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Skyrme topological soliton coupled to gravity
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Skyrmions of large topological quantum number N or large energy scale f are studied in general
relativity. No stable or metastable solutions are found between the nucleon with N =1 and mini
black holes with N-Mp„„,„/f. On the nuclear scale (f„-90MeV} this corresponds to N-10".

I. INTRODUCTION

In a recent series of papers, Friedberg, Lee, and Pang'
carried out an investigation of nontopological soliton
stars and black holes. It was shown that, corresponding
to a simple Lagrangian for a scalar field together with a
meson or fermion field, a variety of interesting structures
might exist, ranging from mini to massive soliton stars
and black holes. Inspired by these results we investigate
the Skyrme topological soliton for large topological quan-
tum number or large-energy scale in general relativity.
The Skyrme soliton has attracted much interest in the
last several years because of developments in QCD con-
cerning the large-N, limit and because its properties
resemble those of nucleons at the 30—40% level. ' Why
might such a soliton possess interesting solutions when
coupled to gravity? Consider the expression for the soli-
ton mass without gravity:

sin FM=4' dr r F' +2
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where the chiral function F(r) obeys the boundary condi-
tions

F(0)=Nor, F( ~ )=0, (2)

with the nucleon corresponding to N = 1 ~ As a rough es-
timate for large N we take

F(r) =Nor 1 ——,r &R
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F(r)=0, r )R,
and replace the rapidly oscillating sin F(r) by —,'. We ob-
tain, in leading order,

Thus we see that M varies as N, as if there were a pair-
wise interaction of N particles. As could be expected for
strongly interacting particles that all experience each oth-
ers force, the radius is independent of N to leading order.
Therefore, for large enough N, gravity must become im-
portant, and ultimately the Schwarzschild radius Rz will
exceed R, for some critical Nz. The soliton will then be-
come a black hole. In this paper we investigate the possi-
bility of there being a finite range of N below the critical
Nz for which gravity is strong enough to stabilize the sol-
iton against single-particle (N =1) decay. The scale at
which gravity becomes strong is

Rs
R

2GM(N) 8rr
G(Nf ) —1

R 3

or roughly for Nf -Mp~,„,k (where Mp~», k
——G ' ).

Note that because both mass and size depend on the in-
verse of e, this parameter drops out of the scale, Eq. (6).

For the purpose of investigating the above possibility,
both at the nucleon scale (f -90 MeV) or at some other
scale, for example, the strongly interacting Higgs sector
of the electroweak interaction (-TeV), we develop the
coupled equations for the matter and gravitational fields,
and discuss the properties of an approximate solution.

II. FIELD EQUATIONS

For the gravitational fields the action density is (cf.
Ref. 5)

R&—g,1

16~G

where G is Newton's constant, R is the Ricci scalar cur-
vature, and g is the determinant of the metric g„.We
also define L =L &—g for the Lagrangian L of the
matter field F, and construct the total action

I= J (Xs+X )d x . (8)

The second equality follows for the radius that minimizes
this mass:
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The coupled field equations for the matter and metric
functions emerge as the conditions that yield vanishing
variation of the action with respect to the metric and
matter fields. They can be written as

rewrite the Lagrangian using the metric of gravitating,
static, spherically symmetric geometry, i.e., the
Schwarzschild metric. The derivatives of U in spherical
coordinates are

5X 5X

5F "5(B„F)
G" =—S~GT"

(9)

(10)

B„U= ( —sinF+ i r rc. osF )F',

B&U =i r.8 sinF,

B&v=ir (}(isinFsinH.

(19)

where 6""=R""—
—,'g""R is Einstein's curvature tensor This allows us to express L . We also need the F

„

in
and T" is the matter stress-energy tensor: spherical coordinates to express L4.

BLT":——g" L +2 Bg„„
For static, spherical geometry, the metric tensor takes

the Schwarzschild form

gQQ=e g]] = e g22 =

F,e 2i(r——8sin F+r (}(}sinFcosF)F',

F„& 2i(r——P sin F rH —sinF cosF)F'sinH,

Fz& ——2iv"r sin&sin F .

Hence, after some algebra,

(20)

g33 —r sin 8, g„o=0 (p&0)

goog =1, etc. , &—g =e "+ r sinH,

and the line element is

(12) L2= (g "F' +g sin F+g sin Hsin F),
2

L4= — [g "F' sin F(g +g sin 8)l
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(21)

BL d BL , , 2 BL
BF dr BF' r BF' (14)

where primes denote derivatives with respect to r.
We now specialize to the Skyrme Lagrangian (cf. Ref.

4)

ds2 e2v(r)dr 2 e2k(r)dr 2 r2d82 r2sin28 dg2 (13)

where the metric functions v and A, depend only on r.
Then the matter-field equation can be written (writing
now for brevity L =L )

+g g sin Hsin F] .

We can now compute the four nonvanishing components
of the rnatter stress-energy tensor, Tp Tppg p, and then
insert the Schwarzschild metric to obtain Einstein's field
equations, which together with the matter-field equation,
are coupled di6'erential equations in the two metric func-
tions k and v and the matter field F. Einstein's equations
are

L =L2+L4,

L2 ——

2

tr(B„UB"U ),

tr[(B„U)U,(B„U)U]
32e

tr (F„„F('"),
32e

where the field U is a unitary SU(2) matrix, so that

B„v=—U(B„U )U

which is used to obtain

F„„—= [(B„v) v', (B„v) v']

=a.va„v'—a„Va.V' .

The hedgehog ansatz is

U=cosF{r)+is-r sinF(r),

(15)

(18)
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where Eqs. (21) give

f'2 22q, 2 s F
e +
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(22)

where the components of ~ are the Pauli matrices for iso-
spin, and r is a unit radial vector. Because we want to
study the Skyrmion in strong gravitational fields and be-
cause of the spherical symmetry of the problem we

1 sin F 2~, 2 sin F
2e F' +

2e2 ~2 I
2

(23)

The matter-field equation, Eq. (14), can now be written
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2sin F " sin2F z 2 . 2sin F sin2F sin F sin2F 2~e =0,
x X

x =ef r, F=dF/dx . (24)

In summary we have to solve the coupled field equations,
Eqs. (22) and (24).

with L given by Eq. (23). Because the metric function is
contained in L, this cannot be used to calculate A. , but its
"solution"

III. TOPOLOGICAL CHARGE 8aGf r 'r dr
T 0

(29)

Define, in close analogy to Skyrme,

e& ~&S S&S

S:—UBU, e= 1

24m

The covariant divergence is

(25)

suggests the identification of the mass:

M(r)=4' f To r dr .
0

(30)

For weak gravitational fields, this with Eq. (23) yields Eq.
(1). While Eq. (30) does not provide a means of calculat-
ing M, it shows that it requires only a partial solution to
the metric to calculate it: namely, A,(r),

1 „c
M(r)= "

(1—e-"~').
26 (31)

(26}

where ei' ~r is the (constant} fully antisymmetric tensor.
The second line vanishes for the same reason that the
divergence of the Skyrme current vanishes (i.e., it van-
ishes as an algebraic identity and not as a Noether
current arising from an invariance of the Lagrangian).
Corresponding to the vanishing of the covariant diver-
gence, the conserved charge is

Q= f i/ —g B d x =ce ~r fS SpS d x . (27)

For the hedgehog ansatz, Eq. (18), this gives Q =N for
boundary condition Eq. (2).

IV. APPROXIMATE SOLUTION

p(x)=ef GM(x) .

Then we can write Eq. (28) as

(32)

d p(x) 2p(x)
1 — p(x)+q(x),

dx x
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Keeping in inind the scale, Eq. (6), at which we want to
solve this problem, we introduce, in addition to the di-
mensionless length x of Eq. (24}, the dimensionless mass

The first of Einstein's equations can be written

[r ( 1 —e "'"')]= 8n Gr L = —8rrGr To
dT

(28)

In order of magnitude, F/N is independent of N [see Eq.
(2)]. So far we have just rewritten Einstein's first equa-
tion in terms of the mass. However, by writing

p(x) =exp 2f p d—x /x f (p+q )exp 2f p dx" /x"
0

(34)

q(x) «p(x), sin F=—,
' (for large N) .

Then

(35)

we can show, a&ter some algebra, and using the second of
Einstein s equations in Eq. (22), that the vanishing of the
functional variation of M with respect to F(r), implies
that the matter-field equation, Eq. (24), is satisfied. We
shall use this principle to get an approximation to M.

According to Eq. (6), gravitational binding will be im-
portant either for large N, or large f„orboth. The
analysis is dictated by the size of N. Consider first large
N. In that case,

de(x ) 2p, (x )
p x

dx x

23Rs 2 Fp(x)—:— (1+x')
4 R

(36}

We see that in the large-N limit, the problem depends
only on Rs/R cc G(f N), and not on e, or separately on

f or N provided that F(x) scales with N. Therefore it
can be solved universally for all energy scales so long as
Eq. (35) is satisfied. We solve this equation using for F(x)
an ansatz whose parameters we vary to get a minimum
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We can systematically search for particle stable solu-
tions of Eqs. (33) in the small N domain by a series of cal-
culations in which the critical N =Nz for which
R&/R =1 is varied from 3,4, . . . , in each case calculat-
ing the mass for %=1,2, . . . , Nz, and testing whether Eq.
(39) is ever satisfied. Again we find that radial stability is
lost at Rz/R =0.25, before gravitational binding is very
strong. Consequently, no stability with respect to parti-
cle emission exists. The results are summarized in Table
I.

V. SUMMARY

We have investigated Skyrmions in general relativity at
all energy scales for the purpose of learning whether
stable or metastable stars consisting of a single topologi-
cal soliton might exist. The size of Skyrmions is indepen-
dent of the topological quantum number N, so that they
must become black holes for sufficiently large N. Below
the critical point, gravity contributes about 15% binding.
However, loss of radial stability against collapse occurs
before the binding is great enough to provide single-
particle stability. On the nucleon scale where f =70
MeV, the critical topological number is N, =10' in con-
trast with neutron stars where the critical baryon number
is =10 . The critical mass on the nucleon scale is
M, =0.5 X 10 Mo. We do not find stable or metasta-

ble Skyrmions between X =1 and the black hole, at any
energy scale f„.Such mini black holes could have been
created at the beginning of the Universe. It is unlikely
that conditions favorable for their creation would occur
at later times.
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