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Particle productivity in pp and p A collisions
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In the framework of the geometrical branching model for pp and pA collisions, we discuss the
dependence of the particle-productivity function on impact parameter and give a new description
for it without any free parameter. It is then shown that an excellent description of the pp data is ob-

tained.

At the level of parton interaction, the process of mul-
tiparticle production in proton-proton (pp) and proton-
nucleus (p A ) collisions is complicated and at present un-
tractable. However, precisely because the basic interac-
tion that underlies the two types of collisions is common,
and because the main difference is in the numbers of bags
carrying those partons, one should expect some universal
feature between the two. In this paper we explore that
feature and give phenomenological evidence for our
finding.

In the absence of a many-body theory of soft parton in-
teractions, we need a framework for describing pp and p A

collisions. That framework is the geometrical branching
model (GBM),' which successfully describes many
features of pp and pp collisions over a wide range of ener-
gy. The two points of emphasis i,n the model, the geome-
trical extension of hadrons and Furry branching as a sto-
chastic process of particle production, are readily exten-
dible to pA collisions. We summarize first the formalism
in the pp case and then proceed to the p A case.

In the GBM it is assumed that at each impact parame-
ter b the production process can be well described by
Furry branching. The rationale for this central assump-
tion has been discussed at length in Ref. 4. The observed
multiplicity distribution is

P = f "dR 2g(R }Fk(tt)= [Fk) (1)

where R is the scaled itnpact parameter: R =b/bo(s)
The inelasticity function g (R ) is

g(R)=1 —e (2)

where Q(R) is the eikonal function, whose dependence on
R alone, and not on s and b separately, embodies the
essence of geometrical scaling. It satisfies the normaliza-
tion constraint [1)=1. Ftt is the multiplicity distribu-
tion at R, and is identified with the Furry distribution, '

which is
'k

F„(w)= I (n} 1

l(k)I(n —k + 1) w
(3)

n(s, R)= g n&„"( '(w) . (4)

where k is the number of initial clusters, regarded as a
continuous function of R, and m is the evolution parame-
ter n(s, R)/k(s, R) that depends only on s, where

Let the observed average multiplicity be denoted by
(n)(s)= g„nP„.We define the normalized particle-
productivity function h(s, R) by

h(s, R)=n(s, R)/(n )(s), (5)

on the basis that the particle productivity at each R must
depend on the hadron opacity at 8 in some way, and that
in the absence of any knowledge about that dependence a
form such as that in (7) seems reasonable, albeit at the ex-
pense of a free parameter y. The normalization factor ho
is not free because of ( h ]

= 1. We adjusted y and found
an excellent fit of the multiplicity moments C&= (nt') /(n )t', p ~ 5, of the Koba-Nielsen-Olesen (KNO)
scaling function for y=0. 30+0.05 (Ref. 1). While the
capability of the model to fit over 15 data points of C by
one parameter was an encouraging sign that the GBM is
a viable model, let alone its ability to predict correctly
the forward-backward multiplicity correlation, it never-
theless is blemished by the necessity to employ an adjust-
able parameter. To remove that defect is therefore of
paramount importance in an improvement of the model,
as we now proceed to do.

We propose that h(R }should have the form

h, Q(R)
h(R) =

qn(R)
1 —e

where h, is a constant fixed by the condition ( h j = 1, i.e.,
h, ' = JdR Q(R). The origin of this form is rooted in

our attempt to apply the GBM to pA collisions. It is
found that (8) is the necessary form, if we require a
universality in the particle productivity function in pp
and pA collisions. The physical basis for the universality
is the fo11owing. Soft production is diScult to treat be-

so that th j =1. The assumption that F„"(w)depends on
R through k (s, R ) only and not through w can be effected
by requiring that

k (s,R) = (k )(s)h(s, R ),
so that w becomes also ( n ) /( k ), which is a function of
s only. In this way the crux of impact-parameter smear-
ing of the Furry distribution as expressed in (1) is in the
R dependence of h (s, R ).

In Ref. 1 we made the working hypothesis

h(s, R}=h(R}=h Qr(R)
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cause of the many-body interaction of the soft partons.
In the GBM it is regarded as a stochastic process initiat-
ed by the passing of partons in one hadron through the
partons in another at each impact parameter b. Such a
process should basically remain the same, if it is general-
ized to a pA collision: the geometrical consideration is
similar, and the branching process is also the same. The
essential difference is that there are more initial partons
in the pA case, so there should be more initial clusters.
Since the basic parton interaction is independent of the
host in which the partons reside, the number of initial
clusters should depend on the pA thickness function
T(b) in the same way that it depends on Q(R } in the pp
case. This requirement is the embodiment of the univer-
sality.

To describe this idea quantitatively, we need a formal-
ism for pA collisions in the GBM. Such a formalism has
recently been developed. Since the part relevant to our
consideration here is relatively compact, we can describe
the essence in brief. Treating the broken hadron that
traverses the nucleus as a jet of partons, we nevertheless
can have the notion of multiple collisions, where we
count by the number of target nucleons v that suffer col-
lisions. The Glauber description of the probability for v
collisions at b is still valid; it is

(b) [rr T(b)] ~T(b) (9)V
V.t

where o is the pN inelastic cross section, even though the
proton is broken. (This is a subtle point but is not crucial
to our development in the following. ) At each collision
the multiplicity distribution is F„',i =1, . . . , v. Now,

t

the Furry distribution, due to the factorizability of its
generating function, satisfies the property

kFK(v) y g g F
i
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FIG. 1. h(R) vs R' according to Eq. (8) (solid line) and Eq.
(7) (shaded region). Q(R) is shown by the dotted line.

p = tr
—( f d 2b G(b)F K'~ b)

which is to be compared to (1} for pp collisions. The
parallelism between the two cases is striking. Comparing
(13) with (2) we have the correspondence o T(b )

~20(R). In the context of that correspondence it is
therefore natural to expect E'v(b} in (15} to prescribe
k(R) in (1). From (14) and (6) we immediately arrive at
(8). Thus, on the basis of the universality requirement we
have obtained a parameter-free description of the
particle-productivity distribution function h (R).

To prove that this result is phenomenologically accept-
able, we show first in Fig. 1 h (R), as determined accord-

where E(v}=g,".
) k; is the total number of initial clus-

ters, and n = g," ) n; is the total number of produced
particles. Consequently, the overall multiplicity distribu-
tion at b for p A collisions is

P„(b)=g n.„(b)F„'"'.
v=1

Define E' to be the average number of clusters produced
per collision so that by definition K(v) =E'v. Since n,(b)
as expressed in (9) is a narrow Poisson distribution in v,
we can approximate (11) by taking F„"out of the sum-
mation and replacing the v in that expression by the aver-
age v(b) Equation (11). now becomes

T T T

v r-y C,

p (b) =G(b)F&'.(b)

For large A we have

(12) ~ ~ yy ~ ewe C,

G(b)= g n (b)=1 —e
v=1

v(b)= g vrr„(b)IG(b)=
v=1

Upon b smearing of (12) we obtain

(13)

(14)
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FJG. 2. Normalized multiplicity moments C =(nI')/(n))'.
The solid lines are results from using Eq. (8) and the shaded re-
gions are from using Eq. (7).
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ing to (8), by the solid line, which is to be compared to
the result obtained by use of the earlier form (7), indicat-
ed by the shaded region for y=0. 30+0.05. The input
form for Q(R ) is in accordance to the parametrization

—Q(R)
1 0 71

—1 17R (16)

that best fits the elastic diffraction peak, and is shown by
the dotted line in the same figure. Evidently, Eq. (7)
yields a reasonably good approximation of (8) for the im-
portant region R (3. The fact that h (R) does not van-
ish at large R is no cause for concern, since the impact-
parameter smearing of powers of h (R) are calculated
with the weight factor g (R), which rapidly approaches
zero at large R. Nevertheless, it should be recognized
that the large R behavior of (8), though unimportant, is
unrealistic, and is a consequence of the inaccuracy of our
approximation in obtaining (12) when b is large. Since
physically the productivity function must vanish at large
b or R, the expression in (8) for h (R) should realistically
be damped at large R. However, we have chosen not to
use such a damping factor in our calculations because the
weight factor g(R) always accompanies h(R) in the
impact-parameter smearing of any quantity.

We have used (8) to calculate C~ as in Ref. 1 and ob-

tained the result shown by the solid lines in Fig. 2. The
shaded regions represent the result obtained previously

on the basis of the parametrized form (7) for h (R). Evi-

dently, the new result is totally satisfactory: with the
geometrical-scaling eikonal function Q(R) as input, we

have obtained KNO scaling with the correct scaling func-
tion without the use of any adjustable parameters. The s
dependence (or the lack of it) is determined through
(n )(s) which we take from experiment, and the evolu-
tion parameter m is determined by C2, as explained in
Ref. 1.

We mention that a form similar to (8) has been con-
sidered in Ref. 7, and that (14) is used in Ref. 8 in con-
nection with pA collisions. We have related the two in
the framework of the GBM under the requirement of
universal behavior among pp and pA collisions. Exten-
sion to include A A collisions is obviously of interest, and
is under investigation. We add that the phenomenology
of pA collisions based on the model briefly sketched be-
tween (9) and (15) has been carried out and succeeds in
describing the data extremely well.

It should be emphasized that the self-reproducing
property of the Furry distribution expressed in (10) is
essential in the derivation of (12). In that sense the parti-
cle productivity function as given in (8) is a consequence
of the GBM, when the pp and p A universality is imposed.
Since the result is a parameter-free expression for h (R)
that gives an excellent description of the KNO-scaling
data, we believe that we have significantly improved the
GBM.
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