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In the measured decay properties of the tau there is a discrepancy between the total branching
fraction for the one-charged-particle decay modes and the sum of the branching fractions for the
known individual modes. This discrepancy is derived from about 60 difFerent measurements of
branching fractions and some use of weak-interaction theory. Our statistical study of these 60 mea-

surements shows there are problems in some of the measurements in the estimation of experimental
bias or systematic error. But there is no evidence that the discrepancy derives from experimental
bias or from incorrect estimation of systematic error.

I. INTRODUCTION

At present, the decay modes of the tau lepton contain-
ing one charged particle are not completely under-
stood. ' By definition the total branching fraction for
those modes B, is the sum of the separate branching frac-
tions 8 for the individual modes containing one charged
particle, such as

and

8, for r ~v+e +v, ,

B„ for ~ ~v+p +v„,
8 for v ~v+m

B& for r ~v+p

B
2 o for ~ v, +m. +2m.

(la}

(lb)

(lc)

(id)

(le)

As emphasized by Gilman' the sum g 8 of present
measurements of the individual branching fractions com-
bined with theoretical constraints on unmeasured branch-
ing fractions does not fully explain the present measured
value of B,. A question raised by this problem is whether
the errors o. given for the measured branching fractions
by the experimenters are correct, whether the appearance
of a discrepancy between g 8 and 8, is caused by an
underestimate of the size of one or more a 's or of 0,

We have examined this question by comparing the
given errors o. with the scatter of the measurements
about the mean for each measurement set. We do this for
81 and for the 8 's of the modes in Eqs. (la) —(ld}. Nor-
mal error distributions are used. We find that on the
whole the errors estimated from the scatter are equal to
or smaller than the given errors o according to this test.

~v, +x +ny, n )4, (2)

~here x is a charged particle. Also there are no
comprehensive and suSciently small experimental limits
on unconventional one-charged-particle decay modes
such as

—+N +x (3)

where N is an unknown, massive, stable neutral particle.
The discrepancy appears when unconventional modes

are excluded, and when conventional theory and other
data are used' to set limits on the modes which could
contribute to the event type in Eq. (2). Then 8, is larger
than g 8 by about 6% (Ref. 4). Table I demonstrates
the importance of the measurements and quoted errors
on the branching fractions for B„B„,B,B, and B,.
This motivated our study.

In other words, some sets of measurements are overcon-
sistent. By using just the statistical contribution to the
measured errors, we can test in some cases whether the
overconsistency is caused by overestimation of systematic
errors or bias in the measurements.

As an aid to researchers in this area we present tables
of the data we used. This is all the data published in jour-
nals, in catalogs, or in Ph.D. theses, the authors being the
experimenters themselves. We also present a comparison
of the measured r lifetime r, with the leptonic branching
fractions 8, and 8„for the decays in Eqs. (la) and (lb).

The nature of the present apparent discrepancy ' be-
tween B,and g 8, is diagrammed in Table I. There is
no discrepancy if considerations of the various B s is
limited to direct measurements. This is because there are
no reliable measurements for some modes contributing
to the signature
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TABLE I. (a) Summary of measured branching fractions of modes with one charged particle. (b) Summary of one-charged-

particle branching fractions in percent.

Type of
measurement Row

(a)
Decay mode Branching fraction (%%uo) Reference

Exclusive
measurements
of modes with

0 or 1 m"

Sum of rows A —F
called B„„pK
Sum of modes

with ) 1 vr or g's

B
1 mult neut

Decay-mode category

B1epnpK

A
B
C
D
E
F
6

H

e v, v

P VpV

7T V

P V

K v
K* v,

nm v„n &1
ngv, , n)0

mn ngv„m +n ) 1

K nm'v„n &1

(b)

Branching fraction (%) and origin

70.8+1.2 from measurement
[Table I(a)]

17.6+0.4
17.7+0.4
10.8+0.6
22.5+0.9
0.7+0.2
1.4+0. 1

70.7+1.2

8-16

Table VIII
Table VIII
Table VIII
Table VIII
Ref. 3
Ref. 3

Ref. 4

B
1 mult neut

B1eympK +B
1 mult neut

B,

8 —16
From measurement

(Ref. 4)
79-87

~9.8

From theory and other data
(Refs. 1, 2, and 4)

~ 80.5+1.2
86.6+0.3 from measurement

(Table VIII)

TABLE II. ~ topological branching fractions in percent. The statistical error is given first, the systematic error second. We list all
measurements provided the measurement is described in a report, journal article, or Ph. D. thesis authored by the experimenters, and
the authors have not stated the measurement is superseded by a more recent measurement.

Measurement

70'

68'b

65a, b

82a b

76'

84.0

86.0+2.0+ 1.0'

85.2+0.9+1.5a

B,
Combined

error

+11

+6.5

+2.0

+2.2

+ 1.7

Weight Measurement

30a, b

32'

35"

18a

24'

0.019 15.0

14.0+2.0+ 1.Oa

14.8+0.9+ 1.5'

Combined
error

+10

+11

+6.5

+2.0

+ 2.2

+ 1.7

Energy
(GeV)

3.6—5.0

3.1 -7.4

3.9-5.2

6—7.4

12-31.6

32.0—36.8

29.0

29.0

Experimental
group

PLUTO

DELCO

DASP

Mark I

TASSO

CELLO

Mark II

TPC

Reference

J. Burmester et al. ,
Phys. Lett. 68B,
297 (1977)
W. Bacino et al. ,
Phys. Rev. Lett. 41,
13 (1978)
R. Brandelik et al. ,
Phys. Lett. 73B,
109 (1978)
J. Jaros et al. ,
Phys. Rev. Lett. 40,
1120 (1978)
R. Brandelik et al. ,
Phys. Lett. 92B,
199 (1980)
H. J. Behrend et al. ,
Phys. Lett. 114B,
282 (1982)
C. A. Blocker et al. ,

Phys. Rev. Lett. 49,
1369 (1982)
H. Aihara et al. ,
Phys. Rev. D 30,
2436 (1984)
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TABLE II. ( Continued).

Measurement

Bl
Combined

error Weight Measurement
Combined

error
Energy
(GeV)

Experimental
group Reference

85.2+2.6+ 1.3

85.1+2.8+1.3

87.8+ l.3+3.9

84.7+1.1'i )

86.7+0.3+0.6

86.9+0.2+0.3

86.1+0.5+0.9

87.9+0.5+ 1.2

87.2+0.5 t-0. 8

87.1+1.0+0.7'

84.7+0.8+0.6

+2.9

+3.1

+1 9—
1 7

+0.7

+0.4

+.1.0

+1.3

+0.9

+1.2

+ 1.0

0.009

0.008

0.005

0.024

0.157

0.482

0.077

0.046

0.095

0.077

14.8+2.0+ l. 3

14.5+2.2+ l. 3

12.2+1.3+3.9

15.3+1.1 "t ~

13.3+0.3+0.6

13.0+0.2+0.3

13.6+0.5+0.8

12.1+0.5+ 1.2

12.8+0.5+0.8

12.8+ l.0+0.7'

15.1+0.8+0.6

+2.4

+4. 1

+0.7

+0.4

+0.9

+1.3

+0.9

+ 1.2

+1.0

14.0

22.0

34.6 average

13.9-43.1

29.0

29.0

30.0—46. 8

29.0

29.0

29.0

29.0

CELLO

CELLO

PLUTO

TASSO

MAC

HRS

JADE

DELCO

Mark II

Mark II

TPC

H. J. Behrend et al. ,
Z. Phys. C 23,
103 (1984)
H. J. Behrend et al. ,
Z. Phys. C 23,
103 (1984)
Ch. Berger et al. ,
Z. Phys. C 28,

1 (1985)
M. Althoff et al. ,
Z. Phys. C 26,
521 (1985)
E. Fernandez et al. ,
Phys. Rev. Lett. 54,
1624 (1985)
C. Akerlof et al. ,
Phys. Rev. Lett. 55,
570 (1985)
W. Bartel et al. ,
Phys. Lett. 161B,
188 (1985)
W. Ruckstuhl et al. ,
Phys. Rev. Lett. 56,
2132 (1986)
W. B. Schmidke et al. ,

Phys. Rev. Lett. 57,
527 (1986)
P. R. Burchat et al. ,
Phys. Rev. D 35,
27 (1987)
H. Aihara et al. ,
Phys. Rev. D 35,
1553 (1987)

'Not included in average.
Calculated from B l or B3 measurement using B l +B3+B;= 1 with B& =0.1%.

II. DATA USED

We used the branching-fraction data listed in Tables
II—V and the lifetime data in Table VI. We have includ-
ed in the tables all data presented by the experimenters
themselves in journal articles, a catalog of unpublished
papers, or Ph.D. theses unless the experimenters have
stated their measurement is replaced by their own later
measurement. We have not included measurements
which are reported only through private communication
or in reviews. These criteria permit us to work with fixed
measurements and permit the reader to examine the de-
tails of experiments.

Table II presents 83 as well as 8& although most mea-
surements of 8, and 83 are strongly correlated. Often
only one is measured and the other calculated by
8] +83 +85 1 With 8~ =0. 1%%uo.

To ensure the measurements for a specific branching
ratio are statistically independent, we have excluded
several measurements from the statistical analysis al-

though they are included in the tables. The Mark II Col-
laboration has published two measurements ' of 8, and
two measurements-' of B that use the same data set but
different analysis techniques. We use only the measure-
ment with the smallest total error. The 1982 Mark II
Collaboration and 1984 TPC Collaboration measure-
ments ' of 8& are not independent of their more precise
recent measurements and thus are also excluded.

III. 8„8„,AND e-p UNIVERSALITY

The use of the constraint on 8, and 8„ from e-p
universality, 8„=0.9738„must be carefully considered
when comparing or averaging experimental measure-
ments. Four cases occur: (i) the experimenters measure
the product branching ratio 8,8„and use the constraint
to determine 8, and 8„; (ii) the experimenters measure
8, and 8„ independently; (iii) the experimenters measure
8, and B„separately but the measurements are strongly
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TABLE IV. ~ ~~ v branching ratio in percent. The statistical error is given first, the systematic error second. We list all mea-
surements provided the measurement is described in a report, journal article, or Ph.D. thesis authored by the experimenters, and the
authors have not stated the measurement is superseded by a more recent measurement.

Measurement

9.0+2.9+2.5

8.0+3.2+1.3

11.7+0.4+ 1.8

9.9+ 1.7+1.3

11.8+0.6+1.1

10.7+0.5+0.8

10.0+ 1.1+1.4

Combined
error

+3.8

+3.5

+1.8

+2.1

+1.3

+0.9

+1.8

Weight

0.025

0.029

0.109

0.080

0.210

0.438

0.109

Energy
(GeV)

4.1 -5.0

3.6-7.4

3.5-6.7

34.0

34.6 average

29.0

29.0

Experimental
group

PLUTO

DELCO

Mark II

CELLO

JADE

MAC

Mark II

Reference

G. Alexander et al. ,
Phys. Lett. 78B,
162 (1978)
W. Bacino et al. ,
Phys. Lett. 42,
6 (1978)
C. A. Blocker et al. ,
Phys. Lett. 109B,
119 (1982)
H. J. Behrend et al. ,
Phys. Lett. 127B,
270 (1983)
W. Bartel et al. ,
Phys. Lett. B 182,
216 (1986)
W. T. Ford et al. ,
Phys. Rev. D 35,
408 (1987)
P. R. Burchat et al. ,
Phys. Rev. D 35,
27 (1987)

TABLE V. ~ ~p v, branching ratio in percent. The statistical error is given first, the systematic error second. We list all mea-

surements provided the measurement is described in a report, journal article, or Ph.D. thesis authored by the experimenters, and the

authors have not stated the measurement is superseded by a more recent measurement.

Measurement
Combined

error Weight
Energy
(GeV)

Experimental
group Reference

24+6+7"'

21.5+ 1.7+3.0'

22. 1+1.9+1.6

22.3+0.6+ 1 ~ 4

23.0+1.3+1.7

25.8+ 1.7+2.5b

22.6+0.5+ 1.4

+3.4

+2.5

+1.5

+2.1

+3.0

+ 1.5

0.009

0.063

0.116

0.323

0.165

0.323

3.6-5.2

3.7-6.0

14.0—34.0

29.0

3.8

29.0

9.4—10.6

DASP

Mark I

CELLO

Mark II

Mark III

Mark II

Crystal
Ball

R. Brandelik et al. ,
Z. Phys. C 1,
233 (1979)
C. A. Blocker,
thesis, Report No. LBL-10801,
1980
H. J. Behrend et al. ,
Z. Phys. C 23,
103 (1984)
J. M. Yelton et al. ,
Phys. Rev. Lett. 56,
812 (1986)
J. Adler et al. ,
Phys. Rev. Lett. 59,
1527 (1987)
P. R. Burchat et al. ,
Phys. Rev. D 35,
27 (1987)
S. T. Lowe et al. ,
Report No. SLAC-PUB-. . .9,
1987 (unpublished)

"'We have determined the breakdown of statistical and systematic errors.
All ~~a. ~ v, included in v. ~p v,. Not included in formal average.
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TABLE VI. ~ lifetime in units of 10 ' sec. The statistical error is given first, the systematic error second. We list all measure-

ments provided the measurement is described in a report, journal article, or Ph. D. thesis authored by the experimenters and the au-

thors have not stated the measurement is superseded by a more recent measurement.

Lifetime

4.6

4.9

4.7

3.18+0 pe+0. 56

3.15+0.36+0.40

2.63+0.46+0.20

2.88+0. 16+0.17

3.09

2.99+0.15+0.10

3.25+0. 14+0.18

2.95+0.14+0.11

Errors combined
in quadrature

+1.9

+2.0

+3.9—2.9

+0.81—0.94

+0.54

+0.50

+0.23

+0.19

+0.18

+0.23

+0.18

Weight

0.002

0.002

0.0006

0.010

0.025

0.029

0.134

0.202

0.225

0.140

0.230

Energy
(GeV)

29.0

29.0

17.1 average

39.8-45.2

29.0

29.0

29.0

29.0

29.0

10.5

9.3-10.6

Experimental
group

Mark II

MAC

CELLO

TASSO

MAC

DELCO

Mark II

MAC

HRS

CLEO

ARGUS

Reference

G. Feldman et al. ,
Phys. Rev. Lett. 48,
66 (1982)
W. Ford et al. ,
Phys. Rev. Lett. 49,
106 (1982)
H. J. Behrend et al. ,
Nucl. Phys. B211,
369 (1983)
M. Althoff et al. ,
Phys. Lett. 141B,
264 (1984)
E. Fernandez et al. ,
Phys. Rev. Lett. 54,
1624 (1985)
D. E. Klem et al. , Report No.
SLAC-REP-300
1986 (unpublished)
D. Amidei et al. ,
Phys. Rev. D 37,
1750 (1988)
H. R. Band et al. ,
Phys. Rev. Lett. 59,
415 (1987)
S. Abachi et al. ,

Phys. Rev. Lett. 59,
2519 (1987)
C. Bebek et al. ,
Phys. Rev. D 36,
690 (1987)
H. Albrecht et al. ,
Phys. Lett. B 199,
580 (1987)

correlated, perhaps because they simultaneously measure
the product B,B„;and (iv) only 8, or B„is measured. In
the measurements listed in Table III, there are four type-
(i), six type-(ii), three type-(iii), and eight type-(iv) experi-
ments.

In our analysis of the B, and B„measurements, we
erst analyze only the subsets of experiments which do not
make use of the universality constraint. The experiments
in these sets can be equally treated in the analysis, and al-
low a test of the universality constraint to be made. We
then apply, if necessary, the universality constraint to
each experiment in Table III and determine a constrained
branching ratio 8,'. The third column of branching ra-
tios listed in Table III are the results of this constraint
procedure. The statistical analysis is then applied to the
full set of constrained measurements.

In the constraint procedure, type-(i) experiments and
experiments which measure only B, are used directly.
Experiments which measure only B„are scaled:
8,' =8„/0 973 Type-(ii) .exp.eriments are constrained us-

ing the equations below

8,'=(8, /cr~ +0.9738„/crq )/(1/era +0.973 /crq )
e e P

(4)

and

—(1/o2 +0 9732/o2 )
—1/2

e e P

The universality constraint can be applied to type-(iii)
experiments if the correlation between the B, and B„
measurements is known. For the special case where B„
B„,and the product branching ratio B,„=B,B„are mea-
sured, then B,' is determined by minimizing the y:

g = (8,' —8, ) /mrs +(0.9738,' 8„)/oz-
e P

+(0 9738,' 8. ,„) /cre-
ep

This results in a cubic equation for B,' and an error given
by
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o,=[ 1/cr~ +0.973 /o p
e e P

+2(0.973)X[3(0.973)8,' &—,„]/op j

Note that these constraint techniques average the sys-
tematic errors for B„B„,and B,„within a single experi-
ment. Thus, systematic errors which are common to the

B„B„,and B,„measurements will be averaged, result-

ing, perhaps, in an underestimate of the systematic error
on B,'.

IV. ANALYSIS METHOD

Consider a particular branching fraction B, for exam-

ple. As listed in Table IV there are seven different mea-
surements: B „B2, . . . , B;, . . . . We want the
weighted average (8 ) and the error on that average,
0 z . Simplifying the notation, y, replaces B,, y replaces

(B„),and o replaces o 2t . The same notation is used for

B„B„,B,and B,.
Most recent measurements y,. included a statistical er-

ror 0„„;and a systematic error 0. .. We follow the
Particle Data Group's method' of combining these er-
rors in quadrature,

weighting of (y; —y), but are not directly used to calcu-
late 0

Our interest centers on the relative sizes of o and o.„„.
As discussed in Sec. V, if o is significantly smaller than
o.„„,some of the experimenters have given 0.

, which are
too small. Then the o. used in Table I is too small, and
the discrepancy prob1em is less certain. If o. is
significantly larger than o.„„,there are three, not ex-
clusive, explanations. Some experimenters may have
overestimated their o.;. Or some experimenters may have
corrected their raw measurements while biased toward a
preconceived value for y, the preconception being based
on the existing accepted value of y or on theoretical con-
siderations. Finally, systematic errors common to many
experiments may exist which the experimenters have ac-
counted for in their determination of a;. In this case the
correlated contribution to o, should be removed before
comparing cr and o,,„t. There are no sources of account-
ed correlated systematic errors common to many experi-
ments in these data which are described in the referenced
experimental papers. Although with intimate knowledge
of all experiments such sources might be found, we have
made no attempt here to hunt for them.

We use the ratio

2 2 1/2oi ostat, t +Osys, t ) (8) (14)

and the formal combined error in y is

'y (1/ 2)
' —1/2 (10)

The relative weight of a measurement i is

w;=o /tr; .

and we use this combined error unless the experimenters
provide a total error. The formal average is

(9)

to measure the relative sizes of o „and cr for a set of
measurements. We are particularly interested if r is
significantly less than 1 or significantly greater than 1.
To determine the significance we calculate the probability
P( (r) of finding a smaller value of r, and the converse
P ( & r) of finding a larger value of r [Since.
P( &r)+P( & r)=1, only P( (r) need be calculated ].
For example, suppose r =0.5 because o is twice o „. If
P( (0.5) is 0.10, then r =0.5 has this statistical
significance.

The formal average [Eq. (9)] is obtained by minimizing

The scatter of the individual measurements y; from y are
described by the pulls

x'= g (y; —y)'«,' (15)

(12)

For Gaussian distributed errors o, , the distribution of
pulls is a normal distribution of unit width and zero
mean.

The standard deviation, 0 „,of the weighted mean is
calculated from the average variance s „for N measure-
ments:

s „=g[Nw, (y; —y) ]/(N —1),

which reduces to

s„„=N gwy, . —y (N —1) .

Using crscat sscat /N, we have

which has the minimum value

g;„=g (w;y; y)/cr— (16)

From Eqs. (13) and (16) we see that

r =[g /(N —1)]' (17)

Thus the probability P ( & r) is identical to the probability
of having a larger g for N —1 degrees of freedom. Fig-
ure 1 plots the distribution of r for several values of N.

We apply this analysis method first to each full set of
data. However, r can be very sensitive to a particular
measurement which has a relatively large o,- even though
that measurement has a small weight w; and little effect
on y. Therefore in each data set we select the minimum
number of measurements a, b, . . . , e such that

~scat g w;y;
—y (N —1) (13) w +wb+ . . +w, )0.81 .

Observe that the errors o, are used in this equation in the
This smaller set of measurements will have a formal error
no larger that 1/0.9 of o. and will contain fewer measure-
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ments with relative large o. s. We apply the same

method of analysis to these smaller sets of data.
For both the full and small data sets we apply the same

method of analysis using just the statistical errors. This
tests the effects of systematic errors on the determination
of y and o.. We examine the relative importance of sta-
tistical and systematic errors in determining the formal
error as follows: if o.„„is the formal error obtained using

only statistical errors, then we define the contribution to
the forrnal error from systematic errors to be

(
2 2 )1/2

sys stat

Here o „„=( g; o,„,; )
' . But note that tr,„, is not

In a few measurement sets the formal error is asym-
metric: o+&o . In that event we use the arithmetic
average. There is no change in our conclusions if we used
the maximu'a or minimum of cr+, ~ because in all cases
their difference is relatively sma11.

V. SYSTEMATIC ERRORS AND r

The combined error 0.; of a measurement y; is obtained
from o;=(o„„;+tr,„,;)'~ . The statistical error o„„;
depends on numbers of events and represents a normal
error distribution. Hence, our use of cr„„,is straightfor-
ward. This is not true for the systematic error cT ysi
There are a multitude of uncertainties in the estimate and
use of 0 sys, i '

An obvious problem is that o,„,; may not represent a
normal error distribution. Suppose it represents an error
distribution with tails relatively larger than those of a
normal distribution. The use of o; to calculate the
weighted formal average is still acceptable. But it would
be wrong to interpret the formal error cr as representing a
normal distribution when one is considering discrepan-
cies which are several o. in magnitude. In a later paper"
we will consider a method of treating errors which does
not depend on the normal distribution assumption; in this

FIG. 1. r distribution for different values of N.

paper we maintain the normal error distribution assump-
tion for o,„,; as well as o,„, ,

The determination of a branching fraction requires the
counting in a data set of the number of v decays with that
decay mode. This number is then multiplied by factors
f,g, h, . . . . These factors include normalization quanti-
ties such as total number of ~ decays or total luminosity
or total cross section, efficiency factors such as detector
acceptance, and perhaps other quantities. A few of these
factors are obtained by counting events in the data set-
the total number of decays, for exatnple —and are as-

signed a statistical error. But most of the factors are ob-
tained by computation or from other data and are as-

signed a systematic error. (A few factors may have both
types of errors. ) Let o, (f) be the systematic error as-

signed to the factor f; by the experimenters who reported
branching fraction measurement y; with errors o,tgf and

SyS, I '

We are about to tabulate some of the problems that
can occur in a measurement set y&,y2, . . . , y;, . . . from
incorrect evaluation of f, 's or cr;(f)'s. We emphasize
two aspects of these incorrect evaluations: (a) we exam-
ine whether the formal error 0 will be smaller or larger
than the actual error on y; (b) we look at the ratio
r =tr~„lo If o. ~„ is significantly less than o, that is,
r (1, then the measurement set is overconsistent. If 0„„
is significantly greater than a. , then the measure set is in-
consistent.

(i) Overestimation of some cr; (f)'s. For the sake of cau-
tion and because of the difficulty of evaluating some f's,
experimenters may assign large tr;(f)'s. Then, (a) cr is
larger than the actual error on y and (b) cr„„ is smaller
than 0. and the measurement set is overconsistent; there-
fore r &1.

(ii) Underestimation of some o;(f)'s In spite of .cau-
tion, the history of physics has many examples of un-
derestimation of systematic errors. Then (a) o is smaller
than the actual error on y and (b) o„„is larger than cr

and the measurement set is inconsistent; therefore, r ) 1.
(iii) Biasing ofy, 's. The values of some f s may be set

unconsciously so that the resulting y; tends towards an
already published or preconceived value of y. The
cr, (f)'s may not be set large enough to encompass this
bias. Then (a) o is smaller than the actual error on y and
(b) depending on whether different experiments are biased
in a similar direction or towards a similar value, 0„„
might be smaller than o. and the measurement set may be
overconsistent; perhaps r (1.

(iv) Uncorrelated, unaccounted o, (f)'s. One experi-
ment i may have a mistake in f; not encompassed in its
o, (f), another experiment j may have a different mistake
in f, or may have a mistake in another factor g, , neither
may be encompassed in o (f) or o (g). Then (a) c.r is
smaller than the actual error on y and (b) cr „is larger
than o and the measurement set is inconsistent; there-
fore, r) 1.

(v) Correlated, unaccounted o; (f)'s. Suppose most
measurements in a set use the same factor f, that it is
slightly wrong, but the mistake is not encompassed in any
of the tr;(f)'s. This would shift the value ofy. The error
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representing this shift would not be in o, it might show

up in o ~«. Then (a) o is smaller than the actual error on

y and (b) o„„might be larger than o and the measure-
ment set may be inconsistent; perhaps r ) 1.

All these factors may simultaneously exist in a specific
data set, and competing effects may work together to
make the data set appear consistent. For example, exper-
imenters may be tempted to increase poorly understood
systematic errors if their result appears to be inconsistent
with other published results.

However, there is one instance when the existence of
problem (iii) (bias) can be demonstrated: i.e., an overcon-
sistent measurement set remains overconsistent when
only the statistical errors o„„;are used. This assumes
that experimenters do not overestimate statistical errors.
If systematic errors dominate the measurements, the
overconsistency may cease when using only o „„;even if
bias is present because the systematic errors exist and
contribute to the scatter.

Finally, we analyze the small set using only o „„,. The
results are

y =86.73%, cr„«=+0 1.5%%uo, u „=0.23%,
(22)

r = 1.55, P( & 1.55)=0.953, P( & 1.48)=0.047 .

The small set, which contains only those experiments
with the largest weight, has properties similar to the large
set.

The results in Eqs. (19)—(22) show that the measure-
ments used to find the formal average and error for B, in
this example have reasonable errors attached to them by
the experimenters.

UII. RESULTS

This section consists of these parts: the results of the
analysis for the individual measurements sets B&, B3, B„
B„,B, and B;a combined analysis for B„B„,B, and
B;and a comparison of B, and B„with ~,.

UI. EXAMPLE

We clarify the method and our interpretation by the
example of B&, summarized in Table VII. We use only
the higher-energy measurements as described in Sec.
VII A. The average values and errors for the 11 measure-
ments are

y =86.58%, cr =+0.28%, cr„«=0.27%,

r =0.96, P( &0.96)=0.49, P( &0.96)=0.51 .
(19)

y =86.64%, o =+0.29%, o' t=0.33%

r =1.10, P( & 1.10)=0.70, P( &1.10)=0.30 .
(21)

The reduction from 11 measurements to 5 does not
change y, a desirable feature in a set of measurements.
The removal of measurements with sr@all w s and hence
relatively large o. s increases r to 1.10. But
P( & 1. 10)=0.30; therefore, the difference of r from 1 is
not significant.

We interpret these values of r and P( & r) to mean that
cr s given by the experimenters are the right size as mea-
sured by o scat

We then analyze this data set using only o„„;to cal-
culate y and o . We obtain

y =86.79%, o„„=+0.14%, o'~«=0. 21%,
(20)

r =1.48, P( & 1.48) =0.980, P( & 1.48) =0.020 .

The formal error is now significantly smaller than the er-
ror determined from the scatter. This indicates that, as
expected, systematic errors are indeed present in the ex-
periments. Using Eq. (18), we obtain o,„,=+0.24%%uo, and
the ratio of systematic to statistical errors is
cT sys /cT stzf 1 7. Thus, the measurement of B, is dom-
inated by systematic errors.

We now repeat the analysis using the five measure-
ments with largest weights whose combined weight is
greater than 0.81, Table VII. For this small set we find

B„/B, = 1.005+0.034, (23)

which is consistent with the expected value of 0.973. Sys-
tematic and statistical errors are about equal:
cr,„,lo„„=09 When th. e. full sets of measurements are
used, the sets are consistent as defined in Sec. V. Howev-
er, the small set of B„measurements tends to be overcon-
sistent:

A. AnalysisofB»B3, B By B RIllBp

Table VIII lists quantities found for each measurement
set from which a reader can draw conclusions as to the
quality of the set. We offer some comments as a guide.

Comments on B,,B3. The set is dominated by the mea-
surement from the HRS Collaboration'2 which contrib-
utes half the total weight. Looking at Table II, the three
lowest-energy measurements are quite different from the
formal average, but only the one from the DELCO Colla-
boration' is by itself statistically inconsistent. The devi-
ation of the low-energy measurement is usually attributed
to insufBcient correction for background from the process
e+e ~hadrons. However, we cannot rule out the ex-
istence of an energy-dependent, unknown process being
confused with the events used to determine B, and B3 at
either low or high energy. The average of the other low-
energy experiments is also inconsistent with the formal
average. In order to test the statistical properties of the
precise high-energy experiments, we exclude all low-
energy experiments from the B

&
and B3 analyses in Table

VIII.
As discussed in Sec. VI, o, is consistent with o,

hence a large number of experiments agree on these rela-
tively simple measurements and the formal average seems
to be reliable.

Comment on B„B„.As discussed in Sec. III, we first
analyze the 10 unconstrained measurements of B, and
the 16 unconstrained measurements of B„listed in Table
III. The results are given in Table VIII. The measured
ratio of B„/B, is
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TABLE VII. Example of the calculation of statistical quantities using the topological branching
fraction B& in percent.

Measurement

84
85.2
85.1

87.8
84.7
86.7
86.9
86.1

87.9
87.2
84.7

Combined
error

+2.0
+2.9
+3.1

+4.1
+1.9—l 7

+0.7
+0.4
+1.0
+1.3
+0.9
+1.0

Weight

0.019
0.009
0.008
0.005
0.024
0.157
0.482
0.077
0.046
0.095
0.075

Pull

1.27
0.46
0.46

—0.31
1.02

—0.28
—1.32

0.44
—1.09
—0.79

1.89

Used in largest
weights analysis

Yes
Yes
Yes

Yes
Yes

8, small set: r =0.47, P( &r)=0.045 .

If only statistical errors are used, a hint of overconsisten-
cy remains:

8„, small set, o„„,: r =0.67, P( &r)=0.187 .

The B,' data set is the largest set, and due to the univer-

sality constraint, the formal errors are much smaller than
for the 8, or B„measurements. Both the full and small
set tend to be overconsistent:

8,', full set: r =0.73, P( &0.73)=0.046,

8,', small set: r =0.52, P( &0.52)=0.069 .

Either the experiments may have overestimated their er-

TABLE VIII. Calculated values of y, ~o ~, ~cr„„~, r, P( & r), t7,„,/a„„, and number of measurements for B„B3,unconstrained B,
and B„,B,', B,and B,. Values ofy, o., and o„„are in percent.

Branching
fraction

Bl

B,,

Measurement
selection

Full set
o t t only
small set

~stats y
Full set

~„a„only
small set
o stats onl

Full set
o stats onl
small set
o stats onl

Full set
o stat& only
small set
0 stat~ only

Full set

~stat~ only
small set

stat~ OIll

Full set

~stat& y
small set

stat ~ only
Full set

o«at, only
small set
ostat~ onl

Number
of

measurements

11
10

5

5

11
10

5

5

10
8

5

4
16
12
6
6

21
15
6

7
7
4
4
6
6
3
3

Formal
average

86.58
86.79
86.64
86.73
13.32
13.13
13.27
13.18
17.62
17.81
17.56
17.88
17.71
17.80
17.95
17.92
17.96
18.07
18~ 13
18.16
10.78
11.25
11.00
11.33
22.45
22.47
2?.56
22.52

Formal
error

0.28
0.14
0.29
0.15
0.28
0.14
0.29
0.15
0.44
0.34
0.48
0.37
0.41
0.31
0.45
0.34
0.26
0.19
0.29
0.21
0.60
0.26
0.64
0.27
0.85
0.35
0.95
0.37

+scat

0.27
0.21
0.33
0.23
0.24
0.19
0.30
0.21
0.37
0.45
0.44
0.45
0.37
0.33
0.21
0.23
0.19
0.15
0.15
0.16
0.35
0.28
0.36
0.33
0.18
0.14
0.18
0.14

0.96
1.48
1.10
1.55
0.87
1.40
1.03
1.42
0.83
1.31
0.93
1.22
0.91
1.05
0.47
0.67
0.73
0.79
0.52
0.73
0.59
1.07
0.56
1.23
0.21
0.39
0.19
0.38

P(&ri

0.491
0.980
0.699
0.953
0.313
0.957
0.618
0.908
0.297
0.898
0.514
0.784
0.345
0.645
0.045
0.187
0.047
0.158
0.069
0.245
0.083
0.671
0.190
0.789
0.001
0.020
0.035
0.138

+sys

+stat

1.7

1.7

1.7

1.7

0.9

0.9

0.9

0.9

1.0

0.9

2. 1

2.2

2. 1

2.4
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rors, in which case the formal error is too large, or else
there may be bias in the measurements in which case the
formal error is too small. When using just the statistical
errors, a hint of bias remains.

Comment on B . Systematic errors dominate these
measurements: o,y

/c7 t t 2. 1. Here again the full set of
measurements tend toward overconsistency as defined in
Sec. V:

B„, full set: r =0.59, P( &r)=0.083 .

This overconsistency remains when the smaller sets are
used, although the statistical significance is weaker since
there are only four measurements in the small set:

B, small set: r =0.56, P( &r}=0.19 .

COI-
Z',

CL

X
LU

-4

Full set: B, , B, , B,

0
The systematic errors are so much larger than the statis-
tical errors, that when only the statistical errors are used,
no hint of overconsistency remains.

Comment on B . Like the B measurements, systemat-
ic errors dominate the measurements: 0,„,/o„„=2.1.
Both the full and small set are very overconsistent:

B, full set: r =0.21, P( & r) =0 001.,

B, small set: r =0.19, P( &r)=0.035 .

The overconsistency is so strong that even though the
systematic errors are more than twice as large as the sta-
tistical ones, the data sets remain overconsistent when
only statistical errors are used:

B, full set, 0„„;:r =0.39, P( &r}=0.020,

B, small set, est„;: r =0.38, P( &r)=0 138 . .

There is statistical evidence for bias in these measure-
ments. The formal error on the average is too small since
this bias is not included in the systematic errors.

B. Combined analysis of B„B„,B,and B~

The three data sets B,', B, and B, show evidence of
overconsistency as measured by r. However, r is most
sensitive to points which are furthest from the mean and
can change considerably if one measurement is far from
the mean. Another indicator of the consistency of a data
set is the distribution of pulls [Eq. (12)], which should be
a normal distribution of unit width and zero mean for a
data set with Gaussian errors. r is very nearly equal to
the rms deviation of the pull distribution. Figure 2 shows
the sum of the pull distributions for the three data sets
B,', B, and B along with the expected distribution.
Here also there is clear evidence of the overconsistency of
the data sets. Figure 3 shows the same distribution for
the small sets. Of the 13 measurements in the three small
sets, none is more than one o. away from the small set
mean.

We quantify the overconsistency of the summed pull
distribution by evaluating the rms deviation R &. For the
full sets R& =0.636. The probability that R& is less than
or equal to 0.636 for an equivalent set of experiments
having Gaussian errors is 0.0014+0.0001. For the small
sets, Rz =0.484. The probability of finding a smaller Rz

is 0.0064+0.0004.
Another method to measure the combined statistical

significance of the observed overconsistency is to study
the sum of the r values, g r, for the three data sets.
There is no reason to expect the overconsistency to be of
the same magnitude in the three different types of mea-
surements. For example, the ratio of systematic to sta-
tistical errors is twice as large for B„and B as it is for
B,'. The summed pull distribution will not be sensitive to
a very overconsistent data set if that data set has relative-
ly few measurements. The value of g r for the full sets is
1.53. The probability that g r is less than or equal to
1.53 for an equivalent set of experiments having Gaussian
errors is 0.000 17+0.000 05. For the small sets,

g r =1.27. The probability of a smaller g r is
0.0054+0.0003.

(0
I—
Z',
LU

CC
LLI
CL
X
UJ

Small set: B, ,B„,B,

FIG. 3. Sum of the pull distributions for the B,', B, and B~
small data sets.

PULL
FIG. 2. Sum of the pu11 distributions for the B,', B, and B~

full data sets.
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TABLE IX. Calculated values ofy, ~0 ~, ~e„„~,r, P( ( r), u,„,lo„„,and number of measurements for
the v lifetime ~,. Values ofy, cr, and o „are in 10 "sec units.

Measurement
selection

Full set
O stat~

Small set

stat s Onl&

Number
of

measurements

11
7
5

4

formal
average

3.026
3.024
3.025
3.027

formal
error

0.085
0.070
0.089
0.073

0 scat

0.055
0.062
0.058
0.082

0.65
0.88
0.65
1.12

P( &r)

0.062
0.411
0.208
0.710

~sys ~+stat

0.8

0.8

full set: r =0.65, P( (r)=0.062 .

This overconsistency remains when the smaller sets are
used, although the statistical significance is weaker since
there are only five measurements in the small set:

small set: r =0.65, P((r)=0.21 .

The assumption of e-LM-~ universality leads to the predic-
tion

5
mp

~„B, ,
m,

Bq =0.973B, ,

(24)

(25)

when the e mass and all neutrino masses are set to 0.
From Table VIII, the full-set formal average for B,' is

8' =(17.96+0.26)%%uo

Then from Eqs. (24) and (26),

r,(predicted)=(2. 874+0.042)X10 ' sec

(26)

(27)

compared with the full-set measured value from Table
IX:

r,(measured) =(3.026+0.085) X 10 ' sec .

The difference is

(28)

C. Comparison of B„B„,and ~,

The analysis of the r, set of measurements, Table IX,
shows again some evidence for overestimation of some 0;
or biasing of some y;:

VIII. CONCLUSIONS

We studied the measurements of various decay branch-
ing fractions and the lifetime of the ~ lepton for statistical
consistency, assuming normal error distributions. There
is clear evidence for overestimation of errors or bias in
the individual measurements for B,', B, and particularly
for B . By considering only the statistical errors, there is
clear evidence for bias in the 8 measurements, and hints
of bias in other measurements. Therefore, the formal er-
ror on the average of the B measurements is too small.
Since the error on the p branching ratio is the largest
contribution to the error on the sum of the well-measured
one-prong decay modes, the significance of the one-prong
discrepancy is reduced.

While we find evidence for bias, there is no evidence
that the bias causes the discrepancy in summing the
branching fractions. For example, although the B mea-
surements cluster too much, they may still cluster about
the true value of B . Or the true value of B may be
larger, decreasing the discrepancy; or the true value of B
may be smaller, increasing the discrepancy. We do not
know the size or sign of the bias.

There is no evidence for widespread underestimation of
systematic errors in the sets of measurements examined
here. Hence, the discrepancy should not be ignored sim-

ply by claiming that the errors should be set larger.
In summary, our examination of the branching fraction

measurements has not resolved the existing problem in
understanding the one-charged-particle decay modes of
the tau. Resolution of this discrepancy requires new in-
formation such as measurements with greatly improved
statistical and systematic precision, or explicit measure-
ment of as yet unmeasured or poorly measured modes.

v.,( measured )
—r, ( predicted )

=(0.152+0.095) X 10 '3 sec (29)
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