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Skyrme model and strong-coupling model
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By comparing the Skyrme model with the strong-coupling model of the pion-nucleon interaction
in the static limit the collective coordinates in the Skyrme model are shown to be proportional to
the square roots of the fields of the pions bound to the bare nucleons in the strong-coupling model.

I. INTRODUCTION

U(x) = exp[i/, (x)r, gF„] . (1.2)

In the Skyrme model the baryons are viewed as soli-
tons. ' The lowest-energy state with the topologically
nontrivial U field configuration can be written as

Uo(x)= exp[iF(r)r r] . (1.3)

This configuration is transformed by the separate action
of the isospin I and the spin J, but is invariant to the
combined action K=I+J.

Since the soliton Uo is not invariant to the action of I
and J, we can obtain a family of soliton solutions, all de-
generate with the soliton Uo, by rotating Uo,

U= AUO A (1.4)

where A =ao+ia r with ao+
~

a
~

=1 is an arbitrary
constant SU(2) matrix acting on r in Uo. A solution of
any given A is not an eigenstate of spin and isospin. %e
need to treat A as a set of collective coordinates. Then,
the Lagrangian and all physical variables are expressed in
terms of a time-dependent A (t).

When the Lagrangian (1.1) with (1.4) is quantized, the
result can be expressed in terms of two commuting angu-
lar momenta, the isospin I and the spin J:

I= ,'(a X m aosr+-am —p),

J=—,'(a)& n. +aors. —amo),

In the large-N limit, QCD becomes equivalent to an
effective field theory of mesons, ' and at low energies this
theory reduces to a nonlinear cr model of spontaneously
broken chiral symmetry. The simplest choice of the
model is the Skyrme model,

L= ——,'F Tr(B„UB„U )

+(1/32e )Tr[(B„U)U,(B„U)U ], (1.1)

where F =93 MeV is the pion decay constant, e is a di-
mensionless parameter, and U is an SU(2) matrix:

The mass spectra remind us of the strong-coupling mod-
l 5,6

In this connection it is interesting to notice that the
QCD in the large-N limit has been shown ' to be the
same as the static limit in the strong-coupling model by
showing that the exact large-N equations are identical to
the so-called bootstrap conditions of strong-coupling
theory. '

The purpose of this paper is to clarify the physical
meaning of the collective coordinates A by comparing
the strong-coupling model and the Skyrme model.

In the first half of next section we review the strong-
coupling model of the pion-nucleon interaction in the
static limit which was studied by Pauli and Dancoff in
order to make this paper self-contained, and then we clar-
ify the physical meaning of the collective coordinates in
the Skyrme model by comparing the Skyrme model and
the strong-coupling model. Discussions are given in Sec.
III.

II. THE STRONG-COUPLING MODEL
AND THE SKYRME MODEL

The Hamiltonian of the pion-nucleon system in the
static limit is expressed as

H= ,' f [m +(VP —) +m P ]d x

+(jim) f r P (tr V)Kd x . - (2.1)

Then, the properly normalized wave function for pro-
ton and neutron states of spin up or spin down along the
z axis and some of the 6 wave functions are"

I pl ) =(1/n)(a&+iaz)
I p & & = —('/tt)(ao —'a3)

~

n 1 ) =(i/tr)(ao+ia3),
~

n J, ) = —(1/n)(a& ia2—),
(1.7)

+,+,s= —,
' ) =(&2/n )(a~+ia2)

~

b+, s, = —,
' ) = —(v'2/m )(a &+ia2)[1—3(ao+a3 )] .

Then, the masses of the baryons are given by

M =Mo+ (1/2A, )J(J + 1) .

which satisfy the commutation relations

[ na.„]=i5,„, [I, A )= ——,'~A,

[J,A]= —,'Ar, I =J
(1.6) fK(x)d x =1, (2.2)

The source function K(x) is spherically symmetric and
normalized according to

38 337 1988 The American Physical Society



338 YASUO HARA 38

it]ok ———fK(x) d x =I ]I) d x,a4. , aK
a-,

'=
a-,

-' (2.3)

where we have assumed that a nucleon is at rest at the
origin.

The pion fields P and their conjugate momenta m. are
decomposed into P and i}I]' and m and n', respectively,
where

values of the interaction Hamiltonian

HI (——flm)r ok/ k (2.14}

(Cy'B)„,=Q„5„, . (2.15)

at first. For this purpose we diagonalize ]I) k regarded as
a 3)&3 matrix by real orthogonal transformations 8 and
C:

'r« = rr~d xo

Xk
(2 4) Then, the interaction Hamiltonian becomes

E x= g' 3~=O,

g(x) =X(x)/I,
X(x)= JK(x')(e "/4mr)d x'

(2.5)

(2.6)

HI (jim——)r„o „Q„

and the minimum of the total potential energy

Ep„—— Q„+(f Im)Q„o, r„2I "

(2.16)

(2.17)

and

(r =
~

x —x'
~

), [(—V +m )X=K],

I BX Md3
ax, axk

(2 7} is found to be

Eo — 3f I 3D

2m 2 2I

which corresponds to

(2.18)

They satisfy the commutation relations

[$~j,m~p ]k=i 5,p5, k .

Q] —Q2 Q3 (fIm)I=D

(2.9) and to the state

(2.19)

The Hamiltonian, the isospin, and the angular momen-
tum of the system are expressed as

H = ,'N(n~k ) +—(]I()~~k) +(f /m)r~o'kit]~k, (2.10)
1

~
0]v) =(pl —n 1)/v 2.

Since

(o+r)
i
0 ) =0,

(2.20)

(2.21}

0 0 0 0
iaP 4«+Pk NPk+ak + 2raP &

0 0 0 0
Jij 2~ij +0ai~aj 4aj ~ai

(2.11)

(2.12}

the state (2.20) corresponds to the classical soliton Uo
with K=I+J=O.

According to (2.15) and (2.19), P« is expressed as

if we neglect the contributions from P' and m.', which are
negligible in the strong-coupling limit. Here,

i' k DBk, C„=D——e«,
where e k satisfies

(2.22}

' —1

Bxj Bxk
(2.13}

In the strong-coupling model we determine the eigen-

e„e,k ——5,k and e kepk 5,p . —— (2.23)

It is possible to express e«(a, k =1,2, 3) by means of
Euler angles, a, b, and c:

e &I,
——cosa cosb cosc —sinb sine, cosa sinb cosc + cosh sine, —sina cosc,

eel,
———cosa cosb sine —sinb cosc, —cosa sinb sine+ cosb cosc, sina sine,

e3k ——sina cosh, sina sinb, cosa .

(2.24)

The state (2.20) corresponds to iti k D5 k, i.e., e k-—
with a =b =c =0. In the following we express (2.20) as

~

a =O, b =0,c=0)
~
0]]i(0,0,0)). The first ket represents

the state of the pions bound to the nucleon and the
second ket represents the state of the bare nucleon.

There are an infinite number of states,

S(abc)e k (abc)o k S '(abc) = cr

and

S(abc)r+ '(abc) =r
we find

(2.26)

~

a, b, c )
~
0~(a, b, c)),

all degenerate with the state
~

0,0,0)
~
0]]i(0,0,0) ).

Since

(2.25)
~
0~(a, b, c) ) =S '(abc)

~
0]]i(0,0,0)),

where

(2.27)



38 SKYRME MODEL AND STRONG-COUPLING MODEL 339

S(abc) = exp(i er3c/2) exp(i cr2a/2) exp(icr3b/2} . (2.28)

Any state for a given (a, b, c} is not an eigenstate of
spin,

H'=(N/4D )L +const=(N/4D )T +const (2.36)

in strong-coupling theory.
Thus, we obtain the rotational mass spectra

J=L+—,'o,
L+ ——L)+iL2

8= exp(Rib) + + i— +i cosa
a c

sina

E=(N/4D )I(I+1)+const, I=J . (2.37)

The above results were obtained by Pauli and Dancoff
in 1942.

It is well known that eigenfunctions of the operator

a
L3 ———i

b
'

not that of isospin,

I=T+ —,'s,
T+ ——T)+i T2

(2.29) a . a
sina

sina Ba Ba

1 3 8 8+ —2 cosa
sin a ab' a" abae

are the rotation matrices"

DQ (bac)=e ™Mdg (a)e

The eigenvalues are

(2.38)

(2.39)

8 . 8 . 8= —exp( +ic ) + + i i cosa-
Ba Bb Bc

nor that of the Hamiltonian (L =T },

sina

(2.30)

j(j+1), j=0,—,', 1,—'„2,. . . . (2.40)

As the wave functions for a symmetric top, the eigen-
functions with half-integer j are discarded since they are
double valued in the Euler angles 8,$, $ In our. case
eigenfunctions with half-integer j are allowed since the
Euler angles a, b, c are angles in the internal space.

We can show that the wave functions which appear in
(2.32}are expressed as

H=(N/4D )L +(Df/m)r o«e «(abc)+const .

(2.31)

Their eigenstates can be constructed as linear combina-
tions of (2.25):

~
I,I3,J,J3 )

=f sina da db dc A J =J (abe)
~

abc )
~

&0( ab, c) ) .

(2.32)

The wave functions Az =&~(abc) can be obtained by

solving the Schrodinger equation with the S-transformed
Hamiltonian

Az =J (abc)=( —1) '[(2I+1)/8n ]'r Dz z (cab)

=( —1) '[(2I+1)/8m ]'r

X exp( iI3e)dz —J (a) exp(iJ3b)

since they satisfy the relations

L~ Ar =J ——[(J+J3)(J+J3+1)]' Aq =J ~),

T~ Aq ~
——[(I+ I3 )(I+I3+ 1)]' A~ ~ ( J

T3A~ J ——I3A~ J
I=J I=J

(2.41)

(2.42)

(2.43)

H'=SHS '=(N/4D )ST S '+(Df /m)o„r, +const,

(2.33)

where

Here we have neglected a /2 and r/2 because of (2.35).
In deriving (2.42) and (2.43) we have used the relations'~

C, b i =[(i+b+1)(i+b)l
ST S '=T +47"T+—' .

Since

(0~(0,0,0}
~

o „~ ON(0, 0,0) ) =0

(2.34)

and

X [—a / sin8+ b cot8+ 8/B8]d Jb (8 )

d,'b(a)=d' b g(a) .

(2.44)

and

(0~(0&0&0)
i
r

i
ON(0, 0,0)) =0,

(2.35)

we can use the following approximation for the Hamil-
tonian:

If we introduce the bound pion 6elds, which are eigen-
states of T3 and L3,

r, ,z, = Us, ~Us, «P~«(I3, J& ——1,0, —1)

with
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U=

we find

—1 —i 0
0 0 &2

2
1 —i 0

(2.46}

Pr z (abc)=(8~ l3)' DAz J (abc) . (2.47)

It is easy to show that wave functions for proton and
neutron states of spin up or down along the z axis Ag J
are related to A2$ 2J through

A (abc) =k(677 ) [ A 2y 2g (abc)] (2.48)

Hence, we have found that collective coordinates in the
Skyrme model A =ao+ia ~ correspond to the square
roots of the fields of the pions bound to the bare nucleon
in the strong-coupling model through

p= f (xXj )d x/2+(e/2MN)(1+7&)o/2 . (3.6)

Tr(rk A r A )=2e k 2P ——k/D . (3.7)

This relation can be derived by making use of the relation
(2.49) as well as (1.7), (2.22), and (2.24).

The expectation values of the operators (3.1)—(3.5) be-
tween the nucleonic states N and N' are obtained by mak-
ing use of the relation

(N'
I
Tr(r„A r A )

I

N ) =2(N'
I

e „ I
N )

[However, there is an ambiguity in the definition of (3.6)
since the continuity equation for the charge-current den-
sity is not satisfied everywhere inside the source in the
strong-coupling model. ]

From (3. 1)—(3.5) we find that the dependence of vari-
ous operators on a and k in two models are related to
each other through the relation

A~ J (abc) =const X [$2~,J (abc)]' (2.49) (3.8)

III. DISCUSSIONS

The isovector parts of the magnetic moments and the
axial-vector couplings of the nucleons (N) and the reso-
nances (6) are expressed as the matrix elements of

p=b Tr(rA t~, A ) [b~ 3(p~ —p„)/4—] (3.2)

and

xAk x =gTr~kA v A g~ —gg (3.3)

between corresponding soliton states, respectively. The
parameters b and g are integrals involving the function
F(r), which appears in (1.3), and the parameter B is ob-
tained from the large-distance (r ~ ~ ) behavior of
F(r)~B/r

In the strong-coupling model the large-distance behav-
ior of the pion fields are given by

P (x)=P kdg(x)/dxk+P'(x) (f/4nm)(xk/—r )e k .

(3.4)

The S-transformed magnetic moment operator is ex-
pressed as

SpkS '= (ef l3m )e3k—
X f (dX/dr) d x —(e/4MN)e~k,

where

(3.5)

In Sec. II we have found that the collective coordinates
in the Skyrme model are proportional to the square roots
of the fields of the pions bound to the bare nucleons [Eq.
(2.49)].

In the Skyrme model, the large-distance behavior of
the pion fields are expressed as

P =(BF /4)(xklr )Tr(vk A r A)

(4n F~MNB~3g~xw ) .

(3.1)

There are similar relations among matrix elements be-
tween N and 6 and 6' and A.

Hence, we have found that in the Skprme-model calcu-
lations fermionic operators A and A always appear in
bosonic combinations, Tr(rk A ~ A }, which correspond
to the bound-pion field operators in the strong-coupling
model, P k. Therefore, the collective coordinates A have
been found to be operators for pionic excitations of the
nucleons effectively. This may be a natural consequence
of the fact that the U field is a nonlinear functional of the
pion fields P .

Both the Skyrme model with (1.1)—(1.4) and the
strong-coupling limit of the mN interaction model (2.1)
give the same energy levels with I =J, (1.8) and (2.37).

Since resonances with the same internal quantum num-
bers are associated with a Regge trajectory (bJ=2) and
since no exotic resonances, such as resonances with
(I,J)=(—'„—',), ( —',, —', ) etc., have been observed, apparently
the collective coordinates A =ao+i~.a or A~ J are not3' 3

good ones for higher nucleon resonances. The collective
coordinates A are excellent operators only for transitions
among N(939) and b, (1232). The correspondence (2.49)
strongly suggests us to look for collective coordinates, bi-
linear forms of which are with EI=0. For this purpose
inclusion of I=0 mesons into the Skyrme model is sug-
gested by the correspondence.

It has been found that we cannot improve the situation
by including p and co mesons into the Skyrme model since
the collective coordinates are still A =ao+ia. ~ in these
cases. '

Next, let us compare theoretical predictions of both
models with experimental results.

The relation (3.7) shows that relative ratios among
magnetic transition rates, those among axial-vector tran-
sition rates and relative magnitudes of the coupling
strengths of the pions to N(939) and b(1232) in two
models are same and are compatible with experimental
results.

However, predicted values on other physical observ-
ables by two models are different.
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In the strong-coupling model of AN interaction (2.1),
there are only two adjustable parameters: one is the m.N
coupling constant f,

f /4m=9(g ttttm/2M') /4tr=0 08. X9=0 7.2, (3.9)

and the other is the source function K(r). From (2.13),
(2.19), (2.37), and Mz —M& ——300 MeV, we find

f ~

VX
~

d x=3m l400f MeV=16 MeV . (3.10)

By substituting this result into (3.5), we obtain the follow-
ing result for the nucleon magnetic moment:

p~ = —p„=1.7e/2Mtt . (3.11)

=0.86 fm, (3.12)

which should be compared with the experimental results
on the mean-square radius of the charge distribution of
the proton ((r ))' =0.81 fm. In deriving the result
(3.12), we have assumed that K(r)=(M /8')e™and
M=650 MeV, which is derived from (3.9), (3.10), and

f (dX/dr) d x =5M/64m.
In the strong-coupling model of m.N interaction it is im-

In the strong-coupling model the isoscalar part of the nu-
cleon magnetic moment vanishes. We can also estimate
the mean-square radius of the cloud of the charged pions
surrounding the bare nucleon,

((r ))' = f r (VK.VX)d'x f (VK VX)d'x

(g /r) exp( —Mcr hrt)

is replaced by

(g lr) fK(x') exp( —Mc
~

x"—x'
~

/h')

XK(
i
x —x"

i

)d3x'd3x" .

(3.13)

(3.14)

possible to improve the above results since there are no
extra parameters unless extra mesons are introduced into
the model.

In the Skyrme model with (1.1) the results,
(pz —p„)/2= 1.6e /2M&, (pz +p„)l2 =0.3e /2M&,
((r ))~t o

——0.92 fm, and g~tvtt/4m=6 '3, .have been ob-
tained by using the experimental results on Mz and M&
as inputs. These results should be compared with experi-
mental results, 2. 35e/2M&, 0.44e/2M&, 0.81 fm, and
14.4, respectively. The agreement between theoretical
and experimental results can be improved by introducing
co and p mesons and other contributions into the Skyrme
model. ' In the strong-coupling model we cannot use M~
and M~ as inputs.

Finally we comment about the source function K(x).
Until the quark structure of the nucleon was made clear,
the source function had been considered to be a cutoff
factor which indicates the inapplicability of the static
model to emission and absorption of pions with large mo-
menta. Now the source function represents the distribu-
tion of quarks in the nucleon which emits and absorbs
mesons.

Because of this fact the range of two-nucleon interac-
tion mediated by a heavy meson with mass M becomes
much longer than fi/Mc since the potential
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