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The reduction of four-dimensional quantum chromodynamics at finite temperature and chemica1
potential to an infrared-effective three-dimensional theory is further investigated. The effective cou-

plings are calculated in the manner prescribed by a previously discussed program of quantum di-

mensional reduction, demonstrating its internal consistency and completing the specification of the
effective action. The latter provides a starting point for nonperturbative studies of the infrared be-

havior of high-temperature quark-gluon plasmas.

I. INTRODUCTION S =Id x TrF ( A)+ Tr(2)P)
1

26

The study of cooperative phenomena in non-Abelian
gauge theories such as quantum chromodynamics (QCD)
involves an understanding of their large-scale statistical
and thermodynamical properties. At high temperatures
(T&&A&cD), one can take advantage of a substantial
simplification due to the decoupling theorem. ' As is well
known, the leading infrared (IR) behavior of four-
dimensional (4D) QCD at high temperatures is governed
by its static (zero Matsubara frequency) sector, obtained
by integrating out its nonstatic modes to leave behind an
effective three-dimensional (3D) theory. This process of
"quantum dimensional reduction" was explored in detail
in an earlier work (hereafter referred to as Part I} and
goes as follows. Classically, nonstatic modes are
suppressed at IR momenta k &~ T by O(k /T ) relative
to their static counterparts. This suppression continues
at the quantum level, except for a set of effective 3D cou-
plings induced by the nonstatic integrations. In princi-
ple, this set is infinite; in practice, couplings beyond some
low order can be ignored since they are suppressed rela-
tive to structurally similar static interactions by
O(k /T ) or better. Nonstatic integration is IR finite
and at high temperatures, where the running coupling
g ( T) is small, may be done perturbatively. If the integra-
tion were also to include the static modes, then, as is well
known, all ultraviolet (UV) divergences would be can-
celed by the usual T=0 counterterms. However, the
cancellation is incomplete when these counterterms are
applied to the nonstatic intcgrals alone. The residual UV
divergences survive as counterterms of the effective
theory, showing up in the guise of its bare couplings.
They will cancel the corresponding UV divergences aris-
ing from the 30 integrals of the eft'ective theory,
rejecting the UV finiteness of the original 4D theory.

To summarize Part I, the full theory is approximated,
up to O(k /T ) terms, by a theory dubbed "extended
three-dimensional quantum chromodynamics" (EQCD&},
described by the following superrenormalizable effective
action:

+ttioTrg +—(Trg')

Here A represents the magnetostatic potential and P (an
adjoint scalar field proportional to the logarithm of the
Polyakov loop operator) the electrostatic potential. G is
the 3D gauge coupling which, by superrenormalizability,
does not depend on the UV cutoff. EQCDs becomes
effective at IR momentum scales, typically k 5g T, for
which the power-counting analysis of Part I prescribes
that the bare mass parameter m 0 need only be computed
to two loops and the induced quartic coupling tt to one
loop in the nonstatic modes. The corresponding integrals
are most easily evaluated in the class of gauges character-
ized by the condition 84 A ~ =0, the so-called "static
gauges,

" in which static and nonstatic modes are cleanly
separated and the electrostatic potential A4 is propor-
tional to the 3D scalar field P.

The parameters of EQCDs have so far been computed
only partially: the quartic coupling has been estimat, ed to
be O(g T) with an undetermined coefficient, while the
bare mass is known only to one-loop order, in dimension-
al regularization (where it is UV finite) and in an arbi-
trary regularization. For the general case of N colors
and N& quark fiavors (each having a chemical potential

p, , i = 1, . . . , N&), the parameters of EQCDs can be writ-
ten4'

G =g(T, ls; )&T,
A d3k

mo ——m~ —2%g T
k

+(two-loop terms),

tc=f (N, NI)g T,
where d„k—:d "k/(2m. )", A is a generic UV regulator, and
the one-loop electric mass is given by

g2T2 g2 "f
mF = (N+ ,'NI) +— g—p,; .

2K i=1
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This incomplete knowledge of the EQCD3 parameters
is sufficient if one is interested only in low-order pertur-
bative calculations. However, there is substantial and
growing evidence that for most quantities of interest the
onset of nonperturbativity is almost immediate, i.e., per-
turbative breakdown occurs at unexpectedly early
stages. ' One is then compelled to consider treating
EQCD3 nonperturbatively, which requires a knowledge
of the full effective action. In this paper we shall com-
plete the specification of the effective theory by comput-
ing the two-loop correction to mo and the coefficient
f (N, Nf ) of v. The latter result has been reported in a
previous work. Here, the derivation will be presented in
some detail, mainly in order to illustrate static-gauge cal-
culations in finite-temperature QCD. In the interest of
brevity we shall avoid repeating material already con-
tained in Part I, which should be consulted for notation,
formalism, Feynman rules, integrals, and the like.

In Sec. II the quartic coupling K is computed and
shown to be positive (provided the number of fermion
flavors is small enough), a result with important conse-
quences for the consistency of the dimensional-reduction
scheme. Section III deals with the UV-divergent part of
the two-loop correction to the bare mass parameter m 0,
which is shown to consist of a small correction to the

linear one-loop divergence plus exactly canceling loga-
rithmic divergences. The finite part of this correction is
of little consequence and difficult to compute, so we do
not attempt its evaluation here. The results are summa-
rized in Sec. IV, which also updates the conclusions of
Part I. Appendixes A and B evaluate the various in-
tegrals which arise during the course of the calculations.

II. THE INDUCED QUARTIC COUPLING

The induced quartic coupling K is given by integrals
over nonstatic graphs with vanishing external momenta.
It is convenient to divide these into gluonic and fermionic
parts, which we consider in turn.

A. The gluonic contribution

Although the gluonic contribution KG can, in principle,
be calculated in any gauge, in practice the calculation is
extremely tedious in gauges other than the static gauge,
where the electric potential and the Polyakov loop opera-
tor are very simply related. The relevant graphs fall into
three groups, within each of which they differ only by
permutations of the external legs, as shown in Figs.
1(a)-1(c).

For type-(a) graphs we write

k, k
5"+ 2

4

and use the reduction

+graphs (a)= i (2g) (f'f'f "'"f' f +2 permutations)

k4 k k(yTg fd k, 5,, +
k k2

k k„k„k
5 5mn+

I p nj+ I2
4 4

5N
(ffff+2 permutations) = (55+2 permutations)

2(N'+1)
to find the contribution

Ka
4PN2g4T 2k4

N +1 k k4 T„

For type-(b) graphs we write

+graphs (b)=i(2g ) [(f""f "+f' "f"'")f ' f' +5 permutations]

k 4 kj k(
&&Tg fd,k, 5,, +

o k k

and use the reduction

k(k
5Im +

4

k k.
ttl J

mJ+ k~
4

[(ff +ff )ff + 5 permutations] = 4(ffff +2 perm—utations)

to find the contribution

Kb = 40N2g 4T 2k4 1

N+1 k k T
+

For type-(c) graphs we write

1 k, k(
+graphs (c)= [(f"f +f'f f 'g)(f '"f' +f" "f"")+2permutations]T g f d3k 5.I+2
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b ..c

Adding the contributions from graphs (a), (b), and (c),
the total gluonic contribution is given by

Kg =K~ +Kb +Kt:

CI + 2 PE RMUTATIONS g
10Ng T
N+1

1 k4 k4 1

4 6 8 k4
—8 +8

+—I

2

D
C

+ 5 PERMUTATIONS

+ 2 PERMUTATIONS

5 PE RMUTAT IONS

The last term, which is proportional to 5 (x=0), is the
singular ghost term found in any unitarity gauge calcula-
tion and, as usual, is exactly canceled by a corresponding
contribution from the effective measure in this gauge.
The remaining integrals are evaluated in Appendix A;
UV divergences cancel out (as they must) leaving behind
the finite result

5N g T 2g T/3n (N =2),
N'+1 6n' 3g'T/4m' (N =3) .

FIG. 1. Contributions to the induced quartic coupling K:

gluonic (a),(b),(c) and fermionic {d).
The N =2 result has been obtained previously by several
authors, using altogether different approaches.

and use the reduction

[(ff +ff)(ff +ff)+2 permutations]

=4(ffff+2 permutations)

to find the contribution

5N2g 4T 2 1

N+1 k k
L

B. The fermionic contribution

The fermionic contribution K~ is the same in any gauge
and for each fermionic flavor is given by six permutations
of a basic one-loop graph, Fig. 1(d). As shown in Appen-
dix A, the integrals we will encounter are independent of
the chemical potentials running through the internal
propagators, so KF is just Nf times the contribution of a
single flavor.

For type-(d) graphs we write

+graphs (d)= —ig Tr(T'T T'T +5 permutations)TQ f d3ptr r4—
4

and use the reductions

Tr(T'T T'T +5 permutations)= (5' 5' +5"5 +5' 5 ')2N —3

2N(N +1)

and

'4

«r =, (p——8pe +8p»4 4 2 2 4

2N2 —3
aF ———

~
———

~
(N =2, 3) .

N(N +1) 6' 12m

C. The total contribution

to get Adding the fermionic and gluonic contributions to K

we finally arrive at the desired result:
4 2(2N —3) 1 P4 P4=g 2 4

—8 6+8
N(N +1) p p p T„

On substituting the values of the integrals from Appendix
A, it is seen that the UV divergences again cancel, leav-
ing the finite result

K=KG +KF =
5N' —(2E —3)Nf g4T

N(N +1) 6n

(8 Nf )g T/12m. SU—(2),
(9 Nf )g T/12m, SU(—3),
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which is positive for a sufficiently small number of fer-
mion flavors. ~ ~ ~ ~ ~ $/ ~ ~ ~ ~ ~

0~ k»
kg (S,~

—A';A' lA' ) =0Ag

III. TWO-LOOP CORRECTIONS
TO THE BARE ELECTRIC MASS

FIG. 2. Graphical element which vanishes in the Landau
gauge.

It is necessary to check that for the bare mass parame-
ter mo, the one-loop value is stable against two-loop
corrections. Since this is trivially true for the finite part,
we need only calculate the UV-divergent part of the two-
loop contribution. [As pointed out in Part I, contribu-
tions to m o higher than two-loop are too weak to be im-

portant in the dimensionally reduced theory for distance
scales O(1/gT) ]Sin.ce there are no mass divergences in
the full 4D theory, the two-loop UV divergences in mo
will cancel those of the O(g } graphs of EQCD3, which
are much easier to calculate. Consider therefore 1144 (i.e.,
the scalar self-energy) in EQCD3, up to O(g ). The UV-
divergent parts are obtained by setting the external
three-momenta to zero. The net UV divergence is in-
dependent of the choice of gauge in EQCD3, because the
nonstatic contribution it must cancel is gauge indepen-
dent. We are, therefore, free to choose any suitable
gauge. The most convenient choice is the Landau gauge,
in which most graphs vanish because they contain the
vertex shown in Fig. 2. The surviving graphs are shown
in Fig. 3; of these, graph (a} yields the previously comput-
ed O(g ) linear divergence. Here we calculate the
O(g ) graphs and show that graph (b} is just a small
correction to graph (a), while graphs (c) and (d) have log-
arithmic UV divergences which cancel against each oth-
er.

With ~ as given in Sec. II, we easily calculate the
second graph to be

h (b)= —(I'5ab)2N 2T

where we have, from Part I,

N2T kII~I~(k2) [(~+,)2+g] Ng T Ik l

64

In the Landau gauge ()=0), this gives

9N2 4T 2 d 3k
graph (C)

l

Landau —(l5ab} g f32

2
2

(.5 b) 3Ng T
Sn mmag

where m, ~
regulates the magnetostatic IR divergences.

For vanishing external momentum and Landau gauge,
the fourth graph is given by

where the term in large parentheses is O(g ), while the
rest of the expression is just graph (a}.

The third graph is given by

d3k
graph (c)= (i5'—)2Ng Tf II'"(k ),

i 4T'
graph ( d )

l

Landau g
(fadff cef+faeff cdf }(fbdgf ceg +f begf cdg

)
2

X
d3kd31 1 k, k 1 l, l

(k+l) +m k k l " l
5; — ' —5;

where m„regulates the electrostatic IR divergences. Using the reduction (ff +ff)(ff +ff) =3N 5, we get

graph (d)
l

'" '" (i5ab) 3Ng T24 2 dkdl3 3 1 (k l)2

(k+1) +m k l k l

The integrals are calculated in Appendix B, and give

3N T
h (d)

l

Landau
( 5ab) g

8m'

2
A 1

ln
6

'acerb 2&a mo = --~ I +0- CIIV - div

The UV divergences cancel between (c) and (d), leaving
for the EQCD3 bare parameter m o the expression

mo=mz[1+O(g )]

5N —(2N —3)Nf 2 p d3k
2Ng T 1+—, fN 24

which is just the one-loop expression with 0 (g ) correc-
tions to its coefficients. The finite correction to IE has

2

(a)

~ + ~
~ ~

~ ~

I ' I+- ~ ~ ~ ~ Qs ~ ~ e +2 2

(b) (c)

I

-(=o
+ 0 ~ ~ ~ ~ ~ ~ ~ 0 ~

2 - div

FIG. 3. Divergent part of the induced electrostatic bare mass
parameter mu, reexpressed in terms of EQCD3 graphs in Lan-
dau gauge, showing (a) O(g ) and (b),(c),(d) O(g ) contribu-
tions.



38 DIMENSIONAL REDUCTION IN FINITE-. . . . II 3291

not been evaluated explicitly; to do so would require an
evaluation of the full two-loop nonstatic contribution to
II44, a formidable task. Fortunately, an explicit value is
not required for present or foreseeable purposes.

IV. CONCLUSION

We have completed the specification of the effective
theory EQCD&, under the dimensional reduction pro-
gram outlined in Part I. For distance scales 0(1/gT},
the effective action S has the form given in Sec. I, with
the parameters ~ and mo as given at the end of Secs. II
and III, respectively. EQCD3, which is only valid at very
high temperatures ( T »AQCD }, forms a convenient start-
ing point for nonperturbative studies of cooperative phe-
nomena in hot QCD. The results of such studies should
serve as useful guidelines for the more difficult task of
analyzing the full 4D theory at the lower temperatures
( T—AQCD) relevant to realistic quark-gluon plasmas.

Dimensional reduction in hot QCD is made possible
essentially by the infrared suppression of certain nonstat-
ic contributions. By consistently discarding all nonstatic
effects at or weaker than the classical suppression level of
0(ki/T2), one arrives at the effective theory EQCDi.
Clearly, the validity of the dimensional reduction strategy
rests on the field-theoretical consistency of EQCDi. It is
important for EQCDi to be well defined as it stands,
without requiring, for example, additional terms to
achieve stability of its vacuum. Induced couplings higher
than the fourth order are suppressed at levels weaker
than the classical level, and if it turned out that they were
needed to provide stability, there would no longer be any
justification for the discarding of any other nonleading
nonstatic effects and one would be back to the original
4D theory. The sign of the quartic coupling a might be
expected to play an important role in this regard. The
effective potential for P with a positive v ensures a stable
vacuum at the classical level. Only a nonperturbative
analysis can determine if this continues to hold at the
quantum level. For the gauge group SU(2), such an
analysis has already been carried out in Ref. 7, where the
results of this paper were first reported. It has confirmed
that the positivity of ~ is a sufficient condition for the
consistency of the effective theory.

One of the major problems of high-temperature QCD
has been to understand the physical meaning of the IR
divergences that plague perturbative computations. If
they cure themselves by generating a magnetic screening
mass, how does this mass manifest itself in terms of the
gauge-dependent gluon propagator? In Part I it was sug-
gested that a nonperturbative study of EQCD3 could pro-
vide some answers and that has indeed turned out to be
the case. In the process, a shadow has been cast on the
old electrostatic-decoupling scenario ' which posits that
at even larger distance scales, 0 (1/g T), the electrostatic
modes described by P should also decouple from the
effective action, leaving behind only the magnetostatic
sector, described by pure 3D Yang-Mills theory, QCD3.
This scenario is based on the belief that at such scales P
behaves like a heavy particle, with a Debye screening
mass 0 (gr) »0 (g T). However, this result is true only

in lowest-order perturbation theory and may not be
stable against higher-order corrections. In fact, attempts
to compute the mass gauge invariantly revealed IR-
divergent corrections.

It was speculated that the perturbative incalculability
of quantities such as the Debye mass could be due to a
gauge-symmetry-breaking condensation of the field P.
This would cure all IR divergences by giving screening
masses to the magnetostatic gluons, rearranging the
large-scale degrees of freedom in the quark-gluon plasma,
and thereby drastically altering our conventional picture
of it. This instability of the perturbative vacuum has
been confirmed for SU(2) by nonperturbative analysis of
EQCDi (Ref. 7); a similar picture has emerged from nu-
merical simulations of 4D SU(3) (Ref. 10). The old
scenario of dimensional reduction followed by perturba-
tive electrostatic decoupling must therefore be updated to
the new scenario of dimensional reduction combined with
a nonperturbative gauge-symmetry-breaking Higgs mech-
anism.
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APPENDIX A: NONSTATIC INTEGRALS

We evaluate the nonstatic integrals required in Sec. II;
the relevant notation and formalism can be found in the
Appendixes of Part I. Remarkably, bosonic and fermion-
ic contributions to ~ both contain the same combination
of integrals:

INs = q4
2 4

—8 +8

4 t

Neglecting for the moment the zero mode subtraction
(which will be incorporated later), these can be spht up
into the usual vacuum and matter parts, which we shall
compute separately:

= f d4q f (q)+b, rP(q) .

1. Vacuum parts

The logarithmically divergent vacuum parts are evalu-
ated by regulating the three-momentum integrations by

where the prime indicates that in the bosonic case the
zero mode is to be omitted from the sum over Matsubara
frequencies (this only affects the first term}. The integrals
within I~s are linear combinations of the following
equivalent set, which we Gnd more convenient to work
with:
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an IR cutoff Te (for later convenience, e has been scaled
to be dimensionless) and a UV cutoff A. The former will
cancel out when the corresponding matter contribution is
added, reflecting the IR finiteness of individual nonstatic

I

integrals; the latter will cancel out in the combination of
integrals occurring in I~s, reflecting the UV finiteness of
sc. We calculate as follows:

q

d4q d3q „ dq4 1 „dq 1 A dq
ln4 2~ ( 2+ 2)2 8 2 o q 8~2 rq q 8~2 T

d4qq d3qq dq4 3 dq 3 p dq 3 A

q 2m —~ (qz~+q~)3 32m o q 32m r~ q 32m. TE

d3tlq dq4 5 dq 5 & dq 5 A

qs 2n —~ (q&~+q~)4 64m~ o q 64m~ v'e q 64~~ Te

Here, as elsewhere, we use q to denote both the four-vector (q, q4) and the magnitude of the three-vector
~ q ~; which

one is meant is contextually clear.

2. Matter parts

To evaluate the matter parts we use the contour-integral representation of frequency sums. Only the IR cuto5' Te is
needed here since all matter parts are UV finite. The prototype matter part

1 d3q da dQ 1 1

q~ 2mi &q —a 1+e ~
q —(a+@) q —(a —p)

has been evaluated in Part I. The integrals needed presently can be expressed in terms of the derivatives of its in-
tegrand, which is readily evaluated to be

1 da da 1 1 Pe(x~~)
2 2 ~ /T 2 +

2m'i ~ q —a I+ae~r q~ —(a+p, ) q —a —p)

Here we have defined o—:+1 (upper sign for bosons,
lower for fermions), x =q/T, b, =p,

—/T, and the function

1 1
p (x, b, )—=1+oe'"-~' 1+oe'+~' '

We express the matter parts in terms of p and its x-
derivatives (denoted by primes} as follows, using integra-
tion by parts to reduce the integrals to their final form:

1

4

R (A/T, h)

8m

p (E,b, )

4m

3. The total contribution

By adding the corresponding vacuum and matter con-
tributions, and then taking the appropriate linear com-
binations, we arrive at the following expressions for the
integrals within I~s.

= fd, q—1 1 d

q 4
p (x, h)

+ To —1

n=0

T

= fd, q-q
P 6 16

1
zp (e,b)—

Sa
ep' (e, A)

+
32~2

1 1 ~dx
p (e, h)—, p (x,&),

8 8m

p (x, b, )

qdq q

f p (x,h)
32K

2
q4

6
Tp,

r

8
q Tp

R (A/T, b, ) p (e, b)+ep'(e, b)
327r2 32m2

R (A/T, b, )

64H

2p (e, b }+4ep' (e, b, )+E p"(e, b )

192m

where we have defined the IR-finite function

&.„', =fd3q ' d

q cJq

p (x, b)
R (A/T, b, )—:ln —+ p (e, h) —lne

A

T

~p (e, b) — f p (x, b, )
192m. 64m.

Ep'(e, h) e p"(e, b, )

24~2 192772

—f p (x, b)

The infrared limit of p and its derivatives: We need to
calculate the limits of the function p (x, b, ) and its single
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and double derivatives with respect to x, at x =a&&1.
The calculation is straightforward but algebraically tedi-
ous, so we only give the final results:

(o —1)«+ 1+O (~) (&=0),
1+O(e) (6&0),

(o —1) /2@+ 0(e) (b, =0),
O(e) (b,&0),

2 „& (0 —1)'/2e+O(e) (b, =0),
0 (e') (b,&0) .

The zero-mode contribution. For the bosonic integral
[1/q ]'r„we need to subtract the following zero-mode
contribution:

f d

q4

1 P~ x dx

2m ~ (x —6 )

1/2n. e (b, =0),
O(e ) (6&0) .

On substituting these values into the expressions for
the individual nonstatic integrals, we get

1

4
q

R (A/T b)
8m

1

4m

2

6
Tp

R (A/TE)
327T2

1

32~2

4
q4

8
Tp

R (A/T, b, )

64m

1

96vr'
'

where all dependence on cr, 6, and A is contained in the
function R (A/T, h). This function need not be calcu-
lated, since it cancels out in the combination of integrals
which enter INs. Interestingly enough, INs is not only in-
dependent of T and p but is the same for bosons and fer-
mions:

1Its=-
12m.

The calculation of I2 is somewhat trickier. We first ex-
press the factor (k I) in terms of the factors in the
denominator, then use momentum shifts and symmetric
integration to simplify the result. Omitting some tedious
algebra and using the formula

d3l
arctan

[(I+k) +m, ~]l 4n
~

k
~

we arrive at the form

13k d31(k I )f [(k+I )'+m,2, ]k'I'

Ii
2

el d3k mel ski
1 — arctan

4~ k' k me)

m, ) d3k
+

Sm' (k +e )

m, ~ d3k

4 (1 2+ 2)2

'2

m4, dk d31
+

4 (k +e ) [(I+k) +e ] (I +m„)
Here a magnetic IR regulator e has been introduced in
the last three integrals and will eventually cancel out.
Using

d3k

(k +q ) See

d31 1

[(I+k) +e ) (I +m, )) S~e[k +(m,)+e) ]

d3k 1

(k +e ) [k +(m„+e) ] See(m„+2@)
and

d, k d, l d3k d3l
1 k+ 2+ 2 k2 2 k2+ 2 k+1212

d3k

k'+m',

1 A kdk
16m. 0 k +

where we have introduced the UV regulator A. The in-
tegral is elementary; for A &&m, &

it reduces to

1 AI )
—— ln

16m

APPENDIX 8: STATIC INTEGRALS

We evaluate the static integrals required in Sec. III; the
relevant notation and formalism can be found in the Ap-
pendixes of Part I. The integrals occur in the combina-
tion

d, k d3l 1 (k I)2.I,=f (4+I) +m„k I k I2 2 2 2 4 4

f dx 1
1 ——arctanx

0 X X 4

we secure the IR finite result

I)
I2 ——

2

1 3 Ii 1
2+ 2= +

32~ 64~ 2 64~

A.dding the results for I
&

and i 2, we finally obtain

The calculation of I, is straightforward. We have, on
shifting the momentum k~ —(k+I ),

3 A
Is=, ln

32K me

1+—
6



3294 SUDHIR NADKARNI 38

Present address.
T. Appelquist and J. Carazzone, Phys. Rev. D 11,2856 {1975).
A. D. Linde, Phys. Lett. 96B, 289 (1980); D. J. Gross, R. D.

Pisarski, and L. G. Yaffe, Rev. Mod. Phys. 53, 43 (1981};T.
Appelquist and R. D. Pisarski, Phys. Rev. D 23, 2305 {1981).

3Note that the static sector is well defined only in the
imaginary-time Matsubara formalism, where the frequencies
co„=2m.Tn are discrete. The effective 3D theory is not meant

to apply directly to real-time correlations, such as those aris-

ing in linear response theory, even at low continuous frequen-

cies (unless these are precisely zero). Through analytical con-
tinuation, such low-frequency real-time correlations depend
rather nontrivially on both static and nonstatic correlations
of the imaginary-time theory. Attempts to analyze them us-

ing the effective 3D theory alone could lead to misleading re-
sults. See H.-Th. Elze, U. Heinz, K. Kajantie, and T. Toime-
la, Z. Phys. C 37, 305 (1988).

4S. Nadkarni, Phys. Rev. D 27, 917 (1983),referred to as Part I.
5S. Nadkarni, Phys. Rev. D 33, 3738 (1986);34, 3904 (1986).
S. Nadkarni, in Lattice Gauge Theory '86, proceedings of a

NATO Advanced Research Workshop, Upton, New York,
1986, edited by H. Satz, I. Harrity, and J. Potvin (Plenum,
New York, 1987); in Quark Glu-on Plasma, proceedings of the
International Conference on Physics and Astrophysics, Bom-
bay, India, 1988, edited by B. Sinha and S. Raha (World
Scientific, Singapore, 1988); Phys. Rev. Lett. 61, 396 (1988).

7S. Nadkarni, Phys. Rev. Lett. 60, 491 (1988).
8S. Weinberg, Phys. Rev. D 7, 1068 (1973).
N. Weiss, Phys. Rev. D 24, 475 (1981);R. Anishetty, J. Phys. 6

10, 439 (1984); K. J. Dahlem, Z. Phys. C 29, 553 (1985).
'oJ. Polonyi and H. W. Wyld, Illinois Report No. ILL-(TH)-85-

23, 1985 (unpublished); MIT Report No. CTP-1458, 1987 (un-

published); J. E. Mandula and M. Ogilvie, Phys. Lett. B 201,
117 (1988).


