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Monopole configurations are created by a relaxation method, for Abelian and non-Abelian lattice

gauge theories. The difference between the density of quenched monopoles from the high- and low-

energy phases, at the phase transition of the O(3) and O(2) gauge theories, is discussed.

I. INTRODUCTION U(l) = U4(l)+i o 3U3(l), (3)

The role of magnetic-monopole configurations in lat-
tice gauge theory has been an interesting question since
the observation' that monopoles would create the kind of
disorder in the gauge field needed for linear quark
confinement. There have been speculations on the nature
of monopoles in three- and four-dimensional models, '

and Monte Carlo studies of monopoles. Recent
research, specifically on monopoles in non-Abelian
gauge theories, has furthered the interest in this topic.

The purpose of this paper is to describe a study of
magnetic-monopole configurations created by relaxation
calculations for Abelian and non-Abelian gauge theories
in three and four dimensions. This is particularly in-
teresting in models with a phase transition, such as the
O(2) and O(3) gauge theories in four dimensions. It will
be shown that the density of monopoles after relaxation is
very different for equilibrium states just above and below
the transition. The relaxation process is like a quenching
process, in which the gauge field is suddenly cooled to
zero temperature. Monopoles are topologically stable de-
fects, which are frozen in the gauge field by the quench-
ing. Thus, the density of monopoles after relaxation is a
measure of the disorder due to topological defects in the
state from which the relaxation begins.

The outline of the paper is as follows. Section II
defines the method of relaxation calculation used, and de-
scribes the results of calculations in a three-dimensional
lattice. Section III describes results in a four-dimensiona1
lattice, for relaxation from states near the phase transi-
tion. Section IV is a discussion of the implications of the
study.

II. RELAXATION CALCULATIONS
IN THREE DIMENSIONS

where

U~(l)+U3(1)=1 . (4)

The plaquette variable U(p) has a similar representation.
The partition function of the lattice gauge theory is

Z= exp —E p U

the adjoint action of the SU(2) gauge theory, which I
shall refer to as the O(3) action, is

E=—', g [1—U4(p)] . (7)

The action of the O(2) gauge theory can be defined to be9

either

E= g [1—U (p)]

or

E =2 g [1—U4(p)], (9)

where U(l) is restricted to the form (3); that the two ac-
tions are equivalent is proven in the Appendix. The fac-
tors in Eqs. (6)—(9) are such that the average action per
plaquette E/P is 1 at P=O, i.e., for a random field
configuration.

The relaxation calculation produces a solution of the
lattice field equation

where E denotes the action of the theory, and dp[U] the
appropriate group measure. The fundamental action of
the SU(2) gauge theory is

E= Q [1—U4(p)];

Let U(1) denote the link variable of a lattice gauge
theory. For an SU(2) gauge theory, U(l) has the form

BE
BU„(l)

(10)

U(I) = U4(l)+itr U(1),

where

U4(l)+U (1)=1 . (2)

for all 1, and for k =1—4 for the SU(2} and O(3) gauge
theories, or k =3 to 4 for the O(2) gauge theory. Equa-
tion (10) may be thought of as an equation for U(1), given
U(l') on all other links I'. The actions (7} and (9) are
quadratic functions of Uk (I), of the form

For an O(2) gauge theory, which is equivalent to a U(1)
gauge theory, U(l) has the form

E=—g Uklk, k Uk+R
k, k'
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where Uk stands for U&(l), Mk k depends only on the
field at links that share a plaquette with I, and R is in-
dependent of U(1). Then Eq. (10) is an eigenvalue equa-
tion

gMq k Uk ——XUk .
k'

(12)

The actions (6) and (8) are linear functions of Uk(1), of
the form

E= g UkNk+R,
k

(13)

where again Nk depends on the field at links that share a
plaquette with 1. In this case, the solution of Eq. (10), as
an equation for U„(1), is

Uk= —Nk~ IN I
(14)

where
~

N
~

is the magnitude of Nk.
The idea of the relaxation calculation is simple. ' '"

Starting from the configuration of interest, Eq. (10} is
solved successively for each link, keeping the other links
fixed at their current values. After a sufficient number of
such relaxation sweeps, the configuration converges to a
solution of the lattice field equation. In particular, Eq.
(14) minimizes E with respect to U(1); then, if the relaxa-
tion converges, it converges to a local minimum of E.
Similarly, if in Eq. (12} the relaxed value of U(1) is the
eigenvector of Mk „with largest eigenvalue A, , then the
relaxation again converges to a local minimum of E. For
a linear field equation, without sources, the relaxation
procedure would converge simply to zero field. However,
the field equation of lattice gauge theory is nonlinear.
Therefore, there are nontrivial solutions of the field equa-
tion even without external sources; the field acts as its
own source.

An example of a nontrivial field configuration is a
monopole solution, for the three-dimensional gauge
theory with action (7) or (9}. A monopole-antimonopole
(MM) pair is produced by a line of plaquettes with
U4(p) = —1. This solenoid, one plaquette wide, is the lat-
tice approximation of a Dirac string. At the end points
there is a source or sink of magnetic field, where the mag-
netic field refers to the plaquette field. The solenoid is
unobservable, in the sense that plaquettes with U4(p)
= —1 have zero action. The MM configuration is a
stable, or at least metastable, solution of the O(2) and
O(3} gauge theories in three dimensions. ' " There is an
action barrier against unwinding the gauge field around
the solenoid, because the Dirac string has zero action.

A problem in studying monopoles in the gauge field is
to identify them. It is possible to define a topological
winding number to identify monopoles. However, in
this paper I shall identify monopoles by looking at two
gauge-invariant quantities related to the action. First, I
define a plaquette value P(p}, which is proportional to
the action of the plaquette p, by

C(x}=QP(p),
6p

(16)

e

where the sum is over the six plaquettes that are the faces
of the cube; the range of C(x) is from 0 to 6. It will be
shown that monopoles in a relaxed field configuration are
easily identified using these quantities, especially C.

Figure 1 shows an MM pair in the O(3) lattice gauge
theory in three dimensions, in a 10 lattice. This
configuration was constructed' '" by relaxing from an in-
itial configuration with a Dirac string of length four lat-
tice spacings. That is, initially the links around the
solenoid have U(1)=(I+io 3)/&2, with the signs chosen
such that U(p)= —1 for the plaquettes perpendicular to
the solenoid. During the relaxation, the magnetic Aux
spreads out from the ends of the string, but the topologi-
cal singularities initially present remain after relaxation.
Actually the result is just an O(2) MM pair embedded in
the O(3) gauge field.

The two quantities P and C are exhibited in Fig. 1 in
diferent ways. First, the gradient of the plaquette value
P is drawn wherever its magnitude is greater than 0.04.
The gradient is a vector field defined at the centers of the
elementary cubes of the lattice; the ith component of
grad(P) at the cube at site x is P(x+e;,jk) P(xjk)—
where (ijk) is a cyclic permutation of (123). Second, the
cube value C is exhibited by drawing a small cube wher-
ever C) 1.4. The figure projects out the MM pair very
clearly, because large C and large grad(P) only occur at a
monopole site. The Dirac string connecting the pair is
invisible. The gradient grad(P} decreases rapidly with
distance from the monopole; only the six cubes nearest an
isolated monopole have

~
grad(P)

~

)0.04. In the O(2}
gauge theory it is possible to exhibit the monopoles more
directly by Iilotting the magnetic field B(p) throughout
the lattice. ' " The field B(p) decreases more slowly
than grad(P), but rapidly enough to identify monopoles
isolated by several lattice spacings. However, for the

P(p) =1—U4(p); (15)

the range of P(p) is from 0 to 1. Second, I define a cube
value for the elementary cube at site x by

FIG. 1. Monopole-antimonopole configuration in a 10' lat-
tice. The vector grad(P) is drawn if its magnitude is greater
than 0.04, and a small cube is drawn at site x if C(x) & 1.4.
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FIG. 2. Histogram of P for the configuration in Fig. 1.

FIG. 4. Quenched manopoles in the O(3) gauge theory in a
10' lattice. The configuration was created by a relaxation calcu-
lation starting from an equilibrium configuration at P=O. The
quantities grad(P) and C are drawn as in Fig. 1.

O(3) gauge theory the magnetic field B,(p) has three
components in the gauge group space, and the individual
components are not gauge invariant, so this is not a con-
venient way to exhibit O(3) monopoles.

Figure 2 shows a histogram of plaquette value P for the
configuration in Fig. 1; the width of the P bins is 0.01.
Figure 3 shows a histogram of the cube values C of ele-
mentary cubes for the configuration in Fig. 1; the width
of the C bins is 0.05. The two elementary cubes with
C =1.5 are the locations of the monopole and antimono-
pole. The value of C for these cubes can be explained, as
follows. For an O(2) monopole in three dimensions, the
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total flux is equal to 2m, shared among the six plaquettes
that surround the monopole. If the energy is shared
equally, then B (p) =n/3 for the six plaquettes; then the
plaquette value P (p) is

l —cos —'B (p) = 1

Thus, the cube value C at the monopole site is 4. More
precisely, Fig. 2 shows that the 12 plaquettes nearest the
monopole or antimonopole have P between 0.23 and 0.27;
evidently the six plaquettes surrounding the monopole do
not share the flux equally, due to the presence of the oth-
er member of the MM pair.

Figures 4-6 show the configuration that results from
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FIG. 3. Histogram of C for the configuration in Fig. 1. FIG. 5. Histogram of P for the configuration in Fig. 4.
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a local minimum of E. The convergence is rapid: the
field changes very little after the first few relaxation
sweeps. Apparently this creates a configuration in which
the monopoles and antimonopoles are sufficiently far
apart that further relaxation does not cause them to an-
nihilate, at least not by this one-link-at-a-time relaxation
process.

III. QUENCHED MONOPOLES
AND FOUR-DIMENSIONAL PHASE TRANSITIONS
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FIG. 6. Histogram of C for the configuration in Fig. 4.

relaxing a typical random configuration of the O(3) gauge
field in three dimensions, The lattice size is 10, with
periodic boundary conditions. The starting configuration
was an equilibrium configuration for P=O, generated by a
Monte Carlo calculation. Figure 4 shows grad(P) and C
for the relaxed configuration as in Fig. 1, and Figs. 5 and
6 show histograms of P and C, respectively. The 10 lat-
tice is filled with monopoles, but individual monopoles
are still identifiable. The configuration in Fig. 4 looks
very disordered, but in fact its action is very small; the
action per plaquette E/P is 0.0567. The number of
monopoles in the configuration is 72, in a 10 lattice, cor-
responding to a monopole density of 0.072; thus the mean
volume occupied by a monopole is 13.9a, where a is the
lattice spacing. Even though the density is large, the his-
tograms of P and C show similar profiles to those for the
well-separated MM pair. Therefore, it is not necessary to
look at a picture such as Fig. 4 to identify monopoles in
the field; it is sufficient to examine the histograms of P
and C for the configuration. In particular, each mono-
pole is associated with a cube with C = 1.5.

The relaxed configurations shown in Figs. 1-6 are for
an O(3) gauge field. Similar configurations result for an
O(2) gauge field in three dimensions. Histograms of P
and C for relaxed O(2) configurations are virtually the
same as those for O(3) configurations. In the O(2) case
one can plot the magnetic field B (p }, and verify that the
peak in C at C = 1.5 is caused by sources and sinks of
B(p). It is interesting that the topological configurations
of the three-dimensional O(3) and O(2) gauge theories are
so similar. Apparently the monopole of the O(3) lattice
field is just an embedded O(2) monopole, or a gauge
transformation of it.

In the relaxation calculations, multirnonopole config-
urations such as those in Figs. 1 and 4 seem to be abso-
lutely stable. The convergence can be followed by ob-
serving the decrease in the action E, as the field relaxes to

Both the O(3} and O(2} lattice gauge theories in four di-
mensions have a phase transition, which separates a
disordered phase at small P from a phase at large P in
which the typical field configuration is strongly correlat-
ed in spacetime. Figure 7 shows the average action per
plaquette E/P as a function of P for the O(3) gauge
theory, computed by Monte Carlo calculations on a 5
lattice. At the phase transition point, P, =2.55, there are
two equilibrium phases. The equilibrium state is at the
minimum of the "free-energy" function F(E)=E

S(E)/P—, where S (E) is the entropy at action E defined
as the log of the density of states. The hysteresis loop in
Fig. 7 shows that F ( E) has a double minimum for P=P,
(Refs. 12 and 13). The latent heat of the phase transition
is the difference in E between the two minima of F(E) at
P=P, . For P near P„ in the hysteresis region, F(E) still
has two local minima, so there are two metastable phases.
Only when P is sufficiently far from P, is there a single lo-
cal minimum of F(E), i.e., a single equilibrium phase.
Figure 8 shows the average action per plaquette E/P as a
function of P for the O(2) gauge theory, which has a
phase transition at P, = 1.0.

An interesting problem is to characterize the difference
between the two equilibrium phases at P=P, . In this sec-
tion I describe the configurations that result from relax-

O

1.0 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4.0

FIG. 7. Hysteresis loop at the phase transition of the O(3)
gauge theory.
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FIG. 8. Hysteresis loop at the phase transition of the O(2)

gauge theory.

ing typical equilibrium configurations of these phases.
The relaxation calculation is done only on the three-
dimensional time slices of the four-dimensional lattice,
i.e., three-dimensional subspaces at constant x4. The cal-
culations are for a lattice of size 103&& 5. The equilibrium
configuration to be relaxed is created by a Monte Carlo
calculation for p=p„ in the full four-dimensional space-
tirne. Then the relaxation calculation is done indepen-
dently for each of the five time slices, each of size 10 .
That is, in relaxing the gauge field in a given time slice,
the field is treated as a three-dimensional Seld only, con-
sisting of spacelike links with interactions between links
in the same time slice, but with no interactions with the
links in other time slices, nor with any tirnelike links.
The relaxation calculation for each time slice is the same
as the three-dimensional calculation described in Sec. II.
Thus, the relaxation calculation minimizes the three-
dimensional magnetic energy of the gauge field in each
time slice, but not the four-dimensional action. This pro-
cedure is intended to project out magnetic monopoles in
the time slices, which originate in the four-dimensional
equilibrium field.

The relaxation process can be thought of as a quench-
ing process, in which the temperature 1/p is suddenly re-
duced to zero. The quenching eliminates high-frequency
fluctuations of the field. However, topological configur-
ations, i.e., configurations that are local minima of the en-
ergy but with a topologica1 singularity, present in the ini-
tial configuration, will be frozen in the field after quench-
ing. Thus, by examining the quenched configuration, I
can study the presence of rnonopoles in the initial equilib-
rium state. This technique has been used to study vor-
tices in the planar spin model, ' and instantons in the
SU(2) lattice gauge theory. ' The result of the calcula-
tions is that the density of monopoles after quenching is
almost 0 in the sma11-E phase, but significantly greater

FIG. 9. Histogram of P for an equilibrium configuration of
the large Ephase -of the O(3) gauge theory at p=2. 55 (the broad
distribution) and for the quenched configuration (sharply
peaked at P =0 and in the region 0. 1 &P & 0.3).

than 0 in the large-E phase, at p=p, .
Figure 9 shows histograms of plaquette value P for two

O(3) gauge-field configurations. The first configuration is
an equilibrium configuration at P=2. 55 in the large-E
phase; the action per plaquette E/P in this initial
configuration is 0.5525, consistent with the large Ephase-
in the hysteresis loop in Fig. 7. The second configuration
is the quenched configuration that results from relaxing
the first configuration; the (three-dimensional) action per
plaquette in the quenched configuration is 0.0409. Figure
10 shows histograms of cube value C for these two
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FIG. 10. Histogram of C for the same configurations as Fig.
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FIG. 11. Histogram of P for an equilibrium configuration of
the small-E phase of the O{3) gauge theory at P=2.55 (the
broad distribution) and for the quenched configuration (sharply
peaked at P =0 and in the region 0. 1 & P & 0.3).

configurations. The initial configuration has broad distri-
butions of P and C. In contrast, the quenched
configuration has distributions of P and C that are the
same as for a superposition of monopoles, sharply peaked
at 0 but with some C near 1.5 from isolated monopoles.
The number of quenched monopoles, which is just the
number of elementary cubes with C=1.5, is 259; or,
since there are 5X10 cubes in the five time slices, the
mean density of quenched monopoles is 0.052 in any
three-dimensional time slice. This is to be compared to
the monopole density 0.072 of the configurations shown
in Fig. 4.

Figures 11 (and 12) show histograms of P (and C) for
an equilibrium O(3) gauge field configuration in the
small-E phase at P=2. 55, and the corresponding
quenched configuration. The average action per pla-
quette E/P is 0.3754 in the initial configuration, con-
sistent with the small-E phase in the hysteresis loop in
Fig. 7; and E/P is 0.0023 in the quenched configuration.
In this case the number of quenched monopoles is only
12, corresponding to a mean density of 0.002 in any time
slice. The density of quenched monopoles is much small-
er in the small-E phase than in the large-E phase.

There is a measurable difference between the equilibri-
um states before quenching. The histograms of P and C
are visibly shifted to higher P and C in the large-E phase.
However, in both cases the equilibrium-state distributions
are rather broad, and extend to large P and C. What is
most striking in the relaxed configurations is that there
are almost no quenched monopoles from the small-E
phase, even though the distribution of P and C in the
equilibrium state of the small-E phase extends well
beyond the values characteristic of monopoles. In other
words, there is plenty of energy in the small-E equilibri-
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FIG. 12. Histogram of C for the same configurations as Fig.

um state to create monopoles; indeed the energy of the
quenched state in Fig. 9 is much less than that of the
small-E equilibrium state of Fig. 11. However, the ener-

gy comes from high-frequency fluctuations of the gauge
field. The reason there are so few quenched monopoles
from the small-E equilibrium configuration is that this
state is not topologically disordered.

Figures 13—16 show similar histograms for the O(2)
gauge field. Figures 13 and 14 are for an equilibrium
configuration at P=1.0 in the disordered phase, and its
quenched configuration; E/P is 0.4469 for the starting
configuration and 0.0377 for the quenched configuration.
Figures 15 and 16 are for an equilibrium configuration at
P=1.0 in the correlated phase, and its quenched
configuration; E/P is 0.3429 for the starting configura-
tion and 0.0080 for the quenched configuration. The den-
sity of quenched monopoles is 0.029 for the large-E
phase, and 0.006 for the small-E phase.

The striking similarity of the O(2) and O(3) results sug-
gests that the mechanism of the phase transition is the
same in the two models, associated with monopole forma-
tion as P decreases below P, . This similarity is consistent
with the results of a study of a model that interpolates be-
tween the O(3) and O(2) gauge theories. " The O(2) tran-
sition is weaker than the O(3) transition. Indeed there is
some question whether the O(2) transition is of second or-
der. ' The weakness of the O(2) transition can be seen
from Figs. 13 and 15. There is little difference between
the P distributions of the small-E and large-E states. It
follows that the latent heat of the transition is small. The
difference between the states emerges after quenching:
there are significantly more quenched monopoles from
the large-E state. Again there is plenty of energy avail-
able in the small-E state to create monopoles, but the
state is just not disordered in the right way to possess
monopoles after quenching.
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the large-E phase of the O(2) gauge theory at P= 1.0 (the broad
distribution) and for the quenched configuration (sharply
peaked at P =0 and in the region 0. 1 & P (0.3).

FIG. 15. Histogram of P for an equilibrium configuration of
the small-E phase of the O(2) gauge theory at P= 1.0 (the broad
distribution) and for the quenched configuration (sharply
peaked at P =0 and in the region 0. 1 & P & 0.3).

I have described relaxation calculations from equilibri-
um configurations at p= p, . It is also interesting to con-
sider states for other values of p in the hysteresis region.
I find that the number of quenched monopoles is small
(or large) for any small-E (or large-E) state in the hys-
teresis region. This is consistent with the fact that F(E)
has two local minima for p in the hysteresis region, corre-
sponding to qualitatively different rnetastable phases.
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IV. DISCUSSION

The relaxation calculations of Sec. III demonstrate
that the phase transitions of the O(3) and O(2) lattice
gauge theories in four dimensions are associated with
monopole topological configurations. In both cases,
quenching the three-dimensional time slices of the
configuration yields a significant density of monopoles in
the large-E phase, but a negligible density in the small-E
phase. Evidently the latent heat of the phase transition is
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FIG. 14. Histogram of C for the same configurations as Fig.
13. 15.

FIG. 16. Histogram of C for the same configurations as Fig.
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a combination of the energy needed to create the mono-
poles, plus the increase in energy of high-frequency fluc-
tuations of the field in the presence of monopoles.

The O(3) and O(2) lattice gauge theories in three di-
mensions do not have phase transitions. Why is there no
monopole-associated transition in three dimensions? The
existence of the phase transition is determined by the
form of the free energy F(E)=E S(—E) /13; a phase tran-
sition exists at P if F(E) has a double minimum. This de-
pends on the entropy S(E) (Refs. 12 and 13). In the
three-dimensional models, the entropy of ordered states,
without monopoles, and that of disordered states, must
join together smoothly in E, so there is no transition. In
the four-dimensional models, there must be a kink in
S(E) at the value of E where monopoles begin to appear
in three-dimensional subspaces, which causes the transi-
tion.

The O(3) gauge theory refers to the SU(2) gauge theory
with adjoint action. What of the SU(2) gauge theory with
fundamental action, i.e., the usual Wilson action. This
model does not have a phase transition. The monopole-
associated transition does not occur in this model because
the monopole is not a stable, local minimum of the
three-dimensional fundamental action. Obviously the
O(3) monopole configuration, which has a Dirac string
along which U4(p)= —1, is not a low-energy configura-
tion for the SU(2} action (6). Thus there is no action bar-
rier to prevent the monopole from unwinding. Indeed, I
find that quenching a random SU(2) configuration
in three dimensions just produces the trivial zero field, or
a gauge transformation of it. Therefore the free-energy
function F(E) has only a single local minimum for any P,
because there is no well-defined separation in E of states
with and without monopoles.

The quenching process considered in this paper is three
dimensional. That is, time slices of the field configuration
are relaxed, minimizing the three-dimensional energy.
The three-dimensional quenching is interesting because
the basic topological configuration of the O(3) or O(2)
gauge theory is the monopole, a three-dimensional struc-
ture. But what is the result of full four-dimensional
quenching? I find that for all of the models considered
here, quenching the four-dimensional configuration, i.e.,
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APPENDIX

To cast the O(2) gauge theory in the form of a U(1)
gauge theory, write the O(2) link variable of Eq. (3) as

U4(l) =cos8(1), U3(I) =sin8(!) . (Al)

Then the plaquette variable for plaquette p =(I, , l2, 13,14)
1s

U4(p}=cos8(p), U3(p) =sin8(p),

where

(A2)

8(p) =8(ii )+8(I2)—8(I3)—8(I4); (A3)

i.e., 8(p) is the lattice curl of 8(l). If Eq. (8) is used to
define the action of the O(2) gauge theory, then the U(1)
form is

E= g [1—cos8(p)]; (A4)

if Eq. (9) is used, then the U(1) form is

E= g [1—cos28(p)] .
P

(A5)

However, (A5) and (A4) are equivalent because a rescal-
ing of 8(l), by 8(1}~28(I),transforms (A4) into (A5).

minimizing the four-dimensional action, does not pro-
duce well-separated monopoles in three dimensions. In
particular, I do not observe monopoles propagating in
the fourth dimension. Relaxing the links in all four di-
mensions apparently unwinds the three-dimensional to-
pological singularities. Further research, perhaps requir-
ing a more subtle analysis of the quenched configuration,
may reveal the existence of other kinds of topological
configurations in quenched four-dimensional fields, such
as instantons. '
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