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With the off-shell one-loop calculation for massless non-Abelian gauge theories in the general co-
variant gauge we study properties of the gauge coupling renormalized at finite temperature and at
finite density, mainly focusing on its dependence on the (finite) baryon-number density pz (or on the
chemical potential pz). The strong and severe vertex dependence is shown to come out for the p&
dependence as well as on the temperature (T) dependence: In terms of the parameter (=ps /T the

coupling defined through the three-gluon vertex shows a 1n
~ g ~

behavior, whereas the one defined

through the fermion-gluon vertex shows a strong g2 behavior. This strong vertex dependence sur-

vives even at T =0. Difficulties appearing in the perturbative calculation of physical quantities, in-

dicated by this disaster, are discussed. We also discuss what insight might be gained from the

present analysis for the "(magnetic) screening "of effective charge.

I. INTRODUCTION

In previous papers' (hereafter referred to as I) in order
to study the perturbative properties of non-Abelian gauge
theories at finite temperature we carried out one-loop
finite-temperature calculations in the general covariant
gauge. The calculation was done in the "magnetic"
prescription because it is known that the magnetic field
is screened less than the electric field, if at all, and gives
dominant contributions at 1east at long distance. With
the result obtained we studied extensively the tempera-
ture dependence of the effective coupling renormalized in
the "magnetic" prescription at a nonzero finite tempera-
ture and also discussed its implications to the "(magnetic)
screening" of effective charge. The effective gauge cou-
pling was determined by integrating the coupled
renormalization-group equations (RGE's) satisfied by
the coupling under changes of the renormalization
momentum p and of the renormalization temperature T.
The results of our analyses show that the effect of temper-
ature manifests itself as a powerlike behavior of the (in-
verse of) coupling on the parameter g:—T/p, in sharp
contrast to the logarithmic dependence on the momen-
tum p, and that the strong vertex dependence of the cou-
pling is shown to come out irrespective of any choice of
gauges. It is also pointed out that "magnetic screening"
strongly depends on the vertex through which the
effective charge is defined, which has not been recognized
by considering only the propagator as in previous works.
These results strongly force us to alter, at least in some
physically interesting situations, the conventional as-
sumptions about the coupling at finite temperature, and
pose a question for the perturbative treatment of field
theory at finite temperature (FT ).

In papers I, however, we only studied the case where
effects of the finite baryon-number density were neglect-
ed. This is because in the presently interesting physical

phenomena, such as the quark-gluon plasma and the evo-
lution of the early Universe, the baryon-number density
is negligibly small. On the other hand, recently much at-
tention has also been paid to the study of high-density
systems. Taking this fact into account we should say
that it is also important to study properties of field theory
at finite (especially at high) density. In the present paper
we focus our attention on this subject, especially on its
perturbative regime.

To be more concrete we carry out under the real-time
formalism of FT the one-loop calculation in non-
Abelian gauge theories with massless fermions, which are
interesting in a theoretical as well as a practica1 sense, at
finite temperature and density in the general covariant
gauge. With this result we study how the gauge coupling
depends on the density or on the chemical potential that
couples to the conserved baryonic charge. As is well
known in thermodynamics the baryon-number density pz
can be expressed as a function of the reduced chemical
potential of the fermion g (=—ps /T, with pit the chemical
potential) as

(2s+1)nit
(0'+ '0)+

where the ellipsis denotes correction due to interactions, s
and nz are the spin and baryon number, respectively, and
P= 1/T. Thus the effect of the finite baryon-number den-
sity can be analyzed through the effect of the finite (re-
duced) chemical potential of the fermion.

Throughout this paper we bear in mind physical pro-
cesses that take place in a thermoequilibrium system at
the temperature T with the finite baryon-number density

pz, or with the finite chemical potential pz. In the next
section we present the coupled renormalization-group
equations at finite temperature and density satisfied by
the renorrnalized gauge coupling. Integrating these
RGE's we introduce a scale parameter A(T, ps), in terms
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of which the temperature and chemical potential depen-

dences of the coupling is characterized. In Sec. III we

perform the one-loop calculation and the result for the
scale parameters is presented. The T and pz depen-

dences of the coupling are explicitly determined. The
conclusions of this paper and several discussions are
given in the last section.

II. RENORMALIZATION-GROUP EQUATIONS
AT FINITE TEMPERATURE AND DENSITY

workers, '" by introducing as a renormalization point the
following three quantities: the renormalization momen-
tum p, , the renormalization temperature T =gp, and the
renormalization chemical potential" Ps =g—T. T and Ps
are chosen arbitrarily, as is well known for the renormal-
ization momentum JM, not necessarily to be chosen to be
equal to the temperature T and the chemical potential p~
themselves that characterize the environment in which
the process considered takes place. Thus the renormal-
ized coupling a satisfies the following coupled RGE's un-
der changes of 1u, T (—=gp}, and ps (=gT)—:

Let us consider non-Abelian gauge theories (the gauge
group 6 is assumed to be the compact Lie group, whose
structure constant is f' ) with massless fermions in the
general covariant gauge. The Lagrangian is

8 1n}u
=P (a, g, g)= ba (—1+ca+ ),

=P,(a, g, g)

(2.6a)

,'F„'g—'"—
2(1 —a) (g, g)a'[1+np(g, g)a+ ], (2.6b)

+(g„c ')(d"c'+gf'bd A "c

+ g g(i 8+g A 'T')g, (2.1)
=P~(a, g, g)

pg(k k}—a'[1+rig (4 0}a+ 1 (2.6c)
where all the notations are conventional, e.g., F„'„is the
covariant curl of the gauge field A „',

F„' =B„A'„—B,A„'+gf' d A b A d, (2.2)

and c is the ghost field, etc. Renormalization constants
Z s are also defined conventionally, e.g., Z3 is the gluon
wave-function renormalization constant, etc. , and are
constrained by the Ward-Takahashi identities

'2
Z] Z]

(2.3)
Z3

Z 'j

Z3

and

g =(Z, 'Z', )gs, 1 —as ——Z3(1 —a), (2.4)

where gz and az are the bare coupling constant and the
bare gauge parameter.

Throughout this paper we use the coupling a defined
by a:—g /4m for convenience, and define the coupling
renormalization constant Z, by a =Z, 'a&. Then we
have three expressions for Z, 's:

Z, (3G) =Z1Z3

Z (gG)=Z iz3 Z 3

Z, (fG)=(Z, ) Z3 'Z2

(2.5a)

(2.5b)

(2.5c)

which correspond to couplings defined through the
three-gluon (3G), the ghost-gluon (gG), and the fermion-
gluon (fG) vertices, respectively.

As mentioned in Sec. I, in this paper we consider phys-
ical amplitudes representing processes that take place in a
thermoequilibrium system at the temperature T with the
finite baryon-number density pz, or with the finite chemi-
cal potential p~. The renormalized gauge parameter a is
then to be considered a constant' to be fixed at the be-
ginning. In the present finite temperature and density
case renormalization of the coupling a is carried out, as a
generalization of the prescription by Umezawa and co-

where a =a (p, g, g). P functions are calculated through

8 lnZ,
(a&k 0}= a a,a,y (/x)& x p&k&0

cutoff Axed

(2.7}

The leading and the next-to-leading coefficients b and c in
Eq. (2.6a) are constants independent of the choice of re-
normalization schemes and of gauges,

C=

11C2(G) 4T(R}—
6

17C2(G)—10Cz(G)T(R ) —6C2(R ) T(R )

2[11C~(G)—4T(R)]

(2.8)

(2.9)

in[A((, g)/A] = ——I '
[p&(g, g}d in)

+p~(g, g)d in/]

= ——[z,'"(g,g) —z,'"(g=g=o)],

(2.11)

where A=—A(/=/=0), and Z,"' denotes the leading or-

while other coefficients including the leading ones p&(g, g)
and p&(g, g) in Eqs. (2.6b) and (2.6c) are not. For exam-
ple, in the so-called modified minimal-subtraction (MS)
scheme p's vanish identically. In the above expressions
gauge-parameter a dependences are not shown explicitly.

Integrating the above ROE's with a suitable boundary
condition, ' ' we get [by the use of Eq. (2.7)]

1

b in[@/A(g, g)]
c ln[( bc/)in[@/ A(g, g)] I

b ln [p/A(g, g)]
with the introduction of g- and g-dependent scale param-
eter A(g, g) by
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der coeScient of the coupling renormalization constant

Z. :

Z. =1+Z."'a+ (2. 12)
3

The fact' that the ultraviolet divergences in FT appear
only in the contributions from the zero-temperature and
the zero-chemical potentials guarantees that the diver-
gent parts of Z,"'(g, g) and of Z,"'(g=(=0) always can-
cel out in Eq. (2.11): namely, that the ratio of the scale
parameter is always finite. It is to be noted that Eq.
(2.11) is nothing but the Celmaster-Gonsalves theorem"
on the renormalization-scheme dependence (applied to
the present situation}: Up to the leading one-loop order
the g (=—T/p) and g (=Pa/6 dependences of the cou-

pling can be completely determined by calculating the ra-
tio of scale parameters through Eq. (2.11).

III. EFFECTIVE COUPLING AT FINITE TEMPERATURE
AND DENSITY

A. Renormalization prescription

In massless non-Abelian gauge theories (2.1) we carry
out the off-shell one-loop finite-temperature and density
calculation in the real-time formalism of FT, and evalu-
ate various renormalization constants Z s, which allow
us to determine the coupling (effective charge) renormal-
ized at finite temperature, as shown above. It is to be
noted that, because Lorentz invariance is explicitly bro-
ken in FT due to the existence of a heat bath whose rest
frame specifies the preferred frame, when defining a re-
normalized theory besides carefully specifying a subtrac-
tion momentum we should also be careful about the
prescription for how we determine the subtraction part of
each quantity (self-energy, vertex, etc.) by fixing our eyes
on what component (temporal and/or spatial} of the
quantity we respect. The renormalization prescription
used in this paper (to evaluate Z s) is the same as those
in papers I, and is referred to hereafter as the magnetic
momentum-space subtraction (MOM) scheme, In this
MOM scheme we choose the "static" spacelike subtrac-
tion momentum' and the "magnetic" prescription' to
define the subtraction part. (For more details, see I.) It is

FIG. 1. The three-point vertex, P I +72~ p3.

also to be noted that in the MOM scheme when calculat-
ing the three-point vertices, p&+p2~ —p3, we perform
the subtraction at the collinear momentum configuration

p& (0, 0——,0,p)= —pz/2=P3, (3.1)

13(po Pa—) =—13po (3.3)

Note that in the fermion propagator formula (3.2) we

only give the so-called physical component necessary to
carry out the leading one-loop calculations (in which we
are interested). Then, as is obvious from the above-
mentioned facts, all contributions to Z factors without
internal fermion lines are exactly the same as those in the
zero-density case, which have already been calculated in
I. Therefore, in this paper we only present the results
coming from contributions with internal ferrnion line(s).

Our subtraction method is fully explained in I. As for
the 3G vertex, it is worth mentioning here concretely how
we determine the subtraction part. Our subtraction pro-
cedures are as follows. First, we parametrize the 3G ver-
tex as

with p2 always attributed to a "gluon, " see Fig. 1.
All the Feynman rules except the fermion propagator

are completely the same as those in the zero-density
(chemical potential) case, and thus are not given. The
fermion propagator is'

S "& (p)=i5" (gf)~&

1 . , ~(po) @—Po)
X —2n.i5(p )

p e +1 e "+1
(3.2)

where

f ' ' '(Ig» [(p& —p2)„A(p', ,p', ,p,')+q„'"'&(p f,p', ,p', )]+(cyclic permutations)I

+ I "„,&„,l(p& p2)„,c(p~ pq p3 )+q„"—'D(p f,pq, p3 )]+(cyclic permutations) J+ ), (3.4)

where a,- and p, are internal and Lorentz indices of the
gluon with momentum p, (p, =0, Fig. 1), and q'' ' is a
momentum constructed out of p, and p2 so as to be or-
thogonal to p, —p2. At our collinear momentum subtrac-
tion point (3.1) q

' ' and q' ' automatically vanish and
also 8 (p3,p, ,p2) vanishes. Furthermore, the terms indi-
cated by the ellipsis in Eq. (3.4) add up to zero. Next, we
subtract out at the subtraction point (3.1) the terms in the
first set of curly brackets in Eq. (3.4). This is possible be-

cause at our collinear momentum configuration p3 —p&
vanishes and A(p„p2, p3)=A(p2, p3,p, ) and thus the
terms in the first curly brackets are completely subtract-
ed. Those terms in the second curly brackets, which are
not included in the subtraction part, are the only contri-
butions that remain after subtraction.

Finally, it is worth mentioning the fact' ' that the
spirit of the rnomenturn-space-subtraction schemes is to
perform the subtraction by setting (or choosing) the sub-
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traction point T, p~, and LM to be equal to the tempera-
ture T, the chemical potential }Ltd, and the energy scale Q,
respectively, which characterize the process considered.
The coupling a (Q, T,ps) thus defined is nothing but the
effective or (anti-)screened charge that incorporates all
the short-wavelength modes satisfying A, & Q ', and
should work, on a physical ground, as a "good" expan-
sion parameter for perturbative analysis of the process
considered.

B. Effective coupling, or the ratio of scale parameters

Now we present the final result for the ratio of scale
parameters A(g, g), Eq. (2.11), or the coupling renormal-
ized at finite temperature and chemical potential
a (}u,g, g), Eq. (2.10). Let us express the ratio as

b in[A(g, g) /A( g, g =0)]

l. Exact expressions

(i) 36 vertex:

+~3og(g, g) = —,
' T (R )[8F2(2$,g)+ 8FO(2(, g)

—5Fz(g, g) —5FO(g, g)], (3.6a}

@'3'a(k 0)=@3'G(C 0)=0 .

(ii) gG vertex:

(3.6b)

where a is the renormalized gauge parameter, g and g are
the scaled temperature and chemical potential variables,
g= T/p, , and (=Ps/T. 4'~'((, g) and 4 depend explicit-
ly on the vertex through which the coupling is defined.

We give at first the exact expressions of 4' 's for the
three vertices 36, gG, and fG.

j=0

(3.5)

O'G'(g, g) =-,' T(R)[F,(g, g)+Fo(g, g)],

(iii) fG vertex:

(3.7a)

(3.7b)

@IG(g,g) = ,'C2(G)[ ——F~(2),g) —Fo(2(,g)+4F~(g, g)+4Fo(g, g)]
——,'C2(R)[ —F~(2(,g) —5FO(2$, ()+8F2(g, g}+8Fo(g,g)+8(m /3+( )g ]

+ ,' T(R )[F2(—g,g)+Fo(g, g)],

4jG(g g)= ~~~C2(G)[F2(2$ g) 7FO(2( g)—16F2(g g)——16Fo(g g) —16G(2( g)]

', C (R)[F (2—(,g)+3F (2(,g) 8F (g, g) —8F (g, g)+—46(2(,g)],

@fG((,p) = —,', C2( G)[F2(2(,0) +F0(2(,()]

In the above expressions (3.6)—(3.8) various functions are defined as follows:

(3.8a)

(3.8b)

(3.8c)

Fo(gg)= g f —dx
&

+ ln —,$~0,e"+&~1 e" -&+1 (3.9a)

F2(g g) = g f —dx + ln
2 o e &++1 e"—&+1 1 —x

2

3
+0' 0' (3.9b)

G(g, g)= —
g dx e"+~+1 e" &+1 x g —1

(3.9c)

where P denotes the principal part.
It is to be noted that for 3G and gG vertices the ratio

4(g, g), thus the chemical potential dependence of the
coupling a (g, g), is gauge independent

Next we give various limiting behavior of the ratio C,
Eq. (3.5), in which we are interested in the actual physical
situations.

and

4,G = ,' T (R )(2~'g'+ p)—g'+O(g'),

[ —C~(G)+2C2(R)+ ,'T(R)]—
+—[2C~(6)+C~(R )]

(3.11)

43G -+' T(R )(2~ g +p)Q+ O(g }, (3.10)

2. Behavior at g'=0 unth g keptPxed

In this limit
~

}Ms
~

—T &&}Lt. The ratio 4 correspond-
ing to each vertex behaves as

2

C, (G) (2n'g'+P)g +O(g') . (3.12)

When we set the renormalization point p, T, and p,~ to
be equal to Q, the momentum that characterizes the pro-
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cess considered, T, the temperature of the environment,
and JM&, the chemical potential of the fermion that parti-
cipates in the process, respectively, then the coupling in
this limit may be suitable to describe the high-energy pro-
cess, in which fermions with chemical potential JM& parti-
cipate, taking place in the thermal reservoir.

and

Cia =4 a - ', T(R—)ln1 f1 +0(1) (3.13)

iIifG ——2Ci(R)g g + I [Ci(G)——', C2(R)+ ', T(R }]—

——', a[C2(G) —
—,",C2(R )]

+ —,', a C2(G)Iln1(1+O(1)

(3.14)

The coupling in this limit may well describe processes in
which high-density fermions participate.

It is to be noted that the two limiting procedures
(~ac and 1(1~~ are mutually commutable, and that
in the limit of both g and

1 g1 becoming large the behav-
ior of Ci's are again given by the above Eqs. (3.13} and
(3.14).

3. Behavior in the limit
1 g 1

~ ov with g' kept fixed

In this limit p- T g&pz. The behavior of 4's is as fol-
lows:

theory (GUT) in a symmetric phase there are little
changes from this case, and for any other non-Abelian
gauge theories essential features do survive.

At first, let us see the chemical potential dependence.
In Fig. 2 we show the g( =)ttn /T) dependence of the ratio
of scale parameters in[A( g, g) /A( g, g =0)] with
g(:—T/p) kept fixed at /=0. 5. Because the ratio calcu-
lated through the fG vertex depends on the choice of
gauges, we give here results of two typical gauge choices,
the Feynman gauge (a =0) and the Landau gauge (a = 1).
For 36 and gG vertices ratios are gauge independent.
This figure shows the tun dependence of a '()u, g, g} to be
used for processes characterized by the energy scale p,
taking place in a thermal reservoir at temperature T [see
Eq. (2.10)]. At a glance we can see that the vertex depen-
dence is significant and severe. For the 3G and gG ver-
tices the ratio of scale parameters, thus the coupling, in-
creases monotonically and shows a logarithmic
dependence as 1(1 becomes large, whereas it decreases
monotonically and shows a quadratic 1/1 dependence at
large

1 g1 for the fG vertex irrespective of choice of
gauges [see Eqs. (3.14) and (3.15)]. Figure 3 shows the
(()( =(1(1=

1 pi) 1
/p) dependence of In[A(g, g)/A(g

=(=0}]in the limit T~O. From this figure we can see
the pit dependence of a ()I, T =O, hatt} to be used for pro-
cesses taking place in a cold environment. In this case al-

1.0

+(1—P )ln11 —(()1],

G(g, g)~ —,'ln11 —(()i1

(3.16)

(3.17)

where (()—:
1 ps 1/)p=)1 )1. With these results we easily

get the expressions of iIi s in this liinit. It is worth notic-
ing that the behavior of 4 s in the limit i|)~0 coincides
with that obtained by taking the limit T~O in the (=0
formula, Eqs. (3.10)—(3.12), studied in Sec. IIIB2, and
that those in the limit i)}~ao also coincide with those in
the limit

1 g 1

~ ac and subsequently (~0 with

4101 =4.
Taking this limit leads gs to the zero-temperature field

theory in which fermions have a finite nonzero chemical
potential. Such a theory may be suited to study the effect
of a nonzero baryon density in the cold environment.

C. Numerical analysis

4. Behavior in the F~O limit with nonzero Pv

In this limit 1(1~ac and (~0, and the functions
F, (g, f„)(i =0,2) a'nd G (g, g) defined in Eqs. (3.9) smooth-

ly approach the following compact forms:

Fo(g, g}~—,
' [(I+((i }ln(1+(()}+( I —(() }In

1
1 —P 1 ], (3.15)

F,( g, g)~—
—,'(()'+ -,' [( I +P')In(1+ P )

C)
II

~+t

QJl

QP

0.5—

- 0.5—

QCD

In order to illustrate how the coupling depends on the
chemical potential as well as on the temperature we
present here the result of numerical analysis on the ratio
of scale parameters. For brevity in this section we con-
sider QCD with four flavors. For the SU(5) grand unified

FIG. 2. The g(:—pe/T) dependence of the ratio of scale pa-
rameters In[A(g, j)/A($, /=0)] with g(:—T/p) fixed at /=0. 5.



3216 HISAO NAKKAGAWA, HIROSHI YOKOTA, AND AKIRA NIEGAWA 38

C3
II

II

UP

L g

QJl(
QCD n) -g

(T=o)

-2
0

FIG. 3. The P(—=
~ ps

~
Ip) dependence of the ratio of scale

parameters in the limit T~O. For the fG-vertex case it shows a
singular behavior at P= —,

' as ln
~

1 —2P
~

in the general covari-

ant gauge except in the Feynman gauge, see text.

IV. CONCLUSIONS AND DISCUSSION
In this paper in order to study properties of gauge field

theory at finite temperature and density, especially in its

though two couplings defined through the 36 and gG ver-
tices asymptotically coincide (in/ increases at large P),
the coupling defined through the fG vertex again shows
completely different behavior (P decreases at large P}
from the above two cases. It is to be noted that except in
the Feynman gauge (a=0} the coupling defined through
the fG vertex afG has a logarithmic singularity at /= —,

'

due to the function G(g, g) [see Eq. (3.17)]. This singu-
larity appears only at the exact zero temperature (T =0),
it is smeared at finite temperature, and eventually disap-
pears as T increases. The gauge dependence of this
singularity indicates that in the calculation of physical
quantities the singularity of the coupling ofG at
should be canceled out with the should-be singularity to
appear in the perturbative coefticient: namely, that the
perturbative calculation near P= —,

' becomes almost
meaningless.

From these results we understand that we cannot define
a coupling that can absorb simultaneously the large JM&-

dependent radiative corrections to the three (i.e., 3G, gG,
and fG) vertices. This fact indicates that with any choice
of coupling we always face the problem of large higher-
order corrections that may invalidate the results of low-
order analyses.

perturbative regime, we carried out of-shell one-loop cal-
culations in non-Abelian gauge theories with massless fer-
mions in the general covariant gauge. Along extensions
of previous works' calculation was done in the finite-
temperature generalization of the momentum-space-
subtraction scheme supplemented with the "magnetic"
prescription. With the results we studied the tempera-
ture and the chemical-potential dependences of the cou-
pling a(IM, ),g) (renormalized at finite temperature and
density), in terms of which perturbative calculation is
carried out. The coupling a(IM, g, g) can be expressed in
the leading one-loop approximation as

1

b in[@ /A( g, g) ]
(4.1)

and thus its g= T/p and g=tus /T dependences are com-
pletely characterized by the scale parameter A(g, g).

Main observations of the present paper are as follows.
(1) The chemical potential dependence of the coupling

a (IM, g, g) through the parameters g
—=ps /T at fixed

g:—T/p, shows a severe vertex dependence. The cou-
plings defined through the 36 and g6 vertices show
ln

~ g ~

increases, while for the fG-vertex case the cou-
pling shows a strong g decrease.

(2) Even at T =0 the strong vertex dependence still
survives exactly the same as above. The pz dependence
of a (p, g, g) through the parameter P=

~ ps ~
Ip shows a

logarithmic increase for the 36 and g6 vertices, while it
shows a quadratic decrease for the fG vertex. The cou-
pling defined through the fG vertex, afG, develops a
gauge-dependent logarithmic singularity at P =)

~ g ~

= —,',
which might cause trouble in the perturbative calculation
of physical quantities near P = —,'.

From these observations we conclude that not only on
the temperature dependence but also on the chemical-
potential dependence the vertex dependence of the cou-
pling is so strong and severe that we cannot define a sin-

gle coupling that can absorb simultaneously the large ra-
diative corrections to the three types of vertices that ap-
pear in a given process with definite p, T, and p~. In a
present renormalization prescription at the collinear
momentum configuration the coupling defined through
the fG vertex always shows completely different behavior
from those defined through the 36 and g6 vertices. To-
gether with the analysis in I we conclude that with any
choice of coupling we always face the problem of large
higher-order corrections that may invalidate the results
of low-order perturbative analyses. Namely, we cannot
get reliable low-order perturbative results for processes,
in which ferrnions with nonzero chemical potential parti-
cipate, taking place in a high-temperature environment,
except for the case of very low temperature and small
baryon-number density.

Finally, we give a few comments on the infrared behav-
ior at T =0, p=

~ ps ~
IILi, &~1 of the present result in

conjunction with the "screening" of effective charge. Be-
cause we have already discussed the effect of temperature
in papers I, we here mainly discuss the effect of chemical
potential.

(i) The coupling a (p, T =0,Ius) defined in the "magnet-
ic" prescription behaves, as is shown in Sec. III C, in the
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infrared limit P »1 as

a '(p, T =0,ptt)- b[ln(@~A) 4'
l r-o, y=kl kl ~ ' (42)

in/ for 3G and gG vertices,
for fG vertex . (4.3)

and

5Z3 —T(R)a 1ng+0 (1),
5Zz ——Cz(R )a/ +0(in/),

(4.4a)

(4.4b)

5Z, —T(R )a in/+ 0(1),
5Z, —Cz(R)ag +0(ln(('t),

(4.Sa)

(4.5b)

This result (leading behavior does not depend on the
choice of gauge ') implies that the "magnetic" charge
defined through the fG vertex is screened, whereas those
defined through the 3G and gG vertices are not (nor even
show anti-"screened" behavior). "Screening" of the
effective charge due to the increase of baryon-number
density strongly depends on the choice of vertices
through which the effective charge is defined.

(ii) To see in more detail the origin from which the
screening (anti-"screening") effect comes from, we
present the infrared (P » 1 ) behavior of chemical-
potential-dependent corrections to each self-energy and
vertex. They are

where we write 5Z =Z —1 with Z =Z(g, g)
l T o—Z((=(=0), and a is a coupling a:g—/4' There are

no chemical-potential-dependent corrections to the ghost
self-energy and to the ghost-gluon vertex. From these
types of behavior we can see that chemical-potential-
dependent fermion self-energy correction and correction
to the fG vertex act to screen the effective charge, correc-
tion to the 36 vertex acts to screen, while gluon self-
energy correction acts to anti-screen the effective charge.
The infrared behavior of chemical-potential-dependent
corrections to the coupling (effective charge) is

5Z, (3G) -5Z, (gG) ——T(R )a 1ng+ 0 (1), (4.6a)

5Z, (fG)-Cz(R)ag +0(in/), (4.6b)

namely, the effective charge defined through the 36 and
gG vertices is antiscreened, while that defined through
the fG vertex is screened as the baryon-number density
becomes high.

(iii) It is to be noted that for any self-energies and ver-
tices, thus for any couplings, leading chemical-potential-
dependent contributions in the infrared limit (P »1) are
in fact gauge independent, and thus may represent physi-
cal effects on the (anti)screening of the effective charge.
Next-to-leading 0(in)) contributions to the fG vertex
depend on the choice of gauges, while those to the 36
and gG vertices do not (As f.or the temperature-
dependent corrections, even the leading contributions de-
pend on gauges, see papers I.)
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In the present MOM renormalization scheme the three-point
vertex is renormalized at the asymmetric collinear momen-

turn configuration (3.1) (see Fig. 1). Then we can get a
reasonable estimate on the value of the parameter g—= T/p
for processes taking place in a thermal reservoir at the tem-

perature T by the following procedure: Average energy of
the noninteracting boson (fermion) in a thermal reservoir at
temperature T is calculated to be E&-2.7T (Ef-3.2'. For

the case of 3G and gG vertices, we can estimate the rnomen-
tum scale p through the relation Eb =(

~ p, ~
+

~ p, ~

+
~ p& ~

)/3=4)u/3, and thus g=T/p=4T/3E&=0. 49. Simi-
larly for the fG-vertex case, E&+2E/=

~ p& ~

+
~
p21+ I p& I

=4p and g'=0. 44.
'For couplings defined through 3G and gG vertices the

chemical-potential- (g-)dependent part is in fact totally gauge

independent, see Eqs. (3.6) and (3.7).


