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Lattice A,P theory with Yukawa couplings to staggered fermions
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An investigation of the A,P' theory coupled via Yukawa couplings to fermions has been initiated
on the lattice. Dynamical fermions are taken fully into account, using hybrid-molecular-dynamic
algorithms. Different ways of transcribing Yukawa couplings onto the lattice are discussed. It is
found that the lattice phase diagram is very sensitive to the manner in which this interaction is regu-
larized. Some results for scalar and fermionic correlation functions are also presented.

I. INTRODUCTION AND DESCRIPTION
OF THE LATTICE ACTIONS

S~ = g 4P (n) g—P(n)P(n +p)
n

The Higgs sector of the standard model has more and
more frequently become the focus of nonperturbative in-
vestigations on the lattice in recent years. ' ' The lack
of understanding of how this sector works and the ap-
parent difficulties with continuum quantum field theories
involving nonasymptotically free couplings has motivated
people to try to define Higgs models through unconven-
tional means, for instance, by introducing a lattice regu-
larization. The lattice models one ends up with differ
from lattice QCD in crucial ways. The latter model has a
well-defined continuum limit at the ultraviolet-stable
fixed point at go~0. In lattice Higgs models one is
forced to look for continuum limits away from the origin
in the bare-lattice-coupling-constant space. There has
been considerable progress in studies of pure bosonic
models (without fermions) using both analytic and nu-
merical methods. ' In most cases the indications are
that only trivial noninteracting continuum theories
emerge. However, even foregoing taking the cutoff scale
to infinity, several authors have been able to obtain in-
teresting bounds on Higgs-boson masses. A very recent
phenomenon has been the introduction of fermions into
nonasymptotically free models. The search for a non-
trivial ultraviolet-stable fixed point in Higgs models and
also in Abelian gauge theories" has hence become more
complicated but at the same time more interesting and
multifaceted. Fermions bring in new conceptual and
technical challenges. In the present paper we summarize
our efforts to date in understanding a simple lattice Higgs
system coupled to fermions through Yukawa couplings.
Some of the issues raised here should also apply to more
realistic gauge Higgs systems with fermions.

The model under investigation is the single-component
theory coupled to two flavors of staggered fermions

(eight continuum species):

S=S~+SF+Sy .

Our conventions for the scalar action Sz and the free fer-
mion action SF are

m g (t'(n)+ —g ttt (n), (1.2)

2

S — g g g Xf(n)( —1) " [Xf(n +is) Xf(n p')]
n p f=1

+ g g mfXf(n)Xf(n),
n f

(1.3)

and

Sr ——y g P(n) g [Xf(n)XI(n)]
n f

(1.4)

with

Sr=y gttt(n) g —,', g Xf(n)XI(n)
n f hypercube

=y g 4(n) g [Xf(n)Xf(n)],
n f

(1.5)

4(n) =——,', g P(n),
hypercube

=sum over 16 sites .
hypercube

(1.6)

S~ is the natural expression one would write down if one
takes into account

hypercube

(1.7)

(Pr ——four-component spinor of flavor "y") and insists on
retaining all the discrete shift symmetries of free stag-
gered fermions. (In the present case discrete shift trans-
formations on the 7 fields must be accompanied by ap-
propriate transformations on the P's. ) Sr also obeys the

where gf, gf are anticommuting variables and
g„(n):n, +— +n„,. In all our studies to date we
have set the bare fermion masses mf equal to zero. For
the Yukawa coupling term Sr between the scalars and
the fermions we have considered two possibilities:
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same symmetries. It is much simpler than Sz but its in-
terpretation in terms of the continuuin P fields is not
straightforward.

S„' and Si, are reminiscent of the many ways (more
than two) in which people have formulated the (1+1)-
dimensional Gross-Neveu (GN) model on a Euclidean lat-
tice. ' In those formulations most closely related to Sz
(we will call them type-I actions) a phase transition was
found at some finite Gross-Neveu coupling g =g, . For
g &g, the discrete chiral symmetry was restored. On
the other hand, for the analogues of S„(we call them
type-II actions; they involve multisite couplings) the sym-
metry was broken for all g . The dynamical reason for
this difference was that as g increased, dift'erent lattice
sites became decoupled for type-I actions, whereas for
type-II actions the opposite happened and sites became
more and more correlated. Using the large-N analyses
Ref. 13 showed that the phase transition at g, for type-I
actions was Ising type. Furthermore several authors
pointed out that type-I actions typically appear to have
terms that break Lorentz invariance in the classical con-
tinuum limit. Reference 14, however, showed that
Lorentz-invariance-breaking terms become irrelevant in
the quantum continuum limit. We note that "spurious"
transitions were found also for naive lattice fermions, so
they are not just artifacts of staggered lattice fermions.

Returning to the current model, when trying to choose
between (1.4) and (1.5) or to argue that continuum phys-
ics should not depend on the choice, the situation is vast-
ly more complicated than with the Gross-Neveu model.
First of all, one does not know where to take a continuum
limit such that interesting continuum physics can be ex-
tracted. In the GN case it was easy to distinguish be-
tween the infrared-unstable, asymptotically free fixed
point at the origin and the Ising critical point at finite
coupling. At the origin one is able to define a nontrivial
continuum field theory with a nontrivial spectrum. At
the Ising critical point presumably only a free fermion
theory emerges in the continuum limit. In the present
model we have no criteria to distinguish a priori between
interesting and uninteresting critical points and lengthy,
difficult calculations will be required. The most likely
scenario is that only the analogue of the Ising transitions
(with trivial continuum limit) exists regardless of whether
one uses Sz or Sz. It should be possible to come up with
an extended action which in one limit reduces to Sz and
in another to S~. The critical points of the pure Sz and
the pure S~ models would then be on the same critical
(hyper) surface.

In order to see the difference, at least on the lattice, be-
tween the choices S~ and Sz it is useful to consider the
large-Yukawa-coupling limit. To do this, first rescale the
7 fields,

1 — 1
Xf~ —Xfy Xf~ —Xfv~y

' v'y

Then using Si of Eq. (1.4), one obtains, in the y ~ oo lim-
it,

WI

S~Sz+ g P(n) g Xf(n)Xf(n)
n f=1

(we work with Nf ——2) and

—s'
J dXdXdge = Idge

with

S,'z ——Sii —gin[/(n)] f . (1.9)

If one uses S„ofEq. (1.5) one obtains instead

S',s ——Sii —gin[4(n)] f . (1.10)

The log terms in (1.10) have a very different ordering
effect on the P fields from the log terms in (1.9). For in-
stance, in the Ising limit A.~ ao, m ~ —oo with

m /A—, =PH fixed, one has /~+1 (after rescaling) and
the in[/ (n)] terms in (1.9) become irrelevant. One ob-
tains the same theory as if fermions had never been
present. With (1.10), however, the log terms require that

$~0. (1.11)
hypercube

Hence in S,~ the contributions from the fermions rein-
force symmetry breaking. Even for finite A, and m~ one
expects that, as y~ 00, Sz will strongly favor syrnrnetry
breaking. We have carried out Monte Carlo simulations
of the purely bosonic actions Sts and S,s at A, =l and
100. With S,z we were not able to find evidence for a
symmetric phase in the entire range —~ & m & 00. Al-
though (P) becomes very small (~ 1/+m for large m )

one never saw tunneling between positive and negative
(P) vacua. The situation was different with S,s which
led to a symmetric phase for m exceeding some m, . We
were careful to include "Ising flips" in our Monte Carlo
updating procedure, so we do not think the absence of a
symmetric phase with S,~ is a numerical artifact. How-
ever more tests should be carried out in the future.

The numerical results indicating the absence of tunnel-
ing at y ~ (x) in the case of the hypercube lattice Yukawa
coupling Sz are in contradiction with the well-known
statement that no dynamical symmetry breaking can hap-
pen in finite systems. This apparent contradiction can be
resolved in the following manner. First, the usual argu-
ment that the ground-state wave function of a finite sys-
tem can be chosen to be real without nodes is valid only
for finite potentials. ' Furthermore, the variational ex-
pression for the ground-state energy indicates that the
ground-state wave function must vanish at the point
where the potential has a nonintegrable singularity.

To make this point clearer it is instructive to consider
the case of a particle with unit mass moving in a one-
dirnensional x potential. The ground-state wave func-
tion behaves as x~, where p is greater than 1 close to the
singularity and the derivative vanishes together with the
wave function. Thus there is the option to have a syrn-
rnetric or antisyrnmetric wave function with respect to
space inversion and the ground states form a parity dou-
blet. In other words, the tunneling responsible for the
restoration of the symmetry is suppressed by the nonin-
tegrable potential. This holds for any eigenstate with
finite energy. Thus one has two degenerate Hilbert
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spaces corresponding to the states with vanishing wave
functions for positive or negative values of the coordinate
x. These spaces do not mix during the time evolution.
This phenomenon is the toy version of dynamical symme-
try breaking.

Note that the usual derivation of the path-integral ex-
pression of the time evolution operator is not valid for
matrix elements connecting coordinates with different
sign. In fact, the trajectories cross the singularity in this
case and the phase of the integrand diverges as the cutoff
in time is removed. This divergence should lead to the
vanishing of these amplitudes in the case of a finite sys-
tem. This is certainly the case with the quantum-
mechanical example discussed above but the subtleties of
the convergence when the cutoff in time is removed
prevents us from making general statements. Less is
known about field theories where the entropy factor may
dominate and the tunneling may survive the removal of
the cutoff in this way. In any case the actual fate of the
symmetry depends on fluctuations on the scale of the ul-
traviolet cutoff as opposed to the usual spontaneous sym-
metry breaking where the relevant modes are infrared.
In this sense this phenomenon is similar to the usual
anomalies except it works in the opposite direction:
symmetry-restoring modes which are forbidden in the
classical case may become relevant in the presence of the
ultraviolet cutoff.

So far we discussed bosonic systems with singular po-
tential in the classical Hamiltonian and argued that there
may in fact be dynamical symmetry breaking even in a
finite system in this case. The actual field theoretical
model is given in the path-integral formalism where the
cutoff is included in an unavoidable manner. Thus the
transfer matrix extracted from the effective action con-
taining the fermion determinant is already regularized.
What is left to inquire is whether the singular potential
which appears in the effective action as a result of the fer-
mion zero modes suppresses the tunneling modes as the
cutoff is removed. Our numerical results suggest that in
the leading-order expansion in the kinetic energy of the
fermion the answer depends on the way in which the Yu-
kawa coupling is regularized. The two-phase structure of
the single-site Yukawa coupling model can be understood
by the analogy with the four-dimensional Ising model:
the system skips the singularities when the continuous
field variable is approximated by an Ising spin. The same
approximation is unable to avoid the singularities in the
case of the hypercubic construction since the sum of an
even number of spin variables may vanish. Thus the en-
tropy of the symmetry-restoring modes is reduced.

The singularity structure of the effective action de-
pends on the actual value of the Yukawa coupling. The
singularities are located for large values of the coupling
at configurations where any of the field variables vanish.
The singular hypersurface becomes more complicated for
intermediate values of the Yukawa coupling since the fer-
mion zero modes become extended when higher orders in
the fermion kinetic energy are included. In the case of a
soluble toy model with exponentiated Yukawa coupling
the symmetry breaking persists for any value of the cou-
pling constant. ' It would be instructive to visualize the

location of the singular hypersurface for an intermediate
value of the Yukawa coupling in the field-theoretic case
as well.

We will see in the next section that when one comes
down from the y~ ~ limit, one finds symmetric phases
for both Sz and Sz above a critical m . One can no
longer use S,'z or S,z and is faced with the task of
evaluating a nontrivial fermion determinant. In the next
section we describe the algorithms employed to investi-
gate the finite-y region.

II. THE ALGORITHMS AND LATTICE PHASE
DIAGRAMS

One objective of the present project was to test existing
algorithms for numerical simulations with fermions on
models with spontaneous symmetry breaking. We have
developed code for the microcanonical' and for two vari-
ants of the hybrid' ' molecular dynamic algorithms.
Very briefly, this involves introducing, in addition to the
four discrete Euclidean dimensions, a fifth continuous
"~"direction and then solving equations of motion in the
r variable. The Hamiltonian for this (4+ 1)-dimensional
system is given by (we will use Sr)

2

H= ,' gP (n)+—V(P)+—,
' g g Qf(n)(A A)„„'Qf(n')
f=1 n, n'

N g g Iif(n)
f n

(2.1)

with

(2.2)

+5„„y@(n),
and Qf, IIf, and P are real degrees of freedom. After in-

tegrating out the Qf, IIf,P degrees of freedom one is left
with a functional integral over the P's with

(2.3)

(2.4)

Equation (2.3) tells us that if A, and y are the original
couplings in S~ and Sz, then simulating a system with
Hamiltonian (2.1) means simulating the model of Eq. (1.1)
with effective couplings

eff p
s yeff (2.5)

In the microcanonical approach one works at fixed total
energy and solves Hamilton's equations of motion,

weight= Idet[A (P)]) e

L T
2 2

—' g P
)

(L' r=No of lattice sites). .~

~ ~

~

n
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P(n) =P(n),
6V
5$

P(n)=—

(2.6a)

1 5 g Q~( A A ) 'Q~, (2.6b)
2 f

QI(n)=co III(n),

11~(n)= —(A A) 'Q~ .

(2.6c)

(2.6d)

We have omitted intermediate sums over lattice sites in
the right-hand side (RHS) of (2.6b) and (2.6d). Introduce
new variables

Bf(n)=[( A A) 'Qf]„ (2.7)

or

Q~(n)=(A A)BI .

Then (2.6) can be reexpressed as

(2.8)

p =p = — +— g BI( A A )BI
. f

Qy =co Ily = —N BI
2' — 2

(2.9a)

(2.9b)

We have numerically solved Newton's equations (2.9a)
and (2.9b) which are of the generic form

q=F (q=N, Qi, Q2).

We used the Verlet updating scheme

q, +, ——q, +(q, —q, , )+5r F(~) .

(2.10)

(2.11)

For most of our microcanonical runs we used 5~=0.01.
However we did check that averages do not change
significantly up to 5~=0.05 or even larger.

The second algorithm that we considered was the hy-
brid method of Duane and Kogut. ' In this approach
one brings the system (2.1) from tiine to time in contact
with a heat bath, usually adjusted so that P,tr of (2.4)
equals 1. This can be implemented by replacing with
some probability P&, Eq. (2.11)by

q,+, q, +&(+ ,'——(5r) F(r), — (2.12)

where the g's are Gaussian distributed random variables
obeying,

1, q=
g(n)g(n') =5„„,x .

67,

HNF ——
—,
' gP (n)+ V(p)+ —,

' g Q&(A A) 'QI .
n f

(2.14)

1

I. T
—,
' z Q&(n)(A A)„„'.Q&(n')) =0 5 . (2.17)

We have used (2.17) as one of the criteria for sufficient
equilibration. For small A. and y ( 5) equipartition sets
in fairly rapidly, usually after a few thousand v. steps, us-
ing 5~=0.01, P& ——2%, and co 1. Fo-r larger y we
discovered that one needed to increase u in order to con-
verge to (2.17). We do not know whether for small co

TABLE I. Comparison of different algorithms at A, =1 and
m '= 3 on an 8 sized lattice.

Noisy fermion
&(()

Hybrid Monte Carlo

The equation of motion for P is again given by (2.9a) with

BI related to QI via (2.7). There is no equation of motion
for the QI fields. Instead one notes that

RI —= A 'QI (2.15)

are Gaussian distributed variables. So at each v slice one
needs to generate such R&'s and then use

BI (A ——A ) 'Q~ ——A 'RI (2.16)

to obtain new 8&'s.
We now discuss the advantages and disadvantages of

the three algorithms. The microcanonical method has
the virtue that energy conservation provides a convenient
test of our codes, the accuracy of the conjugate-gradient
inversions [necessary to solve (2.16) and (2.7)] and the size
of 5v. It is however known from experience with other
models that convergence to equilibrium is slow. It is also
much more diScult to simulate the system at precisely
the couplings one is interested in. So we have used the
microcanonical method only in the initial stages of the
project, mainly to test the code.

The hybrid method allows more flexibility in working
at given values for the couplings. We have "refreshed"
[i.e., occasionally replaced (2.11) by (2.12)] both the P-
field and QI-field velocities. The first and the last terms
in (2.1) then obey equipartition by construction. We note
that the third term in (2.1) is also quadratic and hence
should obey, for each f,

and

g(n) =0 .

(2.13)

We have worked with P& ranging between 0.02 and 0.05.
P& ——0 corresponds to the previous pure microcanonical
algorithm. P& ——1 gives the Langevin limit. We have
found that the 5~ sensitivity of physical results in the re-
gion 0.01(6~(0.1 deteriorates considerably once P&
exceeds —10%%uo.

The third algorithm we have employed is the variant of
the hybrid method advocated by Gottlieb et al. ' We
will call this the "noisy fermion" (NF) method. Instead
of (2.1) the starting point is

1

1.5
1.6
1.7
1.8
2.0
5.0

10.0
15.0
20.0

100.0
200.0

-0
-0
-0

0.125(0.019)
0.246(0.012 )

0.367(0.007)
0.683(0.002 )

0.721(0.002)
0.728(0.001)
0.730(0.002)
0.733(0.002)
0.733(0.002)

0.367(0.009)
0.684(0.002)
0.722(0.002)
0.735(0.001 )

0.733
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FIG. 1. ((() vsy at A. =1 for several m' values. The stars to
the right show the Monte Carlo results for the infinite-y
effective action S,s of Eq. (1.10).

FIG. 3. The phase diagram in the (y, m') parameter space for
A, = 1 and 100. The lines separate the symmetric (large-m ') from
the broken (small-m ) regions.
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and large y equipartition would never have emerged or
only extremely slowly (we only went up to a few tens of
thousands of r steps). Rather than continue to increase
ro we then switched to the third, the noisy fermion (NF),
algorithm. With this algorithm (2.17) is satisfied au-
tomatically and cannot be used as a check. We tested our
NF code by comparing with the hybrid code for small y
and with the Monte Carlo results using S,~ of (1.10) for
large y. Table I gives a comparison of different methods
at A, =1, m =3 on 8 lattices. After this exercise we de-
cided to use the NF algorithm for most of our subsequent
runs.

Figure 1 shows (P) as a function of y for several m
values and h, = l. One sees that even for positive m one
can have spontaneous symmetry breaking if y exceeds
some critical value. One also observes rapid saturation to
the infinite y value for (P). The stars in Fig. 1 indicate
the Monte Carlo results using S,~.

We have also developed a code for the Yukawa cou-
pling Sr. Figure 2 compares the two actions at A, =l,
m =3. In the y range shown there does not seem to be
any significant qualitative difference. We mention how-
ever that the number of conjugate-gradient iterations in-

creases by approximately a factor of 2 when one goes
from Sz to Sz. Furthermore once y «3.5 it becomes
more and more difficult to attain equilibrium using S~.
In order to keep P,s-1 many more refreshings of veloci-
ties were required (P& had to be increased). Occasionally
we found the number of conjugate-gradient iterations
shoot up to a couple of hundreds. In short, using Sz our
algorithms do not seem stable enough to handle the
large-y region. So unfortunately it has not been possible
to carry out comparisons between Sz and S~ except in
the small-y region or at y ~~.

Figure 3 summarizes the data on the boundary between
symmetric and broken phases in the (y, m ) plane for
A, =1 and 100.

III. MASSES AND WAVE-FUNCTION
RKNORMALIZATION CONSTANTS

It should be clear from the preceding two sections that
many conceptional issues still need to be resolved before
our lattice model can be used to extract interesting con-
tinuum physics. Nevertheless we have initiated studies of
correlation functions in this model. We present some re-
sults for the numerically more stable action Sz at A, = 1

and y =2. We hope that our calculations will be useful to
researchers intending to investigate Higgs systems with
dynamical fermions and Yukawa couplings.

For the scalar correlations we evaluate

G& (&)= (OP& (r)OP& ((})) —(OP& (r) ) (OP& (0) )

(3.1}

with

02—

I rma I

1 2

OPB(r)=, g P(n, r}=1
L'

n

and for the fermions we look at

(3.2}

FIG. 2. Comparison of S& and S& at A, =1 and m'=3.
GF (t l = (g X(nt'|X(0'1) . ,

n

(3.3)
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We discuss results at A, =1,y =2, and m =4.2. These
values leave us in the broken phase with (P) =0.152
+0.004. We worked on 8 X16 (-90000 r steps at
b,x=0.01) and 8 && 12 (-140000 steps) sized lattices and
also accumulated some data on an 8 X 24 (-20000 steps)
lattice. Bosonic correlations were measured every fifth

step and fermionic correlations every 200th step (with 12
source points). For the fermions the renormalized mass

MF& and the wave-function renormalization constant ZF
were determined from

MF„+i sinp
GF(p)= g e'~'GF(t)=ZF

r =o sin p+MF

For antiperiodic boundary conditions in time,

(2l +1)~

(3.4)

(3.5)

and we used the minimal p with I =0.
From (3.4) one has

Re I GF (p) f

Im I GF (p) )

sin p+MFz
ZF ——Re( GF(p) I

MF~

We find

8 X 12: MF~ ——0.289+0.010,

ZF ——0.984+0.002,

8 X 16: MF~ ——0.301 0.003,

(3.6)

(3.6a}

(3.7)

(3.8)

GF(t) = A [e —( —1)'e ] .

One then finds for MF =—sinh(EF ),

(3.9)

ZF ——0.985+0.003 .
The errors quoted were obtained by dividing the mea-
surements on the 8 )&12 (8 X16) lattices into 7 (5) sets
and then calculating the standard deviation among the
sets. We have also analyzed the 8 X12 data by fitting
GF(r) to

two-fermion threshold. If there is in addition a single
particle pole below this threshold it looks like one needs
at the very least a five-parameter fit to GB(t). Unfor-
tunately our data for GB(t) is not good enough to allow
us to attempt such a fit.

There is another way in which a mass scale can be ex-
tracted from our data for GB (t). Namely, one can define

a renormalized (or effective) mass M~ as follows:

T —1

GB(p)=L' g e'~'GB(t)
r=0

Z(p) 2nn

2(1 —cosp)+M+ T
(3.12)

There is no reason why the renormalized mass Mz
should be related in any simple way to the E 's of Eq.
(3.11). Furthermore the constant A in (3.11) may mess
things up in GB (p =0). In general Z(p) need not be in-

dependent of p. One is actually interested in the limit
Z(p~0)—:Z&. Mz should not be viewed as a physical
mass. It is analogous to the mass scale set by the second
derivative of the effectiv potential at the minimum.

We have used our GB(t) data to evaluate GB(p). By
plotting GB(p) ' vs 2(1 —cosp) one can read off Z&

' and

mR from the slope and the intercept at p =0. Our results
are shown in Fig. 4. The solid line through the 8 &&16

(and also 8 X 24) data leads to Mz ——0.67 and Z&
——0.46.

The dashed line gives M~ =0.46 and Z&
——0.30. We note

that only GB (p} at p =0 is affected by the constant A of
Eq. (3.11) and the subtraction term in (3.1). So in Fig. 4
the p&0 points should have smaller systematic errors.
By drawing straight lines through the data points we
have assumed that Z (p) is independent of p at least in the

p range shown. We feel that at the present stage our
numbers for Mz and Z& should be taken as very tenta-
tive. The statistical errors in Fig. 4 are large. A much
more detailed finite spatial and temporal size analysis
should be undertaken. And we also need to understand
better threshold e8'ects. On the other hand, in whatever

MF ——0.298+0.010 (3.10)

which agrees well with (3.7).
So our experience has been that fermionic correlations

are fairly easy to evaluate and that one does not require a
huge amount of statistics to find stable results. We will
see in a moment that one is not that lucky with bosonic
correlations.

We have tried to analyze our data for bosonic correla-
tions in a variety of ways. The most straightforward way
to extract masses is to fit GB (t) to

" G'Ipj5-
Scalar Correlations

1, y 2, rn' - 4.2)

$ 8'x12
g 8'x16
~ 8'x24

GB (t) = A + Q Bj(e ' +e
1

(3.11)

When working in the broken phase on lattices with finite
extent in the time direction one cannot in general neglect
the t-independent constant A. This has made it very
difficult to obtain stable fits. A further complication
arises because the sum over j in (3.11) should include the

I

0,5 1.0
I

1.5
2C1 - cospo)

FIG. 4. The inverse propagator GB(po) ' vs 2(l —cospo) at
A, = 1, y =2, and m =4.2. po is referred to as plain p in the text.
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way we tried to massage the data, we have found it
diScult to get Z& up to a value closer to 1. This con-
trasts with our findings for ZF and with findings by oth-
ers for Z& in scalar models without fermions. We are
planning extensive studies of correlation functions in the
present model in both the symmetric and broken phases.
This will enable us to investigate the behavior of interest-
ing ratios such as M~/M„, MF /( P„),and M„ /( Ptt ) as
one approaches an appropriate critical point of the lattice
model. In the meantime, as mentioned already in the be-
ginning of this section, more work should be devoted to
clarifying the relationship between different ways of tran-
scribing Yukawa couplings onto the lattice.
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