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In order to broaden the existing knowledge about the phase diagram of QCD, we use a Langevin
algorithm to study finite-temperature QCD on an 8'X4 lattice with variable flavor number, quark
mass, and gauge coupling. We concentrate on the search for first-order transitions for small flavor

number and light-quark masses. We find general agreement with the predictions of effective models

of the finite-temperature deconfinement and chiral-symmetry-restoration phase-transition mecha-
nisms. In particular, we find that the deconfinement transition extends to lower quark masses as nf,
the number of quark flavors, decreases. Nonperturbative fermionic effects are found to be
significant for very light quarks even for nf ——0. 1.

I. INTRODUCTION

The phase diagram of quantum chromodyn amies
(QCD) at finite temperature has been a subject of intense
investigations ever since the early days of numerical
simulations of lattice gauge theories. Because of the tech-
nical difficulties associated with the proper inclusion of
fermions, the first results were obtained in the quenched
approximation. These simulations reported indications
of discontinuous jumps in various lattice measurables,
most notably in the order parameters which characterize
confinement and chiral-symmetry breaking. ' This was in-
terpreted as evidence for a first-order deconfining phase
transition, coincident with a first-order chiral-restoration
transition.

Subsequently, many analytical and numerical efforts
have been directed at extending our understanding of the
QCD phase diagram to the full world of interacting
dynamical quarks and gluons. Formally, the quenched
approximation can be viewed as the limit of QCD in
which the quark mass m ~~ or the number of dynami-
cally active quark flavors nf~0. Making m finite was
the first obvious, computationally not too demanding,
step to learn more about the phase diagram. As expect-
ed, one finds a line of first-order deconfinement phase
transitions. The issue of the existence and location of an
end point for this line is far from settled, ' not to men-
tion the problem of determining the nature of this end
point.

Meanwhile, attention shifted to very low values of the
quark mass, where spontaneous breaking of chiral sym-
metry at low temperatures and its restoration at finite
temperature should be the dominant physics. The results
of Gupta et al. indicated the existence of a first-order
phase transition in four-flavor QCD with a quark mass of

ma=0. 025 in lattice units. Although both the chiral and
the deconfinement order parameters showed indications
of metastability, as they had in the quenched approxima-
tion, these authors labeled this a chiral-symmetry-
restoration transition due to the proximity of the chiral
limit m~0. In fact, this result agrees with analytical
and numerical studies of a three-dimensional linear o.

model which has been proposed as an effective model of
finite-temperature chiral-symmetry restoration. As sum-
marized in Table I below, the effective model predicts
first-order chiral transitions in massless QCD for n& & 3.
The prediction for nf ——2 depends on whether the effect
of the U z (1) anomaly is suppressed at finite temperature,
while no chiral transition is expected for nf l. ——

This paper summarizes the effort which was undertak-
en by the authors in order to extend the investigations of
Ref. 7 to lower flavor number and quark mass, on larger
lattices and with better statistics. The main aim was to
test the predictions of the effective cr-model analysis, with
regard to the existence of first-order phase transitions.
We began by verifying the results of Ref. 7 in the four-
flavor case, using our own algorithm and methods of data
analysis. We proceeded to study the cases n& ——3 (Ref. 9)
and nf 2(Ref.——10), as well as the realistic case of a light
isodoublet and a heavier strange quark, which interpo-
lates between nI ——2 and 3 (Ref. 11). The main results of
these works are included here for completeness, while the
emphasis of the presentation is on the results of our new
simulations for nf ——1 and 0.1, performed for quark
masses between 0.01 and 0.05 (in lattice units) on 8 )&4
lattices. We interpret this body of results in the light of
their relevance to our understanding of the physics of the
finite-temperature transition in real-world QCD. Their
relationship to the earlier quenched results is discussed.
In addition, we address ourselves to more technical ques-
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tions such as the utility of approximate algorithms in

searching for first-order transitions at low quark masses
or the effect of increasing the accuracy of the fermion
matrix inversion. Since we have used staggered fermions
in our simulations, the comparison of our results to the
predictions from the effective model of chiral-symmetry
restoration (Ref. 8) can shed light on the validity of the
notion of flavors in this fermion scheme.

This paper is organized as follows. In the next section
we briefly describe the formalism we used, along with
relevant technical remarks. Section III contains a pre-
sentation of our results and some conclusions are offered
in Sec. IV.

II. FORMALISM

The thermodynamics of QCD can be obtained from the
Euclidean partition function Z, given by

Z= dU" gx Xx exp —SG —SF, 1
Bcxp x

where BC denotes the following boundary conditions
along the temporal axis:

U"„0——U"„~ Vx,p,

Z = U„"e Det D+ma D+ma
BCxX,P

(6)

This prescription can be justified' in the context of
perturbation theory and has been widely used for numeri-
cal simulations. We are aware of its possible inadequa-
cies, especially in the context of anomalies. Still, it ap-
pears to be the best available lattice fermion scheme for
studying the chiral-symmetry-restoration transition with
arbitrary flavor number. Should our results agree with
the predictions from the effective 0. model, this prescrip-
tion would become more credible in a nonperturbative
context.

The lattice measurables which we have studied are
defined as expectation values with respect to the Z of Eq.
(6) of the following operators: the deconfinement order
parameter (Polyakov loop or Wilson line)

explicit integration over X and X in Eq. (4), to the power
nf/4 in order to simulate nf ——4, 3, 2, 1, and 0.1 fiavors,
respectively:

Z= f gdU„"e Detf (D+ma)
BC x,p

or, in terms of the determinant of a positive-definite ma-
trix:

X(x,O) = —X(x,N&) Vx,

X(x,O) = X(x,N&) —Vx .

(2) Np

L = g tr P U„,/N N&,
X I'=1

Sa ——P g (1—
—,'RetrU„"U„"„U„"~U„"),

X,P(V

where p relates to the SU(3) coupling as p=6/g, and

SF=—,
' g( —1) ' ' " '[X(x)U„"X(x+P)

X,P,

(3)

All variables satisfy periodic boundary conditions in the
spatial directions. U„"ESU(3)denotes a gauge variable
associated with a link emerging from lattice site x into
the positive p direction. X(x) and X(x) are one-
component spinors associated with the lattice site x.
These sites and links form a four-dimensional N )&N&
lattice with spacing a, whose shortest dimension N&
determines the temperature of the system by T = I /N&a

The actions SG and S+ are given by

the order parameter of chiral symmetry

0+=nfTr(D+ma) 'l4N N&,

and the plaquette or I X 1 Wilson loop

(8)

X,P(V

In Eq. (7), i runs over the sites in the temperature direc-
tion. Tr in Eqs. (7) and (9) denotes trace over the SU(3)-
color index while Tr in Eq. (8) denotes trace over both
color and lattice sites.

Our simulations were done with a shifted first-order
Langevin algorithm. This relates the gauge variables at
simulation time ~„+&

to those at time ~„bythe updating
equation

+ma QX(x)X(x),
X

—X(x)U" &X(x —p)] U„(x,r„+,)= U„(x,r„)exp( if, T, ), —
(4) where

(10)

where ma is the bare current-quark mass in lattice units.
In the following we will write SF=X(D +ma)X=XMX as
shorthand for Eq. (4).

It is well known' that, for ma=0, 5+ has a continuous
U(1)XU(l) chiral symmetry for all values of the lattice
spacing a. As a ~0, it has an enlarged U(4) X U(4) sym-
metry, suggesting that it represents four continuum
flavors. One can check numerically in the scaling region
whether this larger chiral symmetry of the continuum
theory is indeed restored at finite p. First results in this
direction' do show the expected trend. We will there-
fore raise the fermion determinant, which results from an

with the notation

and

+n +1 +n (12)

A, [U]=M '[U]B,(M M)M '[U] . (13)

The T' are the generators of SU(3) in the fundamental
representation: they satisfy trT, T&

——fi,bl2. g' and r4
are random Gaussian noise:
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(14)

The derivatives 0, satisfy the commutation relations

[a., a, ]=if.„a,.
In the limit ~„~~, the first-order Langevin algorithm

defined by Eqs. (10)—(14) yields link variables [ U„"j
which are distributed according to an effective action S,ff
which differs from SQcD at nonzero e. For small e,

S,q ——SQ~D+ eS, +e S2+ . - .2 (15)

As explained in Refs. 15 and 16, one can remove part of
the O(e) terms in Eq. (15) by shifting the "couplings"
and the field variables as below:

p~p(1+eC„/12 eC—F ),
nf ~nf(1+eCq /12),

m ~m /(1 —eCF/4),

(16)

(18)

and

. E'U„"~U„"exp —i—(B,SQCD )T, (19)

[C„=Nand CF =(gati 1)/2N re—present the Casimir in-
variants in the adjoint and fundamental representations
of SU(E)]. Alternatively, these terms in the systematic
error can be removed by using a second-order (Runge-
Kutta) discretization scheme. ' '

In the ferrnion simulation algorithm presented above,
there are further systematic error terms of O(e) which
cannot be removed by either of these procedures and
which are not irrelevant in the continuum limit. ' These
so-called nonintegrable terms cause the universality class
of S,~ to be different from that of SQcD In Ref. 16 we
have compared the algorithm described above to a ver-
sion of the Runge-Kutta algorithm in which the nonin-
tegrable terms had been explicitly removed. We found
that differences became noticeable only for rather large
values of e. By comparing the results for lattice measur-
ables obtained with the shifted first-order algorithm to
those obtained by the exact algorithm of Ref. 17, we con-
cluded' that a=0.01 was a reasonable choice on a 4 lat-
tice with four flavors of mass ma=0. 1 and p=4.8. The
nonintegrable terms are quite negligible for this choice.
However, the effective step size appeared to increase as
the quark mass was decreased, so that systematic errors
and even nonintegrable terms might become a problem
when simulating very light quarks with @=0.01. By com-
paring our results on the phase transition with nf ——4 and
ma=0. 025 with those obtained by an exact algorithm,
we have found that the conclusions with respect to the
strong first-order nature of this transition agree, while
our Langevin algorithm gives a value for the critical P
which is higher by about 1%.

Encouraged by this result, we shall assume in the fol-
lowing that our simulations with a=0.01 are in fact in
the same universality class as QCD for all studied param-
eter values. We shall then use comparisons with predic-
tions from the effective models and with simulations by

other groups to judge the quality of this assumption.
Also, to minimize the impact of finite-e errors on our
ability to judge the order of phase transitions, we shall
avoid basing such judgments on averages of lattice
measu rabies.

In addition to the Langevin step size, our algorithm
has one more parameter which is not governed by physics
and which needs to be tuned optically. This parameter, r,
is a measure of the accuracy to which M ' =(D +ma)
is computed for use in Eq. (13). We have used the
conjugate-gradient method to compute the inverse and
thus r provided the stopping condition for the conjugate-
gradient iterations. If X denotes M 'g in Eq. (13), then
we define

r=/MX —g/ (20)

Figure 1 shows a sample result of our attempts to test
the sensitivity of our algorithm to the value of r. It
displays the evolution of ReL from a "cold" start (all
U„"=1)and a "hot" start (all link variables random) on a
4 lattice at p= 5.47 as a function of Langevin iterations
for r=0.2 and 0.0002. Here nf ——1 and ma=0. 0125,
which is one of the smallest quark mass values we used.
One sees that, apart from statistical fluctuations, both
values of r yield essentially identical results. With both
residues, one concludes that the hot and cold starts con-
verge after about 3000 iterations. This suggests that for
ma & 0.0125 a value of r =0.2 suffices for determining the
order of the phase transition. This observation has great
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FIG. 1. Effect of a change in the conjugate-gradient inversion
residue r [see Eq. (20)] upon the time history of runs from or-
dered and disordered starts. These sample runs are for nf ——1,
ma=00125, P=5.47 on a 4 lattice. Triangles represent the
arithmetic mean over 100 iterations of the real part of the
Polyakov loop, obtained from an ordered {"cold") start using
r=0.2. Squares represent the disordered ("hot") start with
r=0.2. Circles and crosses depict cold and hot starts, respec-
tively, with r=0.0002.
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practical importance, since achieving r=0.0002 can re-

quire an order of magnitude more computer time than
r=0.2. In the simulations discussed below, we use r=0.2
and 0.1.

To relate these values of r to the equivalent parameters
used by other authors, let us note that r=0.2 corresponds
to (r IV)' -4X10 on a lattice of volume V=8 )&4.
This is of the order of the inversion stopping parameter
values used in Refs. 18-20. When we measure the mean
convergence defined in Refs. 7 and 21 on the
configurations which give rise to Fig. 1, we typically find
C-10 when r=0.2 has been reached, and C-10
when r=0.0002 has been achieved.

Figure 1 also demonstrates the strategy we use to in-
vestigate the order of phase transitions. We employed
the 4 lattice to explore a wide range of P. At each cou-
pling, we made runs from hot and cold starts, as in Fig. 1.
Typically after 2000—3000 Langevin iterations, the two
runs carne together and then evolved similarly irrespec-
tive of the start conditions. A lack of convergence over
longer runs was interpreted as a possible metastability
signal, characteristic of a first-order phase transition. In
the narrowed range of P where such behavior occurred,
we then reduced the finite-volume effects by increasing
the lattice to 8 X4. Because of lesser fluctuations on the
larger lattice, cleaner metastability signals should be seen
if a first-order transition is indeed to occur in the thermo-
dynamic limit.

III. RESULTS

TABLE I. Summary of the predictions of Ref. 8 for the order
of the chiral-symmetry-restoration phase transition, based on a
three-dimensional linear o model.

nI)3
ng =2

nI ——1

First order
First order if weak
U&(1) anomaly for
T~ T

No chiral transition

Second order
with O(4) ex-
ponents if
U&(1) anomaly
T independent

The comparison of the quantitative estimates of the
deconfinement temperature in pure SU(3} theory '2 to
the preliminary estimates of the transition temperature in
QCD with light-quark masses suggests that TsU(3)
& T~D. This is sketched in Figs. 2(a) and 2(b), where
the dashed lines indicate the critical surface spanned by
the variables (nI, m} Figure. 2(c) schematically shows
what we may suspect about the nature of this surface. As
summarized in Table I, the effective theory of the chiral-
restoration transition in massless QCD suggests an nI-
dependent pattern of transitions on the m =0 axis of this
diagram. On the other hand, the effective theory of the
deconfinement transition in pure SU(3) theory predicts a
strong first-order phase transition. This is confirmed by
numerical simulations. ' Since the dynamics in the
quenched approximation (along the axes ma =Do and

nI 0) is iden——tical to that of SU(3), it seems natural to ex-
plain the first-order phase transition suggested by simula-

tions done in the quenched approximation' as identical to
this deconfinement transition. However, the chiral order
parameter was also seen to suffer a jump in the quenched
simulations. The question arises whether this
phenomenon is connected to the chiral-restoration transi-
tion. Since Ref. 8 predicts the absence of a first-order
chiral transition for nI &2, an afFirmative answer would
mean that either Ref. 8 is wrong, or the n&~0 limit of
full QCD cannot be taken continuously.

In the effective models of the chiral and deconfinement
phase transitions, the fates of these transitions as one
moves to finite nonzero masses are predicted on the basis
of analogies to spin models in a magnetic field. Finite
quark masses act like a magnetic field in the three-
dimensional Z3 effective spin theory of deconfinement;
the field increases as the mass becomes lighter. Similar-
ly, a nonzero quark mass can be represented as a magnet-
ic field term in the effective theory of chiral-symmetry
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FIG. 2. Sketches of the three-dimensional phase diagram of
QCD in the variables (T, m, nI ), which one expects before un-

dertaking a detailed numerical study of the full theory. In (a)
and (b), squares denote the first-order phase transitions predict-
ed by effective model studies for pure SU(3) (Refs. 2 and 3) and
for massless QCD (Ref. 8). The assumption Tsu(3)) TQcn is
based on Refs. 18 and 19. The dashed lines indicate the surface
spanned by flavor number and quark mass, which is sketched in

(c). Here, the first-order deconfinement transition of pure SU(3)
theory and the predicted chiral-symmetry-restoration transition
of massless QCD are indicated by solid squares. Thick lines

along the axes at m = Oo and nI ——0 denote the first-order transi-
tions detected in the quenched approximation to QCD (see Refs.
1 and 3). The thick line from m =O,n&

——3 to m =0, nI ——16 in-

dicates the first-order transitions predicted by Ref. 8; the open
square at m=O, nI ——2 indicates the ambiguity of the effective
model prediction in that case (see Table I). Solid lines stretch-
ing into the phase diagram represent the expectation that the
first-order chiral and deconfinement transitions should persist

for nonzero and finite masses, respectively, ending in points of
second-order transitions. The latter are depicted by open circles
and labeled m, h and mD, respectively.
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restoration; the magnitude of this field grows as the mass
becomes heavier. The analogy suggests that first-order
transitions should weaken gradually while extending into
the diagram, eventually terminating in second-order end
points. Second-order transitions are not expected to con-
tinue into the interior of the phase diagram. Assuming
that the quenched first-order transition extends along the
axis n& ——0, it is not known how it continues into the dia-
gram for finite flavor number at various masses. All this
raises the possibility that there could be regions in the
surface determined by m and n& where the low-

temperature hadron phase @nd the high-temperature
phase are not separated by first-order transitions.

The points raised by such considerations can, at the
present time, only be answered by numerical simulations.
We have concentrated on the low-mass region for
n&

——0.1,1,2,3.

ng
——0.1

Our chief motivation for studying this case has been a
desire to understand the nI ~0 limit of QCD, in terms of
the relationship between the quenched approximation
and massless QCD. Clearly, the place to look for an
answer is the limit of very small but nonzero ni and m.
In our formalism, this is easily feasible, although an ex-
trapolation of the Aavor interpretation discussed in Sec.
II is heavily involved. As we noted above, no effective
remodel predictions are available for this case, so our re-
sults will have to be judged in conjunctiop with the re-
sults we shall obtain for larger values of nI There. is also
the issue whether the limit of small n& can be treated per-
turbatively.

We searched for first-order phase transitions at three
values of the quark mass; ma =0.05, 0.025, and 0.01. On
the 4 lattice we found indications of possible metastabili-
ties over the following p intervals: 5.60&p&5.68 for
ma=005, 5.56&P&5.60 for ma=0025, and
5.54&P&5.58 for ma=0. 01. Figures 3 and 4 show our
results on the 8 X4 lattice for ma=0. 05,p=5.64 and
ma=0. 025,p=5.58, respectively. A clear two-state sig-
nal is seen in both cases. Although ReL is plotted here,
clear metastability signals are also seen in the other quan-
tities defined in Sec. II, notably in the chiral order pararp-
eter. The quality of the two-state signal is comparable to
those obtained in the quenched approximation.

As Fig. 5 illustrates, however, no such rnetastability
could be found for ma=0. 01. Typically after 3000-4000
iterations, the hot and the cold start came together at
each of the p that we explored in the above-mentioned
range. Thus, there seem to be first-order phase transi-
tions for ma=0. 05 and 0.025 but not for ma=0. 01.

A plausible way to understand these results is the fol-
lowing: a line of first-order phase transitions runs from

(nI ——0.1,m = Oc ) down till (nI ——0.1,mD ), where the
second-order end point mD, predicted by the eff'ective

spin model of the pure-glue deconfinement transition, lies
somewhere between ma=0. 01 and 0.025 (see Fig. 6).
Since this line is not connected to the axis m=0, it does
not seem appropriate to label it a line of chiral transi-
tions. It seems more natural to ascribe the dynamics of

l.5

0.9—

0.5—

O. I — ~ ~v'. .r4 v ~'

I I I I I I

2000 4000 6000-O. l

I TERAT IQNS

FIG. 3. Time histories from ordered and disordered starts on
an 8 X4 lattice for n~ ——O. l, ma=0. 05, P=5.64. Triangles
represent the arithmetic mean of ReL over 100 iterations, for
the run which proceeded frorq an ordered ("cold" ) start.
Squares represent the corresponding run from a disordered
("hot") start.

I.5

4
0.6 —+

kk

0.5—

a ~ ~ — ~ ~ g
w ~ ~~~1 ~ g ~g 1

AI

0 2000 4000 6000
ITERATIONS

FIG. 4. Same as Fig. 3, but for nI ——0.1, ma =0.025, P= 5.58.

these transitions to the deconfinement phenomenon. The
jump in (%%') would thus appear to be induced by the
gauge field dynamics. The latter interpretation can also
help to understand why jumps occur in the chiral con-
densate computed with various flavors of static light
quarks in a pure SU(3) (dynamical quark mass rn = 0c )

background.
Of course, a first-order chiral transition might appear

for still lower values of the quark mass. Also, the first-



38 MORE ON THE QCD PHASE DIAGRAM AT FINITE TEMPERATURES 3271

order line might extend all the way down to m=0 for
some smaller value nf &0.1. %hile the first possibility
appears unlikely, mainly in view of our results for nf ——1

(see below), the analogy with spin models in a magnetic
field would favor the latter conjecture. Indeed, the
strength of the fermionic symmetry-breaking field in-
creases proportional to nf and inversely proportional to
some power of m. This statement is, of course, strictly
valid only for large quark masses. Nevertheless, it sug-
gests that the end point mD should decrease towards
lighter and lighter masses as nf gets smaller. It thus
seems possible that in the "completely quenched" case
nf ——0, perhaps even for some very small but finite nf, the
first-order line would extend all the way between m=0
and m = ae. Simulations at still lower values of nf and

hg
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2

I.5 '

(a)

a i

0.0 I 0.025 0.05 0. I

I
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-a a- ~ ~
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~

0.I — ~ ~ ~W

—O. l
I
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I
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FIG. 5. (a) Same as Fig. 4, but for nf ——0.1, ma=0. 01,
P= 5.55. (b) Same as (a), but for P= 5.57.

FIG. 6. Status of our present knowledge about the critical
surface spanned by quark mass and number of flavors. This is
the same surface as sketched in Fig. 2(c), but it now contains the
information obtained by numerical simulations of the full

theory. Solid squares denote undisputed first-order transitions
found in the present work and/or by other authors. These are
linked up with the corresponding limit (m = 00 for
deconfinement and m=0 for chiral restoration) whenever possi-
ble, forming the first-order lines suggested by such simulation
results. Open squares denote disputed first-order transitions
(claimed by some groups but not seen by others). Solid circles
show cases in which the present authors have not seen metasta-
bility signals and in which there are no contrary claims.

ma would be required to solve such questions conclusive-
ly.

It is interesting that the chiral values we obtained for p
are clearly distinct from the pure SU(3) value P, =5.675
as measured on an 8 X4 lattice. Neglecting the depen-
dence on the quark mass and concentrating on the effect
of changing the flavor number from zero to nf ——0.1, we
can estimate the expected shift in the chiral p. Assume (i)
that this small change in nf means essentially no physical
change from the quenched approximation, so that the
transition temperature in MeV remains the same, and (ii)
that the QCD A parameters are equal in both cases:
A(nf 0 1)=A(n——f . 0) De——noti.ng p=p(nf ——0), the shift
AP=P P(nf —0 1) is g——ive.n by

0.0061P+0.000 17 ln2. 39P—0.00212
1 —0.8427/P

(21)

where we have used the usual two-loop renormalization-
group formula. Substituting P=5.675, we get bP=0.039.
This is to be compared with the observed values
EP=0.05 for ma=0. 05 and bP=0. 11 for ma=0. 025.
The substantial discrepancy with the last value might
point to a large ratio of A parameters, which one would
not expect in perturbation theory. On the other hand,
the quark mass dependence of the critical p does go in
the right direction. Thus, the point (nf ——O. l, ma=0.05)
seems to be very close to the pure SU(3) limit, with the
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fermionic sector almost inactive. By contrast, the fer-
mions have very substantial effects when the mass
reaches ma=0. 025; as we have seen, the fermion dynam-
ics completely dominates for ma=0.01. The transition
from the perturbative, glue-dominated regime to the
essentially nonperturbative quark-dominated regime is
surprisingly abrupt, however. It may be that a smoother
transition to the quenched limit would be seen if the criti-
cal values of p could be determined more accurately in
future simulations.

The effective model of Ref. 8 does not predict any
chiral-restoration transition for n& ——1 due to the pres-
ence of the U„(1}anomaly (even if its magnitude is small
due to finite-temperature instanton suppression}. We
have, therefore, investigated three low values of the
quark mass: ma =0.05, 0.025, and 0.0125. The ranges of
possible metastability on the 4 lattice were
5.46 &P & 5.50, 5.44 & P & 5.52, and 5.42 &P & 5.48, re-
spectively.

As we see in Fig. 7, there is a clear metastability signal
on the 8 )&4 lattice for ma=0. 05,p=5.48. On the other
hand, we did not find any such two-state signals at any
point in the transition ranges for the two lower masses
(typical examples are shown in Figs. 8 and 9). These re-
sults suggest that there is a first-order transition for
ma =0.05 but not for ma =0.025 and 0.0125.

It is interesting, at this point, to compare our results
with those obtained by Fukugita and Ukawa, ' the only
other group to have investigated the case n&

——1. These
authors studied the order of the transition for ma=0.05,
0.1, 0.2, and 0.4. They used a second-order Langevin al-
gorithm to remove the integrable 0(e) terms in Eq. (15)
and ran with a step size of @=0.02. They find first-order
transitions for all above-mentioned values of the quark
mass. They claim that the strength of the transition in-
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creases with the mass. Their critical p for ma=0. 05,
quoted' as 5.475+0.005, agrees well with our result for
this mass. This is reassuring, since the systematic errors
should be similar (see Sec. II).

A natural interpretation of all these results is, again, as
sketched in Fig. 6: a first-order line extends from
(nI ——l, m = ao ) down till (ni l——,m =mD) where
0.05 & mDa & 0.025. The transitions along this line
should be caused by gauge field dynamics (the
deconfinement phenomenon). The absence of first-order
transitions below mn, together with the prediction of the
effective model, points towards the conclusion that the
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dynamical mechanism of chiral-symmetry restoration
does not operate for this value of nf. These conclusions
are qualitatively the same as in the case nf ——0.1; the
main difference is that the end point mD is larger for

nf ——1. This is, of course, what one would expect in the
spin system analogy for the deconfinement transition.

Although the above interpretations are very appealing
since they explain and tie together all known quenched
and unquenched numerical results with the predictions of
the effective models of Refs. 2 and 8, it is clear that they
are subject to the usual caveats of numerical lattice re-
sults. Thus, a chiral first-order transition might be found

by going to still lower masses, or the whole picture might

be altered as one approaches the continuum limit by us-

ing larger lattices. Since one does not know how to per-
form exact simulations with nf ——1 or 0.1, there is no way
of making sure that the systematic errors do not take us
out of the universality class of QCD. Finally, the trick
we use in order to simulate arbitrary nf may not be legiti-
mate, especially for nf—0

This case is physically much more interesting than the
previous two, especially if the transition temperature in
full QCD is comparable to or less than the current mass
of the strange quark (as seems to be indicated by present
estimates }. In that case only the u and d quarks will
contribute significantly to the dynamics, and simulations
with nf =2 species of mass-degenerate light quarks will
not be far from the physical world. On the theoretical
side too, the case nf ——2 is of special interest. As seen in
Table I, the prediction of the effective model of the chiral
transition depends on whether the U„(1)anomaly is
sufficiently suppressed at the critical temperature to allow
the transition to be first order. Turning the argument
around, if we do find a first-order chiral transition for
nf ——2 and light quark masses, this would imply that
U „(1)symmetry is in fact approximately restored in the
high-temperature phase of QCD. Such restoration can
lead to dramatic effects in the real world: for instance,
the rl'-m mass difference should then be much smaller at
high temperature than at zero temperature. In view of
the prescription for simulating flavor numbers which are
not multiples of 4 by means of staggered fermions (see
Sec. II), nf ——2 is also of great importance. In particular,
it is not clear whether the effects of the anomaly can be
adequately reproduced by this procedure. Thus, we
might in principle find the chiral transition to be first-
order on small lattices (with the transition p at intermedi-
ate or strong coupling} only to see it becoine second order
on larger lattices (with the transition deep in the scaling
region). This would happen if the strength of the anoma-
ly were underestimated at intermediate coupling, with its
true value only restored deep in the continuum limit.

We ran our simulations for ma=0. 025 and 0.1 on
8 )& 4 and 4 lattices, and for mass ma =0.2 on a 4 lattice
only. Preliminary runs on the 4 lattice ruled out any
metastabilities in the case m=0.2; the ranges of possible
metastability were 5.37 &p& 5.38 for ma=0. 1 and
5.3&p&5.4 for ma=0. 025. On the 8 X4 lattice, we
found clear metastability signals for p= 5.33 at
ma=0. 025 but none for ma=0. 1 (all these results are il-
lustrated in Ref. 10).

The case nf ——2 has also been studied by other groups.
Cxottlieb et al. ' simulated ma =0.025,0.05,0.1. Fukugita
and Ukawa' used ma=0. 05, 0.1, 0.2, 0.4, and 1.0. Ko-
gut and Sinclair looked at the case ma=0. 0125. Gupta
et al. (last paper in Ref. 21) have used their algorithm on
a 4 lattice for ma=0. 02. Because of the use of different
simulation algorithms and methods of analysis, ' there
are some quantitative disagreements between these re-
sults (for instance, for ma =0.025, Ref. 19 finds p, =5.285
as compared to our value p, =5.33}. Nevertheless, quali-
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tatively it is possible to sum up all of them as in Fig. 6.
For nf ——2, this features two lines of first-order phase

transitions. As in the cases nf ——0.1 and 1, a
deconfinement line extends from m = oo down to some
maa which appears to be larger than 0.2. Again, mD ap-
pears to increase with nf. As opposed to the situation for
lower flavor number, there is now a line of first-order
chiral transitions with end point m, &. The main quanti-
tative discrepancy between various studies concerns the
value of m, &a: Refs. 10 and 19-21 would place it at
m, i,a =0.025, while Ref. 18 maintains that md, a =0.1.
As we discuss in Ref. 10, we find the latter claim unlikely;
a much better understanding of simulation algorithms
and methods of analysis is required before a quantitative
consensus can be established.

The low-mass transitions are most naturally interpret-
ed as being caused by the chiral-symmetry-restoration
mechanism of massless QCD, described by the effective
model of Ref. 8. The simultaneous jump in other vari-
ables such as the deconfinement order parameter could be
explained as an induced phenomenon: once a first-order
phase transition takes place, all observables will show
discontinuities. In this sense, the chiral line is dual to the
deconfinement line, on which the jump in the Polyakov
loop reflects the underlying physics of the transition
while the jump in the chiral condensate is merely in-
duced. Note also that, using the current estimates of the
transition temperature in QCD, the light isodoublet mass
in the real world should correspond to ma =0.012 (Ref.
11}. This would predict a first-order chiral-restoration
transition in QCD, accompanied by a partial restoration
of axial U(1) symmetry

As we discussed above, the use of the fractional-flavor
scheme casts some doubt on the relevance of all these re-
sults to the physical continuum limit. One way to make
sure that the first-order transitions are genuine is to re-
peat the simulations on larger lattices (longer in the tem-
perature direction as well). It is also very interesting to
see how the gap between the end points m, i,a and mDa
behaves as the lattice expands; if the gap narrows, it
might indicate that the region of analyticity in the critical
surface is merely a lattice artifact; if it expands, the real-
world value of ma might come uncomfortably close to
the gap.

2&)if &3

The case nf ——3, ma=0. 1 had been investigated by two
groups prior to the current generation of supercomputer
simulations of full QCD (Ref. 24). While there was a
disagreement about the order of the transition, it seems
fair to say that the data of both were consistent with a
continuous or at best a weakly Srst-order phase transi-
tion. By contrast, our simulations reported in Refs. 9 and
11 show evidence of a strong first-order transition when
the mass is lowered to ma=0. 025. Reference 11 also re-
ports the results of simulations performed with a dynami-
cal isodoublet of mass 0.025 and with a dynamical
"strange" quark whose mass in lattice units is R X0.025.
By varying R, we interpolate between nf ——2 (R = ~ ) and
nf ——3 (R=1). We find first-order phase transitions for

all values of R, with the transition p decreasing from
=5.33 for nf ——2 to =5.1 for nf ——3

The effective model of chiral restoration predicts a
strong first-order transition for nf ——3, irrespecti. ve of the
anomaly. Also, in the magnetic-field analogy for that
model, the end point md, should increase as the number
of flavors increases. These considerations would lead us
to ascribe the first-order transitions we observed for
ma=0.025 to the chiral mechanism, with m, za =0.1. It
seems reasonable to assume the existence of a first-order
line of deconfinement transitions for higher mass values.
It will be interesting to search for this line in the case
nf =3.

nf &4

As we mentioned above, our algorithm and methods of
analysis were first tested against the results of Ref. 7 for
the case nf ——4,ma=0. 025 on a 4 lattice. We agreed
with the conclusion of Ref. 7 that a first-order chiral
transition occurs with those parameter values, but our
value of P, =5.03 was larger than theirs. The existence of
a first-order transition was also confirmed by all the other
groups who studied this combination of Savor number
and quark mass. ' The first-order chiral line at nf 4 in-—
Fig. 6 represents this consensus. Diferent systematic er-
rors due to different algorithms were seen to lead to shifts
in the critical coupling, while being unable to obscure the
order of this very strong first-order transition.

On the other hand, the existence and location of the
end points m, & and mD remain controversial. ' ' ' Gupta
et al. are the only group to maintain that the phase tran-
sition remains first order up to ma=0. 5. Thus, they ar-
gue, there might be no gap between the chiral and the
deconfinement line, at least not for nf ——4. All the other
groups who have studied masses larger than 0.025 do see
a gap, but the exact values of m, „andmD are not clear
(it would seem that m, za -0.1; mrna -0.4}. As we have
discussed above, our simulations for nf &4 certainly sug-
gest the existence of a gap between the chiral and the
deconfinement lines.

For completeness, let us also mention that results ob-
tained by other authors shed light on what happens to
the phase diagram for large Savor number. ' The
first-order chiral transition appears to become stronger
and to expand rapidly towards higher masses. For
nf & 10, it is claimed that the gap has been already closed
by the expansion of the chiral line. A finite-temperature
first-order transition has been reported for nf 18, where-—
it must necessarily be due to the chiral mechanism since
the theory should always be in its confining phase. These
results were used in completing Fig. 6.

IV. CONCLUSIONS

Using a shifted first-order I.angevin algorith, we have
investigated the phase diagram of finite-temperature
QCD and 4 and 8 X4 lattices with 0.1, 1, 2, 3, and 4
quark flavors of mass between 0.01 and 0.05 in lattice
units. As with any algorithm based on the numerical in-
tegration of discretized deferential equations, our results,
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TABLE II. Summary of P, as a function of nf and ma for
Srst-order phase transitions we detected on 8'X4 lattices. No
entry indicates the absence of evidence for metastability. The
value for ma = ~ is taken from Ref. 18.

0.025 0.05 0.1

0.1

1

2
3

5.58

5.33
5.1

5.64
5.48

Not done
Not done

5.675
5.675
5.675
5.675

obtained for a step size of a=0.01, would have to be ex-
trapolated to a=0 in order to become quantitatively reli-
able. Nevertheless, our qualitative conclusions agree well
with the predictions of effective theories as well as with
other simulations. In particular, we can reproduce the
order of the phase transition observed for nf ——4,
ma=0. 025 with an algorithm which is free of finite
step-size errors. This comparison appears to vindicate
our initial hypothesis, that the step size we chose is small
enough to keep our simulations within the universality
class of QCD even for the smallest masses we studied.
We have shown by direct tests that the other unphysical
simulation parameter, namely, the fermion matrix inver-
sion residue r of Eq. (20), lies in a range where the results
on the order of the transition are independent of r.

Table II summarizes the values of the critical couplings
at which we found evidence for metastability at various
values of nf and ma. The comparison with the results of
other simulations shows that these values are affected by
systematic errors due to the finite step size: they tend to
be too large by a few percent. However, the qualitative
trends are as expected; P, decreases as nf is increased
and as the quark mass is lowered. The difference between
the critical coupling for the quenched theory and the
value of P, we obtain for nf 0 lis i——n a.greement with the
perturbative renormalization-group prediction for
ma=0.05 but not for lighter masses. The importance of
nonperturbative fermionic effects so close to the
quenched limit nf ——0 is surprising.

We have entered our results on the order of the phase
transitions for various fiavor numbers and quark masses
into Fig. 6, together with relevant results obtained by
other groups. The picture which emerges is consistent
with the expectations based on the study of effective mod-
els. ' There are two sets of lines of first-order phase
transitions: one set which reaches down from m = 00 to
some end point ma(nf ) and one which extends upwards
from m =0 to some m, h(nf ). We have been led to inter-
pret the first set as due to the deconfinement mechanism
in the pure-glue sector of the theory. This mechanism
should be active for all nf & —", , our simulations confirm
that ma decreases with the number of flavors. It is
presumably also the cause of the transitions previously
seen in the quenched approximation, which is realized
along the lines at m = ce and nf ——0. We interpreted the
jump in the chiral order parameter which accompanies
the deconfinement transition as induced by the strong
first-order character of this transition.

On the other hand, we have taken the connection of

the second set of lines to the massless (chiral) limit of the
theory as an indication that these transitions must be due
to the chiral-symmetry-restoration mechanism described
in Ref. 8. In this interpretation, the simultaneous jump
in the Polyakov loop must be induced by the interaction
of the fermionic and gauge sectors. The nf dependence
predicted by this effective model is confirmed by our re-
sults. For the two-fiavor case, where the prediction de-
pended on the strength of the finite-temperature anoma-
ly, we find that the transition appears to be first order.
The end point m, h(nf ) appears to increase with the num-

ber of flavors. Fukugita and Ukawa' claim that this
growth is so rapid, that it closes the gap between the two
lines of first-order transitions for nf & 10.

Our simulation results definitely favor the existence of
this gap, at least in the region of low quark masses and
small nf. Coming back to the three-dimensional phase
diagram sketched in Fig. 2, the simplest assumption
would be that the deconfinement transition in full QCD
occurs at the same physical temperature TD = TsU(3) as in
pure SU(3) theory, while the chiral transition takes place
at the temperature T,h

——T&cD which was preliminarily
measured for nf ——2 in Ref. 23. This would lead to a pic-
ture consisting of two disconnected half-planes of first-
order transitions, one at T=TD and one at the lower
temperature T,„.Alternatively, there might be a single
critical surface with nonzero curvature, of equation
T, =F(nf, rn). The absence of first-order transitions for
certain m, nf would manifest itself as a hole in this
curved surface. So far, the critical temperature has been
measured in the quenched limit and (preliminarily) for
nf ——2 and low masses; it would have to be measured for
various combinations of flavor number and quark mass in
order to yield information about the shape of the critical
surface.

To the extent that our findings agree with the expecta-
tions based on effective models and present a certain con-
sistency with each other and with other simulations, they
offer an a posteriori justification for the flavor simulation
prescription we used. This is true at least for the purely
thermodynamical aspects of the theory. A much more
difticult and subtle question is whether the prescription is
able to reproduce the physical effects of the anomaly at
the couplings where the transition takes place. In partic-
ular, is the chiral transition for two flavors really first or-
der? While pioneering studies of the topological suscepti-
bility in pure SU(3) theory seem to confirm that the
anomaly is suppressed at the critical temperature, it is
not clear how this effect can be seen with the staggered
fermion recipe we are using. A straightforward way to
address this is to verify that the chiral transition remains
first order as the number of sites in the time direction is
increased, thereby pushing P, towards the scaling region.

Scaling studies consisting essentially of a repetition of
the present work on larger lattices are also necessary in
order to see whether the analyticity gap between mD(nf )

and rn, h(nf ) can survive the passage to the continuum
limit. If the end points scale with the lattice, the gap in
the critical surface must be physical. If the ratio between
the light isodoublet mass and m, h also scales, the con-
clusion that real-world QCD is characterized by a first-
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order chiral transition will be greatly strengthened.
To sum up, our present knowledge of the phase dia-

gram of QCD at finite temperatures, obtained from lat-
tice simulations and from effective model studies, favors
the existence of a first-order QCD transition in the real
world. This should be accompanied by a partial restora-
tion of axial U(1) symmetry, that is, the ri' —m mass
difference in the QCD "plasma" phase should be much
smaller than in the hadronic phase. There also appears
to be a region in the phase diagram where the two phases
are not separated by first-order transitions. This would
indicate that part of the physical excitations in the "plas-
ma" phase are (parity-doubled) color-singlet hadrons.
All of these conclusions must be tested against simula-
tions on larger lattices, with faster and more reliable algo-
rithms and methods of analysis.

Note added. After completion of this manuscript, we
received two papers which report pioneering studies of
the deconfinement transition in pure SU(3) theory on lat-
tices which are very large by previous standards:

48X10'X4 (Ref. 28) and 16'X4 and 24'X4 (Ref. 29).
Their results seem to suggest that the first-order charac-
ter of the transition weakens as the spatial size of the lat-
tice increases. Interestingly, these results seem to be in
better agreement with the behavior of the effective theory
of deconfinement ' than previous simulations on smaller
lattices. While such findings will have to be confirmed
and made precise by more detailed studies, they drama-
tize the role finite-volume effects could play in judging
the order of a phase transition from lattice studies.
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