can be in the vicinity of several
percent. Thus, confirmation of the standard model to within an accuracy of a couple of percent in
such measurement should yield a severe constraint on the possible existence of the nonstandard neu-
tral weak boson.

I. INTRODUCTION

The possible existence of a nonstandard weak boson
Z', in addition to the usual y and Z in the standard
Glashow-Salam-Weinberg (GSW) SU(2) X U(1) theory, '

has been suggested by recent studies of E8XE8 super-
string models as well as by attempts in constructing
grand unified theories (GUT's). As pointed out in a re-
cent paper, introduction of a nonstandard Z' into the
standard GSW theory requires an extension of the stan-
dard Higgs mechanism, so that only the photon y will
remain massless upon spontaneous symmetry breaking.
Two simple Higgs scenarios were considered: the 2+1
Higgs scenario in which the standard Higgs mechanism is
augmented by an additional Higgs singlet [under SU(2}L ]
and the 2+2 Higgs scenario in which two Higgs doublets
are assumed. By requiring both that the standard neutral
weak currents as given by the GSW theory be reproduced
exactly and that the Higgs fields transform like members
of the 27 representation of E6, we obtain the neutral-
current interaction, in the 2+ 1 Higgs scenario,

e 0Z„N„

+ tanP~Z„'N„"+ A„eJ„'m,
cos8 gr

son using a precision measurement of parity violation in
elastic electron scattering at an electron beam energy of a
few GeV, an experiment which may become feasible
when the Continuous Electron Beam Accelerator Facility
(CEBAF) comes into operation in the early 1990s. The
primary objective of this study is to determine the con-
straint on the possible existence of Z', provided that the
accuracy of the proposed parity-violation measurement
can reach the level of a couple of percent. [As explained
later in Sec. III, the parity-violating asymmetries at for-
ward angles (say, between 5' and 20') are small due to the
accidental cancellation that makes 1 —4sin On, close to
zero. Thus, it will be a difficult experiment if these asym-
metries are to be measured to within the accuracy of a
couple of percent. ]

The rest of this paper is organized briefly as follows.
In Sec. II the basic ingredients of the formulation are
briefly outlined. In Sec. III numerical results are present-
ed along with some discussions. A brief summary of the
paper is given in Sec. IV.

II. FORMULATION

In the SU(2)L XU(1)XU(1) electroweak theory, the
transition amplitude for elastic electron-proton scatter-
ing,

where sin8n, =e/g, tannin, =g"/g', and J„' and N„are,
respectively, the electromagnetic current and standard
neutral weak current carried by chiral fermions. The
nonstandard neutral weak current N„", which couples
chiral fermions to the nonstandard neutral weak boson
Z', depends only on the assumed transformation proper-
ty of the standard Higgs doublet under E6. Here, i ( =a,
b, or c} denotes the three possible forms for the current,
which will be specified later in Sec. II A. It was also ar-
gued that other Higgs scenarios are less natural and
thereby might be of less practical interest.

In this paper we wish to explore the prospect of detect-
ing manifestations of the nonstandard neutral weak bo-

e(p, )+p(p)~e(p, ')+p(p'),

is given by
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A. The currents

For the purpose of the present paper, it is convenient
to decompose the hadronic currents into the isovector
and isoscalar currents as follows:

J'„(x)=I'„'(x}+—,
' Y„(x),

N~ (x)=hi, I~ ~(x)+hv Y (x)

N„'"'(x)=h „I„' '(x) +h „' Y„(x) .

(5a)

(Sb)

(5c)

Here, we need to consider only the space consisting of up
and down quarks (i.e., the nuclear domain) and electrons.
Working with this limited subspace, we find

gv= —1+4sin 0~, g„=—1,
h r = 1 —2 sin Hid, h r = —sin 8ir,2

h„=l, h~ =0.

(6a)

(6b)

Here, we note that, because of the relation g /8Mir
= G/&2, we need to multiply the quark current by a fac-
tor of 2 and the leptonic current by a factor of 4 as we go
from the currents defined in Eq. (1) to the currents associ-
ated with Eq. (3). (Since there are two interference terms
between the quark and lepton sectors, we throw this fac-
tor of 2 into "redefined" leptonic currents. )

Working with the same subspace, we have obtained in
Ref. 4 the nonstandard neutral weak current which is as-
sociated with Eq. (1):

Nz' ———idR y„—,'dR —i eLy& —,'eL —ivL y&—,'vL, (7a)

~„—= &p(p')
l

[N„'"(o}+N„'"'(o)]
l p(p) ~ (4b}

~ = (p(p')
l
[N„' '(0)+N„'"'(0)]

l p (p) ) . (4c)

Here, e /4m (—=a) is the fine-structure constant and 6 is
the Fermi coupling constant. The coupling constant 6'
will be specified later. The three terms in Eq. (2) corre-
spond to the diagrams illustrated in Fig. 1, respectively.
Note that J„' and N„are already given in the GSW
theory. To describe how to use Eqs. (2)—(4) in making
predictions, we wish to divide our presentation into three
subsections: the currents, nucleon form factors, and
cross sections.

lu—Lr —uL + ld—Lr d—L

+—'"R'Yp —uR+ —' ~R'Vp —eR (7c)

N„' = ,'(i uL y„uL —+idL y„dL )+—,
' iuR y„u„,'id„y„dR——

(tvLrpvL+t eLrpeL )+ i eRrp R

and 6' is given by Eq. (8), but with tang = l.
We may now decompose the nonstandard neutral weak

current into isovector and isoscalar components:

depending on whether the Higgs doublet transforms like
(a} (E, v R), (b) (E ', vR &, or (c) (e ', v,'), respectively.
[These are the only three colorless SU(2)I doublets in the
27 representation of E6.] In addition, we obtain from Eq.
(1)

2O', , Mw
=tan Hirtan fir zMz'

with Mir and Mz the masses of the charged weak boson
and the nonstandard neutral weak boson, respectively. It
is amusing to note that, at low energies (q &~Mz }, the
two parameters tangier and Mz associated with the non-
standard weak boson are always correlated together to
appear like a single parameter 6'/6.

The constraint on the value of G'lG may be obtained
from a global fit to the existing data on neutral-current
interactions. ' A slightly more stringent constraint has
been obtained recently by Marciano and Sirlin by con-
sidering box-diagram corrections for charge weak in-
teractions. For the sake of illustration, we adopt
6'/6 = —,'„which corresponds approximately to the most
optimistic allowed value for the Z' mass (i.e., about 300
GeV) (Ref. 8). (For the sake of simplicity, we shall sim-

ply set tan P &
——1 since a change in this parameter corre-

sponds e+ectiueiy to a change in the Z' mass. ) To de-
scribe results for other values of the Z' mass, we shall
introduce quantities which describe deviations from the
predictions of the standard GSW model and which scale
linearly with the value of 6'IG. [See Eq. (25) below. ]

Note that the nonstandard neutral weak current given
above may be contrasted with another form used in the
literature: ' '

t(, b] 1 ' 1
Np = iluLrpiuL+ 2ldLrpidL

+—uR p —QR ——ldR fp 2 dR

N pi v)(x)

=AEVI

p(3)(x)+~'v Yu(x),

N„' "'(x)=g„I„' '(x)+ g'„Y„(x) .

(10a)

(lob)

1 eLX 2 L 2 vL YP2vL+ 2 R YP2 (7b) Taking into account appropriate normalization factors in
going from Eq. (1) to Eq. (3), we find, for solution (a),

gv ———1, gq ———1, 9V
(1 la)

and, for solution (b),

(b) (c)

gv 0~ gA

/V 4~ lA—

9V

QA 4

(1 lb)

FIG. 1. Elastic electron-proton scattering. and, for solution (c),
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gv

IA 4&

9V 4

9A g

(1 lc)
described above to make predictions on parity violation
in elastic electron-proton scattering, focusing mainly on
effects caused by Z' .

As a reference point, we shall consider Eq. (9) as well:

gv gA l~ IV
B. Nucleon form factors

(1 ld)

We wish to use the nonstandard neutral weak currents
I

We may parametrize the matrix elements of the stan-
dard neutral weak current, Eq. (4b), in a Lorentz-
covariant manner,

(p(p')
t

&' '(0)
t p(p) & =iuf(p') ygv(q')+ " fM(q') i "—fs(q') u;(p),

p p

N 2 upA. y5 N 2 .2mpqpr5 N 2(p(p')
t
&„'"'(0)

t p(p) &
—= iuf(p') y„ysf„(q')+ " fp(q') i —2" fp(q') u;(p),

p m~

(12a)

(12b)

=iuf(p') y„ep(q')+ " yp(q') u;(p),
2mp

( n(p')
t
J~™(0)

t
n(p) &

r

(13a)

=iuf(p ) ype (q )+ p (q ) u(p), (13b)

where e(q ) and p(q ) are the electric charge and anoma-
lous magnetic form factors. Experimentally, one has'

ep(q =0)=1, p (q =0)=1.793,

e„(q =0)=0, p„(q =0)= —1.913,

(13c)

(13d)

with the q dependence determined by the standard di-
pole form with Mv ——0.84 GeV.

Equations (5a)—(5c) yield, for the standard neutral
weak current,

where fv(q ), fM(q ), fs(q ), f„(q ), fz(q ), and

fP (q ) are, respectively, the vector, weak-magnetism,
scalar, axial-vector, weak-electricity, and pseudoscalar
form factors suitable for the standard neutral weak
current. The form factors for the nonstandard neutral
weak current can be introduced in an identical fashion
and we shall refer to them as f,' (q ) instead of f, (q )

(with j= V, M, S, A, E, or P).
Analogously, we introduce the nucleon electromagnet-

ic form factors as follows:

(p(p')
t
J„' (0)

t p(p) &

and, for the nonstandard neutral weak current,

fv (q')= ,'nv[e, -(q') e.(q'—)]

+n'v[e, (q')+e. (q'))

fM"(q')= 'Iv[i (q ) —i (q )1—
+~'v[9, (q')+p. (q'))

fs(q ) —0

(14b)

Equations (14a) and (14b) are referred to as the "general-
ized conserved-vector-current (CVC) theorem"" or as
the "isotriplet hypothesis. "' Note that, using sin 8~
=0.223 (Ref. 10), we find

fv(q =0)=—,'(1 —4sin Hu )=0.054,

an accidental cancellation as compared to the value of
fv (0) for models (1 la) —(lid). This aspect turns out to
be of importance when we consider the deviation of the
predicted parity-violating asymmetry from that in the
GS%' theory in the kinematic region of small q&.

Analogously, it is customary to define the matrix ele-
ments of the charge-lowering weak currents as follows:

I

fv(q )=—,'hv[e (q ) —e„(q )]+hv[e (q )+e, (q )]

fM(q') = ' ~ v [up(q') i .(q') 1
—+ h v[iJ p(q')+w. (q'))

(14a)
fN( 2) 0

(n(p )
t

V„'-'(0)
t p(p) & =—iu, (p ) ygv(q')+ "' "f„(q') ~" f,(q—') ., (p),

2mp 2m
(isa)

(n(p')
t

A„' '(0) tp(p)&—= iuf(p') y„y5f„(q )+ ""
fE(q ) i " fp(q —) u, (p) .

2mp 7?l ~
(15b)

These form factors describe a number of important semi-
leptonic charge weak reactions involving nucleons, in-
cluding neutron P decay, muon capture in hydrogen, and
neutrino-induced muon production on a nucleon target.

I

While the polar-vector form factors fv(q ), fM(q ), and

fs(q ) are related to the isovector nucleon electromag-
netic form factors via an isospin rotation [conserved vec-
tor current (CVC)], the axial-vector form factors f„(q ),
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fE(q~), and fp(q ), which have been determined experi-

mentally, provide useful information for neutral weak-

interaction studies. Using the "generalized" CVC
theorem, we find

Vo—= &p(p'}
I +o (0) ip(p) & =XIX Gv (18b)

A.=—&p(p'}
l

N' "'(0)
l
p(p ) & =XI( —o'G~ —q o"q G~ )X;

f„(q ) = 'h „—f„(q ) + h '„f'„'(q ),

fz(q')= ,'h Af-E(q )+h~fF."(q'), (16a)
~o=—&p(p'}

~

&o'"'(0)
i p(p) & =X/( — .q)X, G

(18c)

(18d)

fp(q')=-'h„fp(q )+h„'fp' I(q2);

f~"(q'}=2n~f ~(q'}+n'~f ~"(q'»

fF. (q') = ,'rl~f E(-q')+ rl'~f2-'(q'»

fp (q') = ,'rl~f p(q-')+rl'~f p"(q') .

(16b)

with

G~ =f[ofM(q')+b[fv(q ) cfear—(q )]j,
Gs =—gb [fv(q } cfog(q')] kufs (q )

Gv =g[fv(q') obfM(—q'}] kcfs (—q'»

G =g[f (q—')+cf"(q') ~bf"(q')l

(19a)

(19b}

(19c)

(19d)
For studies of the standard neutral weak current, h „' van-
ishes identically to lowest order in the GSW theory [Eq.
(6b)] and its actual value may be slightly larger than radi-
ative corrections" [O(a)], so that it is not essential to
know the isoscalar axial-vector form factors f„' '(q ),

fF '(q ), and fp '(q ). However, the situation for the
nonstandard neutral weak current is very different since
the value of rl'„as given in Eqs. (1 la) —(lid) is as large as
the other couplings.

Of course, knowledge of the pseudoscalar form factor
is not essential for present studies since it contributes to
cross sections with m, as a proportionality constant. In
addition„ it is known experimentally that the second-class
form factor fE(q ) vanishes to a reasonably good approx-
imation, so that it is tempting to assume fE(q )=0 in

making numerical predictions. Experimentally, one
has, ', for the isovector axial-vector form factor,

1.257+0.006. z

+M

2m iq[
Gp =—g hfdf(q }+abfF(q )

m

GE =0 afE—(q'} —b f (q'—) ', f—"(q'}
m~

Here, we have used

' ]/2EI+m

2'

2m

b
EI+m

(19e)

(19f)

(20a)

(20b)

(20c)

with M„=1.032+0.036 GeV (Ref. 14). This leaves the
isoscalar axial-vector form factor f „' '(q ) as the only un-

determined parameter, which we shall arbitrarily take to
be the same as the isovector axial-vector form factor for
the sake of illustration. [Note that, in our notation, only
the products hz fbi '(q ) and rl'„ fez '(q ) are relevant for
cross-section calculations. ]

C. Cross sections

In the laboratory frame where the target proton is at
rest, we may rewrite Eqs. (12a) and (12b} as follows (with

7I and 7; two-component Pauli spinors in the hadron's
own rest frame):

&:—&p(p')
i

N' '(0)
i p(p ) & =X/( err XqG~ —qG,—)X;,

(18a)

qoC=-
2mp

(20d)

The differential cross section, as defined in the labora-
tory frame, for elastic electron-proton scattering is deter-
mined by

do =, , (2n) 5 (p,'+p' —p, —p)g l
&I

dpe dp' 44
(2m. ) (2n )'

(21)

where g denotes both summation over final discrete
states and averaging over initial (unobserved) discrete
configurations. Carrying out the summation over final
electron spins, we obtain, ' with e, —:p, /

i p, i,
eI —=p,'/ i p,

' i, and s, the direction of the initial electron
polarization,
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2
2

{ ~

J
~

'(1 —e;.eg)+J* eg J e;+J e~ J'.e; —2Re[JpJ* (e;+e&)]

+
~
Jp

~
(1+e; e&) —s, e;Im[(e; —e&) J' XJ+2JpJ'. e; Xe&]]

2

+ —
2 (g„s, e; —g~)Re[J*.N(1 —e, e&)+J* e&N e, +N* e&J e, .

2

—NpJ' (e,-+e&) JpN (e;+e&)+JpNp(1+e; e&}]

2

+ —
2 (gvs, e; —g„)Im[(e; e—&) J"XN+ JpN' e; X. e&+NpJ' e; Xe&]

2 q

2

+ —
2

(g„'s, e; —gv)Re[J* N'(1 —e;.e&)+J' ejN' e;+N" e&J e,
2

NpJ '(e +et}—JpN '(e +ey)+JpNp(1+e, e&)]

(g vs, e; —g„' )Im[(e; —e& ) J' X N'+ J,N".e, X e&+N p
J".e, X ef], (22)

do(s, .e, =+1)—do. (s, e;= —1)

do(s, .e, =+1)+do(s, e, = —1)
(23a)

Of course, it may also be of interest to consider a parity-
violation experiment in which the electrons are not polar-
ized and the target protons are polarized in a certain
direction. In this case, we may define the parity-violating
target symmetry S:

do(s~. e; =+1) der(s e; =——1)

do. (s .e;=+1)+der(s .e;= —1)
(23b)

where (J,iJp) (:—8„), (N, iNp) (=IV„), and (N', iNp)
( =A„) are the matrix elements defined in Eqs. (4a) —(4c).

It is customary to simplify further the expression (22)
so that cross sections may be expressed explicitly in terms
of the various nucleon form factors. (See Ref. 15, as an
example. ) In this work, we wish to invoke a simple nu-
merical method as an alternative. To this end, we note
that, using Eqs. (18)—(20), we may obtain the matrix ele-
ment (N, iNp) numerically once the nucleon neutral-
current form factors are determined from Eqs. (14a),
(16a), (13a), (13b), and (17) [with Eqs. (6a) and (6b) as the
input]. It is clear that we may obtain in an identical
manner the matrix elements (J,iJp) and (N', iN p ). Subse-

quently, the various vector operations in connection with
Eq. (22) can be evaluated numerically so that predictions
on cross sections can be made on the basis of Eq. (21). In
this approach, cross sections for the various spin
configurations are evaluated exactly in the numerical
sense. Although some appealing features associated with
analytical expressions of the final formulas may no longer
be transparent, the present numerical method does ofFer a
straightforward, exact, and viable approach to similar
(and more complicated) problems.

Once the cross sections for difterent spin configurations
are obtained, the parity-violating beam asymmetry A as
defined below may be evaluated:

The other quantity which is also of experimental interest
is the spin-correlation parameter as defined by

do(s, s =+1}—do(s, s = —1)

do(s, s =+1)+do(s s~= —1}
(24)

which, however, is not a parity-violating observable. In
this paper we shall not consider experiments in which
both the beam and the target are not polarized but the
polarization of the final proton is detected.

III. NUMERICAL RESULTS AND DISCUSSION

To obtain numerical results, we note that, once the nu-
cleon form factors are known, Eqs. (18)—(20) allow for
determination of the various current matrix elements ap-
pearing in Eq. (22). Subsequently, Eqs. (21) and (22) yield
predictions on cross sections. As mentioned earlier, we
choose to carry out these steps numerically. As for the
input for the nucleon form factors, we assume that

fz '(q )=f„' '(q ) and that all other form factors are
determined through formulas given in Sec. IIB. It is
clear that, although we do not write out analytical ex-
pressions for physical quantities such as those defined in
Eqs. (21)—(24}, we need not make approximations in gen-
erating numerical predictions once the nucleon form fac-
tors are given.

In Fig. 2(a) we describe the differential cross section
do /d 0,' as a function of the electron scattering angle 8,
for an electron beam energy of 4 GeV (solid curve) and 1

GeV (dashed curve), respectively. Here, the GSW elec-
troweak theory with sin 8~ =0.223 (Ref. 10) (and
without the Z' ) has been used. Note that, at F., =4 GeV
and 0, =50, the predicted cross section in the GSW
theory with both y and Z is already larger than that of
the one-photon exchange alone by about 30~o. However,
it is expected that systematic errors in an experiment will
prevent us from using such cross-section measurements
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to identify the Z . Note also that, for E, =4 GeV, the
cross section is already so much forward-peaked that its
magnitude at t9, =5' is already smaller than that for
E,=1 GeV.

In Fig. 2(b) we plot the spin-correlation parameter
C, ;„, as defined by Eq. (24), as a function of the electron

scattering angle 6I, for an electron beam energy of 4 and 1

GeV, respectively. Owing to the sizable spin correlation
as indicated by this figure, it is clearly of importance to
make certain that the beam and the target are not simul-
taneously polarized in a parity-violation experiment.

In Fig. 2(c) we plot the four-momentum transfer

10 26

f 0-28
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Ee= 1 GeV

I

(a)
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FIG. 2. (a) The differential cross section do. /dQ, '

shown as a function of the electron scattering angle 0, . (b) The spin-correlation
parameter C,~,„, as defined by Eq. (24), shown as a function of the electron scattering angle 0 . (c) The four-momentum transfer

2
~ ~ e'

squared g shown as a function of the electron scattering angle 8, .
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squared Q ( =—q } as a function of the electron scattering
angle 8, for an electron beam energy of 4 and 1 GeV, re-
spectively. Such information is useful since parity-
violating asymmetries due to Z or Z' grow approxi-
mately linearly with Q .

In Fig. 3(a) we describe the beam asymtnetry Aosw, as
defined by Eq. (23a) and calculated in the GSW theory
with sin 0~=0.223, as a function of the electron scatter-
ing angle 8, for an electron beam energy of 4 and 1 GeV,
respectively. Note that the magnitude of the beam asym-
metry increases approximately linearly with the four-
momentum transfer squared Q, as reflected by the simi-
larity between Figs. 2(c}and 3(a).

In Fig. 3(b) we describe the target symmetry Sosw, as
defined by Eq. (23b) and calculated in the GSW theory
with sin 8~ ——0.223, as a function of the electron scatter-
ing angle 8, for an electron beam energy of 4 and 1 GeV,
respectively. Note that the magnitude of the target
asymmetry also increases approximately linearly with the
four-momentum transfer squared Q .

It is useful to observe that, at smaller electron scatter-
ing angles (say, less than 10'), the beam asymmetry is
dominated quite exclusively by the contribution propor-
tional to the product of the electron axial-vector coupling

gz and the proton polar-vector neutral-current vertex
[Eq. (12a)] while the target asymmetry is determined pri-
marily by the contribution proportional to the product of
the electron vector coupling gv and the proton axial-
vector neutral-current vertex [Eq. (12b}]. As a numerical
example, we note that, at E, =4 GeV and 8, =5', the pre-
dicted beam asymmetry is —2. 369)&10 in the GSW
electroweak theory with sin 8~——0.223, and it remains
—2. 303 &( 10 if g v is set artificially to zero.
Meanwhile, the corresponding target asymmetry is
1.681)&10 in the GSW electroweak theory and it be-
comes 1.478)&10 if g~ is set artificially to zero. At
larger electron scattering angles (where cross sections be-
come much smaller), separation between the two contri-
butions becomes considerably less evident.

At forward electron scattering angles (say, between 5'
and 20'), we have q& ~0, so that contributions due to the
induced form factors such as fM(q }are suppressed. The
beam asymmetry in the GSW model is then dictated by
g„fP(0},which is proportional to 1 —4sin 8~. Analo-

gously, the target asymmetry is determined primarily by
gvf„(0),which is also proportional to 1 —4 sin 8~. As a
result, the parity-violating asymmetries at forward an-
gles, as exhibited by Figs. 3(a) and 3(b), are small because
of the accidental cancellation that makes 1 —4sin 0~
close to zero. Thus, it will be a difficult experiment if
these asymmetries are to be measured to within the accu-
racy of a couple of percent. Because of such a cancella-
tion, the "figure of merit" as defined by A do /dQ be-
comes a very slow varying function of the electron
scattering angle. At E, =4 GeV, it has a maximum value
of 3.69' 10 ' pb at 0, =8 while, at E, =1 GeV, it has a
maximum value of 2.44&10 "pb at 0, =33'. In terms
of the calculated figures of merit, an experiment at
9, =20' is not much more difficult than that at 0, =10
for an electron beam of 4 GeV.
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FIG. 3. (a) The beam asymmetry AGs~, as defined by Eq.
(23a) and calculated in the GSW theory with sin 8~ ——0.223,
shown as a function of the electron scattering angle 0, . Note
that the asymmetry is predicted to be negative in sign. (b) The
target asymmetry Sos~, as defined by Eq. (23b) and calculated
in the GSW theory with sin 8~——0.223, shown as a function of
the electron scattering angle 9,.
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To contrast different models with the standard GSW
theory, it is useful to consider deviations of the predicted
asymmetries from the standard-model predictions. To
this end, we define

A —Aosw
7

Gsw

where Aosw is the asymmetry calculated in the GSW
theory (without Z' ) with sin 8~=0.223 (Ref. 10) and A
is the asymtnetry calculated in our SU(2)L XU(1)XU(1)
electroweak model with the nonstandard neutral weak
current specified by Eqs. (11a)—( 1 ld). A definition analo-
gous to Eq. (25) will be adopted for the target asymmetry.

10—

5
~o

0

0—

Ee=4GeV

I
I

I
I

I

I

1

I

~ ~ lpga

MODEL (a)

MODEL (b)

MODEL (c)

MODEL (d)

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ e

BEAM ASYMMETRY DEVIATION 20—

o 10—

CI

0—

Ee-1GeV

MODEL (a}

MODEL (b)

MODEL (c)

MODEL (d)

~Was ~
~ ~

%,~

~ ~ %~ ~
~ ~ ~&aa ~ ~ ~~ ~

~lagy ~
~ ~ ~ ~ ~

BEAM ASYMMETRY DEVIATION

-5
10 20

0 (deg)

I

30
I

40

(a)—
50

-10 I

10
I

20

e (deg)

I

30
I

40

(a)—

Ee= 4 GeV
I

(

Ee=1 GeV

I
I

I

10—

5~00

ASYMMETRY DEVIATION

MODEL (a)

MODEL (b)

EL (c}

EL (d)

20—

0 10—

CI

ASYMMETRY DEVIATION

MODEL (a)

MODEL (b)

MODEL (c)

MODEL (d)

0—

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~$%~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ «~I~ ~

~ ~

~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~
~ ~ ~r ~ ~ 0—

~ ~ ~ ~ I ~ ~
~ ~ ~ ~

~ ~
~ ~

~ ~ em+
~ ~

~ ~ ~
~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~\ ~ ~gy~
~sa+

~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~

-5
0

I

10
I

20

e (deg}

I

30
I

40

(b)—
50

-10
0

I

10
I

20

e (deg)

I

30
I

40

(b)—
50

FIG. 4. (a} The quantity 6, defined by Eq. (25) for the beam
asymmetry, shown as a function of the electron scattering angle
0, at E, =4 GeV for the four different Z' models of Eqs.
(11a)—(11d). (b) The target-asymmetry deviation shown as a
function of the electron scattering angle 0, at E, =4 GeV for
the four different Z' models of Eqs. (11a)—(11d).

FIG. 5. (a) The beam-asymmetry deviation shown as a func-
tion of the electron scattering angle 0, at E, =1 GeV for the
four different Z' models of Eqs. (1 la) —(lid}. (b) The target-
asymmetry deviation shown as a function of the electron
scattering angle 8, at E, =1 GeV for the four different Z' mod-
els of Eqs. (11a)—(11d).
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As mentioned earlier, we adopt G'/G = —,', in making nu-

merical predictions. In the few GeV range, the devia-
tions of the predicted asymmetries from the GSW theory
are directly proportional to the value of G'/G, so that
predictions for other values of G'/G can easily be de-
duced. (This proportionality has been checked numeri-
cally. )

In Fig. 4(a) we plot the quantity b„defined by Eq. (25)
for the beam asymmetry, as a function of the electron
scattering angle 0, at E, =4 GeV for the four different
Z' models of Eqs. (1 la) —(1 ld), respectively. The behav-
ior at smaller angles is clearly spectacular since it will al-
low for a clear-cut discrimination among the different
models if the asymmetry can be measured to an accuracy
of a couple of percent. Our earlier discussion indicates
that, as q& approaches zero, the deviation of the predict-
ed beam asymmetry from that in the standard GSW
theory approaches approximately the constant
[g„' fI, (0)(6'/G ) ]/[g„fv(0) ]. We find, with G'/G = —,',

and q&~0,

—28. 9%%uo for model (1 la),
57.9% for model (lib),
36.2% for model ( 1 lc),
86. 8%%uo for model ( lid).

(26)

The limiting percentage change listed here is very large
because of the accidental cancellation that makes fP(0)
much smaller than fI, (0). While such a cancellation
might have made it easier to discriminate among models,
it also makes the experiment more difficult to carry out
because of the smallness of the predicted asymmetry.

In Fig. 4(b) we plot the quantity b, defined by Eq. (25)
for the target asymmetry, as a function of the electron
scattering angle 8, at E, =4 GeV for the four different
Z' models of Eqs. (1 la) —(lid), respectively. The behav-
iors at smaller angles are similar to Fig. 4(a), but because
of a different accidental cancellation that makes gv much
smaller than g~.

The variation from 4 to 1 GeV for the quantity 6 is il-
lustrated by Figs. 5(a) and 5(b), where the quantities 6
defined for the beam and target asymmetries are plotted,
respectively, as functions of the electron scattering angle
t9, at E, =1 GeV for the four different Z' models of Eqs.
(1 la) —(lid). Note that Fig. 5(a) [or 5(b)] is essentially an
extrapolation of Fig. 4(a) [or 4(b)] to smaller values of Q .

Unless the deviation of the observed asymmetry from
the standard GSW electroweak theory is a sizable effect,
it will always be useful that a single precision experiment,
such as the parity-violation measurement in elastic
electron-proton scattering, is combined with other neu-
tral weak interaction experiments, such as neutrino-
proton scattering, ' before an assessment of the presence
of the nonstandard Z' boson is made. For instance, a
deviation from the standard GSW theory of a couple of
percent may also be accounted for by a suitable change in
the value of sin Hu, (without Z' ). It is, therefore, im-

perative to carry out different neutral weak-interaction
experiments with sufficient precision so that a new phys-
ics of some sort, such as that from the Z', will have to be
called upon when a universal value of the electroweak
mixing parameter sin t9~ fails to account for the pre-
cision data.

IV. SUMMARY

In this paper we have considered the possibility of
detecting manifestations of the nonstandard neutral weak
boson using a precision measurement of parity violation
in elastic electron scattering at an electron beam energy
of a few GeV. The numerical results, as shown by Figs. 4
and 5, indicate that, for an assumed Z' mass of about
300 GeV, the deviation of the predicted parity-violating
beam and target asymmetries from those given by the
standard Glashow-Weinberg-Salam electroweak theory
can easily be in the vicinity of several percent. Thus,
confirmation of the standard model to within an accuracy
of a couple of percent in such measurements should yield
a severe constraint on the possible existence of the non-
standard neutral weak boson.
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