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It is shown that the canonical light-front formulation of quantum chromodynamics is able to in-
corporate ideas used by Shifman, Vainshtein, and Zakharov to successfully describe many features
of the hadronic spectrum in their sum rules. It is pointed out that the new light-front Hamiltonian
may lead to a quantitative model for the structure of hadrons.

I. INTRODUCTION

This paper is concerned with the construction of a
dynamical formalism for hadrons which combines some
of the best features of light-front quantization and sum
rules in QCD

The light-front formulation of QCD provides a method
to describe the structure and interaction of hadrons in a
conceptual framework based upon the Fock-state decom-
position of hadronic states which arises naturally in the
light-front quantization. It is particularly useful in
describing phenomena dominated by short distances,
such as, e.g., large-momentum-transfer exclusive process-
es, where only a few leading Fock components are in-
volved. However, to accomplish a complete description
of hadrons one would have to include an infinite number
of the Fock components in the eigenvalue problem of the
light-front Hamiltonian. Moreover, the light-front for-
malism has so far ignored subtleties due to the large-scale
structure of non-Abelian gauge fields, chiral-symmetry
breaking, and the like. Although these do not affect hard
processes, they have a profound efFect on the structure of
the vacuum which in itself may be the very origin of the
observed hadronic spectrum.

On the other hand, the sum rules provide a way to de-
scribe the spectrum of hadrons. This is done by intro-
ducing quark and gluon condensates in diagrammatic
QCD calculation of the vacuum polarizations induced by
the appropriate currents. Such vacuum polarizations are
related to the spectrum of hadrons via dispersion rela-
tions. The vacuum condensates are supposed to exist due
to nonperturbative effects of QCD. They introduce a new
scale and provide the so-called power terms. The basic
idea behind the QCD sum rules is that it is the power
terms (not higher orders in the strong-coupling series}
that limit asymptotic freedom and explain the hadronic
spectrum. The sum rules difFer greatly from many QCD-
like theories such as potential and bag models which
often introduce parameters that are not related to the
QCD Lagrangian.

The natural question arises as to whether or not it is
possible to include the power terms in the light-front ap-
proach to QCD. We show that the answer is positive.
The resulting dynamical formalism may lead to a quanti-
tative model of hadrons.

In Sec. II we derive the light-front Hamiltonian of

QCD including the power terms. They are represented
by background quark and gluon fields originating from
the vacuum. The quantization and the gauge-covariant
expansion of the background fields are included.

Section III is devoted to a test calculation of the vacu-
um polarization according to rules following from the
new Hamiltonian. We reproduce known results for
coefficients of the quark and gluon condensates in the
x+-ordered fashion, by simple means of the definite inter-
mediate Fock states of quarks in the vacuum back-
ground.

In Sec. IV we draw conclusions and comment on pros-
pects of further applications of the Hamiltonian to the
bound states of quarks and gluons. Taking into account
the success of the light-front approach in describing
high-energy structure of hadrons and the surprisingly
good results of sum rules for low-energy hadronic proper-
ties we sketch a scenario of how the present possibility to
combine both successes in one dynamical scheme would
accomplish descriptions of hadrons based on the QCD
Lagrangian and properties of the vacuum.

The purpose of this paper is to summarize some formu-
las and ideas which appear to us more self-consistent
than we had expected before we started the preliminary
calculations presented below.

II. THE HAMILTONIAN

The main idea is illustrated by the set of substitutions

i0)~
i
0), /~/+co, A~A+a (2.1}

to be done in the standard light-front formulation of
QCD (Ref. 1}.

i
0) and

i
Q) are the perturbative and

true vacuums, respectively. The quark field lf and the
gluon field A are split into the standard fields P and A
and into the necessary additional parts m and a. The
standard fields |t and A act in the same way on the true
vacuum

i
0 ) as they do on the perturbative vacuum

i
0). The parts to and a detect the nontrivial structure of

the physical vacuum
i
0).

A. The light-front splitting

The splitting of quark and gluon fields mentioned
above occurs naturally on the light front. This unique
property of the light-front formulation can be seen in an
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y(x+ =o,x =x'—x', x')

EE(k
+

Jt Ei k ( a e ikx—+ iE te i~
)

0
(2.2)

example of the expansion into creators and annihilators
of any field P at x+ =x +x =0:

B. Details of the Hamiltonian

The QCD Lagrangian is

L, = ,'—Tr—F,""FE„+f, (ig, m—}g, ,

where we split fields f, and A, into parts

(2.5)

The momentum k+ =k +k is positive definite. There-
fore, the integral starts at the point k+=0. However,
this is a singular point of the theory. One should write
the field P as

P(x+ =O,x,x )

dk+ Jtd k (aE, e
' +bEte' )+ Jt dk+[?],

~J g 0

(2.3)

where the parameter 5 is an arbitrary small positive lower
limit. The question mark exhibits the lack of knowledge
about the nature of the singularity at k+=0. The last
equation is already the natural splitting occurring in the
light-front approach to QCD:

(2.4}

The important point of the light-front splitting is that the
part Ps generates standard looking perturbation theory
even if we develop calculations in the true vacuum

~
0).

Only the part grs reports on the difFerence between
~
0)

and
~

0). It follows from the fact that the generator P+
of translations in the x direction along the front is posi-
tive definite, free from interactions and by definition must
annihilate the physical vacuum

~
0). If

~

0 ) would con-
tain any quantum with k+ & 5 created by aE, or bE, then
the P+ expectation value in

~

0) would be larger than 5.
Therefore, any normal-ordered product of Ps's has zero
expectation value in

~
0). However, we cannot exclude

that the proper limiting procedure yields nonzero expec-
tation values of products of the parts ys in the true vacu-
um

I 0). Whenever we find an expectation value of a
Product such as ( 0

~ EPsqs ~
0) we rePlace it by a ProPer

tensor times a number called the condensate. That this
might lead to a reasonable approximation in QCD is a
nontrivial surprise.

There is no such spectacular splitting in the formula-
tions other than the front form because there are no
positive-definite momenta in them and so some even very
large opposite momenta may contribute to the vacuum
expectation values of normal-ordered products of fields.

f, =1t+E0, A, = A +a (2.6)

according to Sec. IIA. Our notation will be explained
more explicitly during further calculations. The back-
ground fields co and a are constrained by their own equa-
tions of motion (Tr T'T"=—,'5'~):

d"f„„=g@y„T'coT', (EEE m)c—o=0 . (2.7)

K""=ig[ A",a "]+ig[a",A "],
L"= ig [A„—,f""+K"'] ig [a„,FE"—+K"'],

(2.9)
M"=g EtEy

"T'coT'+g coy "T'PT',

g=g Aco+gkf

and we use notation defined in the Appendix.
The independent dynamical fields are P+ ——A+/ and

A', i=1,2, while we use the gauge A+ =a+ =0 and
Az ———,'y y* together with y*=y +y . We use conven-
tions of Bjorken and Drell. The canonical energy-
momentum tensor renders the Hamiltonian

(2.10}

where h denotes the background energy and H is

This turns out to be the necessary condition to avoid the
problem of inverting the operator k+ =iB+=i2(B/Bx )

on the background fields themselves in the construction
of the Hamiltonian. On the other hand, it means that the
background fields are saddle points of the action. Includ-
ing their vacuum expectation values would correspond to
averaging over the saddle points. Thus, the nontrivial
structure of the saddle points would be shrunk into the
singular vacuum state

~
0) on the light front. We in-

clude the fields EEE and a to extract from the singular
~

0)
its infiuence on the quantum excitations described by the
fields P and A.

The equations of motion for the fields EtE and A result
from subtracting the background equations of motion
(2.7} from the full equations of motion for the fields f,
and A, . They are

d„F""+E}„K""=ig[A „,F""]+L "+g EtEy
"T'fT'+M",

(2.8)
(i8 m)g=g—AQ+g,

where

fdx Ei2xi[Tr(— F+~5-A F+~5 a f+~E3 A + 'FEE Fp +F@'fr+FEE K~+fEE~Kp + 'KP~K )—
+1iE+EE} f++Q~EE} C0++E0+EE} Q~] (2.11)

The procedure of expressing H by independent degrees of freedom is done essentially the same way as in Ref. 1(b). The
only complication stems from the additional terms in the equations of motion. So we only stress the role played by the
gauge condition A + =a+ =0 and by the subtraction of pure background terms, which allow inversion of i8+ by means
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of lik+ in the Fourier representation because k+ is never smaller than 5. This way we eliminate seagull terms in
which (id+) ' would act on background fields alone. To justify integrations by parts we have to impose vanishing
boundary conditions on the independent fields g+ and A at spatial light-front infinity. The result for H is

H= fdx d-'x'm, (2.12)

where

ff=g+o o g++co+o. erg++ o o P+ co++g (/+co)( A +4)(/+co) —gBiico
1 f 1 1

id+ + + id+ + id+

+ + + + +, +
+g' (/+co)A A(/+co)+f4 diti+PA iiig+itiiii A its+~A dg+gd A~

2iB+ 2i8+ 2i c3+ 218 2E8 2i d+

and

+g Tr+ ++TrB'A i O'A J+Trci'A c)'a +TrB'a c)'A +2g TriB (A ~+a~)[A +a, A +a ]
(i d+ )

a a& p p

2 2
—2g Trig ai [a,a&]— Tr[A +a, A ~+a~][A +a, A&+a&]+ Tr[a, a~][a,a&]

2
(2.13)

%=%'T', 4'=(f+ro)y+T'(ili+ro) roy+—T'ai [id+( —A '+a ), A +a, ]'+[id+a', a, )' .

The notation is

(2.14)

oui+, cr =id'a'+pm, A '= A', A = iB'A', A =0 .
1 1

C. The quantization

We expand fields at x+ =0 as

dk+d 2k'
g(x) = ~ (bc ii & e

—i"x c
I
x

I +— dctU U
e&ikx —c

I
x

I }3k+ ~ kk kk c kA, kA, c
~, c

dk+d'k'
A "(x)= ~ (ac &p Tce —rkx —cl x

I +act~ezceikx cl x
I)—

l6 3I + kA, kA,
k )5

(2.15)

(2.16)

= [amok, ai,

=16m k+5 (k —p)5k',

Ib, bI =Id, dI = . . =0
implies, in the limit 5,e~0 [x=(x,x ) ],

tg+(x), lii+(y) J + + ——A+5 (x—y),

[A'(x), cl+Ai(y}] + + i5' 5 (Jx 3y——) . —

(2.17)

(2.18}

The spinors uk& and vk& are defined as

ukk ——S(k, m)[0 ], vkk
——S(k, m)[0 ], ,

where

(2.19}

' 1/2

S(k,m}= [mA +(k++a k )A+] (2.20}
I +

where the boundary regulator

six
I
=~(lx-I Ix'I+ Ix'I)

is omitted in further calculations. Imposing commuta-
tion relations [k=(k+, k )]

t

is the spinor 4)(4 matrix representation of the boost from
the rest frame of a particle of mass m to the frame, where
it has momentum k. This is an example of boosts which
exactly solve the problem of boosting bound states in the
light-front form of dynamics. X& is a two-component spi-
nor denoting the spin projection along the z axis and C
denotes charge conjugation. Otherwise, we follow the
conventions of Ref. 1(b).

Inserting the expansions (2.16) into our Harniltonian
one obtains the desired expression for H, . It contains the
same terms as those given in Ref. 1(b}, which lead to the
light-front perturbation theory as described there, and
many additional terms involving the background fields,
which require separate treatment.

(x„—X„)a"(x)=0 . (2.21)

D. The vacuum background

The net influence of the vacuum background on quarks
and gluons must be Poincare and gauge invariant. In
sum rules it is achieved by using the Fock-Schwinger
gauge
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a"= ,'x (f~4~ri"f+-f'~ri fo")yO(x'),

co=coo+x&d c00+O(x ),
(2.22)

where g is the four-vector described in the Appendix.
The Fourier space counterparts are

It allows a useful expansion of the background fields in

polynomials of the distance x„—x„between the con-

veniently chosen origin x and the actual point of interest.
If the background fields are not rapidly varying on the
scale of hadronic size it should be sufficient for a reason-
ably good description of hadrons to include a few terms
in the polynomial. Indeed, already the lowest terms in

the polynomials lead to quark and gluon condensates
which correlate resonance properties " and baryon
masses. ' ' The Poincare and gauge-invariant results are
relatively easily obtained thanks to three facts. The first

one is that the choice of the point x is equivalent to the
choice of gauge and does not contribute to physical quan-
tities. The translation invariance broken by the choice of
x is restored by gauge invariance. The second fact is that
the polynomial coefficients are gauge-covariant quanti-
ties, a fact that almost automatically leads to the desired
gauge-invariant expressions. The third fact is that the
Fock-Schwinger gauge is Lorentz invariant. Altogether
the proper choice of gauge provides a convenient method
of calculation. On the other hand, the light-front Hamil-

tonian approach is based on the choice of gauge
A+=a+=0. This seems to ruin the possibility to con-
struct a practical dynamical formalism out of two such
different methods. Fortunately, the light-front gauge is

effectively not worse than the Fock-Schwinger gauge, as
shown in the Appendix. The appropriate expansion in

powers of x" around x =0 starts with

basis of the following observations.
Let us write the background fields in the form

a"(x)=fd k a"(k)e'"",

co(x)= fd k ai(k)e'"" (2.24)

and observe that we can write their x+ dependence like

a "(x)=e'"" 'a "(x+=0 x)e

co(x) —e' " co(x+ =0 x)e
(2.25)

if the formal conditions

[h, a "(k)]=k a "(k),

[h, ai(k)] =k co(k)
(2.26)

hold, where h is the part of the Hamiltonian which
counts the background fields. Thus we may consider

H, =H, (x+ =0)=H +h (2.27)

as the conserved Hamiltonian and must include h in a
construction of the evolution operator.

If we could introduce 5', a gap value of k+ almost
equal to the parameter 5, and if we limit the background
fields not by 5 but by the many times smaller difference
5 —5', then the Hamiltonian H would not be able to
create particles from the vacuum

~

0). Then the eigen-
value equation IIt

~
0) =0 implies ii

~
0)=0. However,

we cannot consistently require both that h
~

0)=0 and
that the Hamiltonian k counts energies of the back-
ground fields. The only possibility is to define the Hamil-
tonian by subtracting its vacuum eigenvalue A,o, which is
even expected to be infinite. Finally, we obtain

H+h —~o (2.28)

a "(x)=fd k ,'(fio" yrii'f~+—"~F]"f(~)i')

&& i 5 (k) + e'"",~ 8 4

Bki'

(2.23)

co(x)= fd k co [5 (k)]ydi'ai i 5 (k) ~ e'8
0 ak

and we introduce them into the Hamiltonian. If we put
x+ =0 in the above expansions, then the integral over k
can be done immediately and the x+ dependence ("time"
dependence) of the background fields is lost. It is proper-
ly reconstructed in further calculations in Sec. III on the

III. THE VACUUM POLARIZATION

The vacuum-polarization tensor we are considering is

II" (q)=i f d x e'~"{0
~
T+[J,"(x)J,"(0)]

~

0), (3.1)

where the quark current J,"is defined as

where H is given by Eqs. (2.12)—(2.15) with all fields tak-
en at x+=0 according to the expansions (2.16) and
(2.24), h is the background Hamiltonian satisfying the
commutation relations (2.26) and A,o is the number which
shifts the vacuum energy to zero. The Hamiltonian
h —Ao must be commuted through all background fields
involved in calculations to reconstruct their x+ depen-
dence.

Jt'(x) =:g,(x+,x)y"g, (x+ x):

iH, x+ /2— —iH, x+/2=e ':P,(x+ =0, )y"xg, (x+ =O, x):e

i {Hgh —ko)x+ /2 —i{H~h —Ao)x+/2=e ' [:g(x)y"g(x):~g(x)y"cu(x)~co(x)y"g(x)~co(x)y"co(x)] ~ e (3.2)

and the last normal ordering is understood as setting creators to the left of annihilators. The x+ ordering operator acts
as



38 LIGHT-FRONT QCD IN THE VACUUM BACKGROUND 3281

T+[J(x+)J(0)]=0(x+)J(x+)J(0)+8(—x+)J(0)J(x+) . (3.3)

We want to check if the light-front Hamiltonian calculation of IP (q) agrees with the results of Ref. 2(a). First we illus-
trate some basically simple light-front techniques to shorten the later discussion of more complicated calculations.

A. Basic calculation tools

After observing that for q+ »5 only the first x+ ordering survives we act with the leftmost exponential factor to the
left vacuum bra and integrate over x+ to obtain

IP"(q)= —f dx d x exp —q+x iq —z
2

X (0
~
[:g,(x)y"P, (x):]

~ [q (H+—h A—o)+if] '[:f,(0)y "f,(0):]
~
0) . (3.4)

Consequently, the Hamiltonian must be commuted here to the left vacuum bra to reconstruct the x+ dependence of the
background quark field.

It is convenient to extract the vacuum polarization Il(q ) from the tensor

IP'(q) = (q "q"—
q zg"")Il(q 2) (3.5)

by considering the component II++(q)=q+q+Il(q ). The terms which are independent of co and of the interaction
part HI in the Hamiltonian H =Ho+HI are

II&++= — x x exp —q+x —iq x 0: x y+ x: + 0 q —Ho (3.6)

We insert the expansion (2.16) for f(x)
~ +, use the property of the light-front splitting that bk

~

0) =dk
~

0)=0 for
k+ & 5, execute the commutation relations (2.17) and obtain

3 Js' —&dk+
) d,k, s

k"+m'
16~' k+

The generic substitution

k k'=xq'+ I'
q

+

results here in the integral (v=5/q+ )

l2 2
11++= + + d» d'i' +

x(1—x)

' —1

(q —k )+m
q+ —k+ (3.7)

(3.8)

(3.9)

Using rotational symmetry around third axis and changing to the polar coordinates in the transverse plane of I we can
substitute r 2=x (1—x)z which gives

' —1
2

II,(q )= f "dxx(l x)f "—dz z+ —q2' K 0 x(1—x) (3.10)

Another often used substitution is x =—,'(1+ u) leading here to

a —u
11,=,f' '

du(1 u )f dz z+'
o 1 —Q

(3.11)

where a = 1+4m /Q and Q = —q . For a = 1 we would obtain, neglecting a,

11,(Q,p )= lim [II, (Q ) —II", (p )]= lim
2 f dz

A~ oo &-~ 4m

1 1

z —q z+p2 2

2

ln
4m p

(3.12)

which illustrates the subtraction procedure at q = —p and agrees with Eq. (3.3) of Ref. 2(a). If the quark mass is to be
taken into account, we can calculate the imaginary part of II,(q ) recalling i e from Eq. (3.4). Neglecting ~ we get
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Imiit(s)= f dx x(1—x)f dz re z+ —s
2m p x(1—x}

3 1f dx x (1—x)g2' 0

m 1 &a (3—a) z

x (1—x) 4m. 2
(3.13)

where a =1—4m /s. This agrees with Eq. (4.2) of Ref. 2(a), where IIi(q ) is calculated from ImII)(s) via dispersion re-
lation.

All the above agreement rejects the equivalence of the light-front formulation of perturbation theory and the Feyn-
man rules. The interesting fact is that we have only one x+ ordered diagram from Fig. 1, while in other time-ordered
formulations (instant forms) we would have two time-ordered diagrams, equivalent to the one Feyninan-loop diagram.

S. The quark condensate

To check the coefficient of the matrix element & n
~

coco
~

n & in II(q ) we restrict ourselves to the zero-order term in
the coupling constant. Then the relevant terms are

I

11(++)———f dx d x exP —q+x iq —x & n
~
[co(x)y+g(x)+t/i(x)y+co(x)]

~ [q —(Ho+h —Ao)]

x [a(0)y'll(0)+y(0)y+~(0)]
~
n & .

Inserting the expansions from Eq. (2.16) and (2.24) we see that only two terms

&n
~
[co(x)y+tp( )(x)]

~ [q —(Ho+h —Ao)] 'p( )(0)y+co(0}
~
n&

(3.14)

+ &n
~ [1(, )(x)y'~(x)]

~ „, ,[q- —(H, +h —A,,)]-'m(0)y'lt„)(0)
~

n& (3.15}

are contributing. Commuting the denominator to the left, executing all commutation relations, using the light-front
splitting properties and after summing indices and integrating over momenta we obtain the expression

II&++) fd—'k — n

y+(g+ k —rrt )y++ 0 cop
(q+k) —m

coq+dra)oi + 5 (k) n }
. a
8k~

a o y+( —k'+m)y+
coo+d~coqi + 5 (k) y coo n

8k~ (q —k)z —m

(3.16)

illustrated by diagrams from Fig. 2. Noting that

&n) m,'.~,',
~

n&= ,'s",'n.,&-n
~
a-~,

~
n& (3.17)

we see that only the terms with covariant derivatives give

I

nonzero results. Thus we arrive at

11++ = —4t q+
&n~m +d~~ ~n&Bk, (q+k)z hertz

(3.18)

and using the fact that

~

co (')„d coo„( n & = .5' (y ),„m & n
~

cot)coo
~

n &

48'

(3.19}

4PO Cf

@JAN

q -k~- (q-k),„
FIG. 1. Zeroth-order perturbative part of the vacuum polar-

ization. The vertical line denotes the state of a quark and an
antiquark in the vacuum

~
0). The subscript "on" reminds us

that kg„——(k' +m )/&+.

[q -k -(q-k) ]
-1

[q +k -{q+k) ]

FIG. 2. Diagrammatic representation of the quark conden-
sate coefficient to the lowest order of perturbation theory.
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we finally obtain

++Ei&+-+) ———,, 2m (Q
i coon), i Q&

Bk (q+k) —m

or

2m
Ei&„„)—,(Q i g~, i Q& (3.21)

(3.20) in complete agreement with Ref. 2(b).

C. The gluon condensate

For massive quarks and in leading order of perturbation theory the gluon condensate coefficient follows from

EE&+ff+)= —fdx d x exp —q+x iq x— (Q
i [:g(x)y+l((x):] i + [q (H+h——Ao)] '[:f(0)y+l((0):]

i
Q&,

where only the terms

(3.22)

H"'+H'"= Jdx d'x-': gygy+g'yg yI I
x+=0

(3.23)

from the interaction Hamiltonian HI ——H —Ho contribute. An expansion up to terms bilinear in the background fields
gives

[q (H+h —A,]])]
q —H]] —(h —A,&])

H(1) 1 1
I H(1)+H(2)I Iq- —Ho —(h —Xo) q —Ho —(h —A,o)

(3.24)

The already familiar procedure generates six expressions illustrated by diagrams in Fig. 3. Such a small number of dia-
grams is a remarkable feature because in formulations other than the light-front form (if it would be possible) one would
expect 3X4.=72 time-ordered diagrams. According to the equalities observed in Fig. 3 the complete answer ]s [we
neglect 5 ((q+ (m iQ )]

+ 3

II~+ff+)= — d, d k 0 g a„' k2 a„', 0
16m' o p+k+ q —p —k

Tr(p+m)y '(y —k+k3+m)y '(p+g]+k'3+m)y+ky+

[(q —k+k, )' —m'][(q —k+k, +k, )'—m']

Tr(P+m)y '(/+1&!2+m)y+(i&'+]ti] —m)y '(k' —m)y+

[(q —k+k2) —m ]t[q —(p+k2),„+k]+k2] m}—

where

p"+m', , k"+m'
P , k+=&+-I+, ki=&i-ii, k-=

(3.25)

(3.26)

The vacuum expectation value of the background gluon fields is

( Q
i g a„' (k2 )a „' (k, ) i

Q & = —
—,', ( Q

i g f]']„J']']""
i
Q & A „„' 5 (k, )

1

Et follows from Eq. (2.23) and the vacuum property that

5 (k2)
~kP2

(3.27)

«ig'f~'fV"
i
Q&= —'5'"(g "g~—g'g")«ig'fl ff"

i
Q& (3.28)

The tensor A may be written as

(3.29)
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"2 Q/(p+kz) g(p~k, +k) „
q

) 7 7

]

~

Oi q+k +k -(p +k,„+k +k )

Oz (q+k)+kz-(p+(k+kz) +k))
~

(3', =,q +k, +k Qp+(k+ k,+kz) )

FIG. 3. All diagrams contributing to the gluon condensate
coefficient in the lowest order of perturbation theory. The nota-
tion examples are given. The sum of the diagrams is equal to
2(X+ Y), where X=A+B =C+D and Y=E =F.

, , & fl
I
g'f o, fo""

I
fl &

48m q
(3.30)

where

3(a + 1)(a —1) 1 ~a + 1
C = ln

4a 2~a v a —1

30 —2Q +3
4a'

(3.31)

and a =1—4m /q, in agreement with Eq. (4.5) of Ref.
2(b).

IV. CONCLUSION

The light-front Hamiltonian formulation of QCD con-
tains singularities which can be removed at a price of in-
troducing vacuum expectation values of different fields.
The most important vacuum expectation values are
quark and gluon condensates. The canonical light-front
calculation of their coefficients in the vacuum polariza-

where the light-front vectors g and g are described in the
Appendix.

The most ergonomic way to evaluate (3.27) is to use the
fact that only 13 from 256 elements of the tensor A are
different from zero. One sums up the corresponding con-
tributions to (3.25), calculating them separately. Some
algebra and generic substitutions described in Sec. III A
allow the elementary derivation of the answer

tion induced by the quark vector current reproduces for-
mulas used in the QCD sum rules. The sum rules show
that the quark and gluon condensates are universal num-
bers which explain many features of the hadronic spec-
trum. The light-front Hamiltonian, which contains terms
introducing condensates, may then have a chance to de-
scribe the structure of hadrons to a good approximation.
The following additional reasons support this hope.

The light-front scheme offers a relativistic formulation
of the few-body problem free from typical difficulties"'
such as boosting the bound states. The most transparent
description of the short-distance structure of hadrons is
achieved just using light-front dynamics. ' The new terms
in the Hamiltonian containing background fields act at
distances on the order of the hadronic size. The gluon
condensate provides forces looking like the harmonic os-
cillator force confining color. A choice of the origin of
the harmonic potential does not violate translation in-
variance because it is equivalent to a choice of gauge.
The harmonic constant of the potential is proportional to
the gluon condensate. There is a chance to explain in
QCD the existence of the bag pressure by the value of the
gluon condensate. There is no problem with relativistic
motion of bags. The quark condensate is a signal of
chiral-symmetry breaking. Both quarks and gluons are
expected to obtain effective masses. The notion of the
mass of a confined object such as a quark or a gluon can
be introduced by means of the effective parameter which
plays the role of a mass in the eigenvalue equation of the
Hamiltonian.

The light-front Hamiltonian suggests the following pic-
ture of the nucleon:

qjq2q31&&+6,", qiq~q3g'I &&

+/In)qt~qtzq3tq tqt
~
0) +(less important terms) .

(4.1)

The light-front Fock wave functions describe pointlike
quarks and gluons by effective parameters resulting from
the interaction of these particles with the vacuum

~

0).
The truncation of "less important terms" may be a good
approximation if at small virtualities the effective constit-
uent masses are large enough and the interactions are
such that the additional components would have to raise
the eigenvalue of the Hamiltonian. The first wave func-
tion g3" would provide a direct connection between no-
tions of constituent and current quarks. A phenomeno-
logical model based on this idea gives good agreement
with static and deep-inelastic nucleon data. The wave
function g3 would explain the origin of counting rules
in exclusive processes or the half of the nucleon momen-
tum carried by gluons in the deep-inelastic structure
function F2. The third wave function would explain the
asymptotic behavior of the first one and the presence of
a meson cloud around the nucleon core. Perturbative
effects would be superposed on this leading approxima-
tion. The eigenvalue problem for the new Hamiltonian
deserves investigation.

Further tests of the Hamiltonian have to be carried
out. A careful treatment of the parameter 5 splitting
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fields is not completed yet. Consequently, the mixing of
gluons and massless quarks still awaits explanation. The
delicate point of renormalization in the presence of 5 is

not clear. Physical results must be independent of the ac-
tual value of the parameter 5. This may lead to a set of
5-invariance conditions. The flow of probability through
the 5 splitting might lead to the low-energy theorems.
Although it is difficult to draw firm conclusions at this

stage, we hope that the approach we have outlined will

lead the way to a description of hadronic structure.
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APPENDIX

a"=h ' A"h ——h 'c}"h, co=h (AS)

where A" and f are given by (A7} and the gauge trans-
formation h is a solution to the condition a+ =0:

a+h = —.A+h
1

with the constraint condition (A6).
We can represent

(A9)

lP=cpp+x~d cop+ ~x~xpd d cop+

i.e., gauge-invariant expressions containing gauge-
covariant coefficients in the a+ =0 gauge. The expansion
we are looking for can be found from the inverse relation
to (A4),

Let us denote fields as

A, = 2 +a, P, =/+co, iD4=ic3" gA", —

(A 1)

h =e'"

and find, order by order in powers of x",
(A 10)

id"=ic}& ga", F—&"=ig [D",D "], f"'=ig [d",d "] A, =k +A, x"+ A, ~"x"+ (Al 1)

and introduce A and f, the background fields in the
Fock-Schwinger gauge x„A"=0: To construct the solution we need two vectors g and g

equal to

iD~=ic}" gA", —F""=ig[D",D'] .

The fields A and f can be expanded around x =0 as

(A2)
ri=(g =2, ri+ =O, ri =0),
ri=(71 =O, ri+= 1,ri =0) .

(A12)

A"= x F~~"+ x x D F~"1 1

2XO! ~ ' 3X1!
The only difficulty is to find solutions of the equations
such as

+ x x&x 0 D~F~pj"+
4X2t

(A3)

~+a[ ' a al ' ' ' a=u (A13)

f=fp+x D fp+ ,'x x&D D~gp—+
al . . an 0 1 nwhere u " and A,

' ' " are symmetric tensors.
This is done by writing

Suppose the background fields a and co are related to the
background fields A and cP by the gauge transformation
h:

an —p
a&'' an='g u (A14)

A"=ha "h '+ —c}"hh ', /=he .
g

Then the covariant derivatives are connected by

(A4)

symmetrizing in indices p and a, , i = 1, . . . , n, subtract-
ing unwanted walls, cubes, . . . , and adding lost edges of

aoa
the desired tensor A,

We have calculated the resulting expansion up to third
order in x". It reads
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T

a"=—'x ftot'+ —V" +—,'x x d f$"+ —Vt'" +—,'x xpx d dpfto" —4i Vp, f("+—
A, " + 32 +O(x },

(A15)

where

k P=ri uP+riPu, u =LriJ'g
4

X P'=g uP'+t}Pu" +rt'u P (r—i rtPu»+ri g'u»+riPri'u" )ri„,

uaP g (dcfPQ+dPf/i(I )~
18 0 p (A16)

X»'=g u»'+g~u &'+g&u& ~+g'u ~&

(&—.~Pu»'+q ~ ru»'+q ~'u»r+~P~ ru"'+~Pg'u»+q &q u&')g„

+(~ ~P~ru~"'+~ ~P~'u~"r+q qr~'u~"P+qPqrq'u~ )~„~„,

u p Y — g '(d dPf8 Y+d1'd 'f»+dPd 1'f0 +dpd fPr +d rdPf M+d d Yf»)ri'
192 0 0 0 0 0 0 p,

'

Each succeeding-order correction does not modify the previous result. The field tensor f""and the quark field look like

f""=fg" +x d'fto" + ,'x xp(d'—dpfto" —2i[l, 'P, fto'])+O(x3),

co=coo+x d coo+ ,'x xp(d—'dPcoo 2iAPco—o)+ .,'x xpx—(dd d coo 6ikd—coo . 6iA, —coo)

+ ,'x xpx —x&(d dpdrd co 12iIt.»d—rd co 24il»—rd co 24ilp—r co , 12APA—"co, }+,O(x ) .

(A17)

Similar expansions exist in axial-vector gauges n„A&=0 when n =+1. It remains to substitute g=n and g=n,
roughly speaking. The choice of the origin of the expansion is equivalent to a choice of gauge because it is so in the
Fock-Schwinger gauge and we obtain the a+ =0 expansion by a gauge transform from the Fock-Schwinger gauge. The
gauge condition a+ =0 is invariant under three independent Lorentz boosts under which the whole light-front scheme
is invariant.

The expansion (A16) is not, in fact, complicated if we can restrict it to the lowest terms.
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