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Quantum theory of nonlocal vortex fields
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Nonlocal vortex field operators are introduced in continuum (2+1)-dimensional quantum field

theory, through an order-disorder algebra. A general method for the evaluation of vortex correla-
tion functions is established and an explicit operator realization of the vortex field is obtained.

An important problem in quantum field theory (QFT)
is the full description of the quantum theory (mass spec-
trum, correlation functions, scattering amplitudes, . . . )

of the topological excitations of a given system. ' In the
case of sine-Gordon solitons in (1+1)-dimensional space-
time, this problem was solved in the 1970s (Refs. 2 and 3).
More recently, we considered the kinks of P -type
theories, also in 1+ 1 dimensions, and established a gen-
eral method of quantization, based on the statistical
mechanical concept of order-disorder duality (this
method also applied to sine-Gordon solitons) (Ref. 4). In
this framework, the topological excitation creation opera-
tor emerged as the disorder variable, defined so as to
satisfy a certain dual algebra with the basic fields of the
theory. This dual algebra in 1+1 dimensions was such
that the commutation of the disorder (kink) field p(x)
with the basic Lagrangian field (t)(y) applied to the latter
the large-distance behavior of the classical kink: name-

4

p(x, t)P(y, t)=e'" '" «'P(y, t)p(x, t) .

An order-disorder algebra of this kind was first intro-
duced in Ref. 6, in the context of the Ising model. In that
work, a method is provided for the computation of corre-
lation functions involving p. Our method is a generali-
zation of their procedure for continuum QFT.

In this work, we consider the vortices of the Abelian
Higgs model in 2+1 dimensions. In what follows, we es-
tablish a general method for the computation of arbitrary
vortex correlation functions and obtain an explicit opera-
tor realization for the vortex field. The method is a gen-
eralization of the one of Ref. 4 and is, again, based on a
dual algebra similar to (1). Some related ideas on the lat-
tice framework are described in Ref. 7.

The theory is defined by the Lagrangian density

,'F„„F—""+(D„P)"(D"P)+rrt P'P (P—'—P)2 4 4 2

(2)

where D„=B„+ieA„
In 1973, Nielsen and Olesen observed that this model

admitted classical solutions with the long-distance behav-
ior

p(x, t) — poe'"s'"', A;(x, t) — ——Q;arg(x),
fXf~oo

(3)

where arg(x) is the angle of the vector x with respect to
some arbitrary axis in the (x ', x ) plane (e.g. , the x ' axis).
Such a solution possesses a nonzero value for the topolog-
ical charge associated with the identically conserved
current j"=—,'e" ~F &, which is nothing but the magnetic
fiux along the (x', x ) plane. It was called a "vortex. "
We are going to introduce now a fully quantized vortex
creation operator through an algebra which is a generali-
zation of (1). An important difference from the (1+1)-
dimensional case now appears. Observe that the kink
operator in (1) was a local field and the algebra (1) is
based on the concept of y being at the right or at the left
of x. Since in 2+1 dimensions these concepts no longer
make sense, we arrive at the conclusion that an algebra
which generalizes (1) should involve the local fields P(x)
and A(x) and a nonlocal vortex operator p(c), defined on
a certain curve C. The concept of being at the left or at
the right is now exchanged by being inside or outside C.
(Investigations about local vortex operators were de-
scribed in Ref. 9.)

In the same spirit of the algebra (1) and keeping in
mind the asymptotic behavior (3), we introduce the vor-
tex creation operator through the equal-time commuta-
tion rules

and

e'"s'" *'P(y, t)p(x, t;c), y —xE T(c),px, t;crPy, t =
P(y, t)p(x, t;c), y —xE T(c) (4a)

p(x, t;c)A;(y, t)=
1

A, (y, t) ——8";arg(y —x) p(x, t;c), y —xE T(c),
e

A, (y, t)p(x, t;c), y —xET(c) . (4b)
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In these expressions C is a plane curve contained in the t =const plane. T(c) is the minimal surface bounded by C. x
is a point belonging to T(c) and characterizes the center of the vortex, i.e., the point in relation to which the angle
arg(x —y) is defined. This angle is measured with respect to an arbitrary direction characterized by a vector ro.
Without loss of generality we may choose ro pointing in the x direction. The commutation rules above may be gen-
eralized to different times, provided the separations between (y, t) and (x, t) and between (y, t) and the points of C are all
spacelike (otherwise the concepts of being inside or outside T would becoine senseless). For t & t, we just change (y, t)
for (y, t') in (4). For t' & t, we impose [p(x, t;c), (t)(y, t')]=[)M(x, t;c), A, (y, t')]=0 for causality reasons. Observe that
a,.arg(y —x) is the potential of a Dirac string. The above choice of commutation rules implies that the Dirac string goes
from (x, t) to (x, + N) ) along the t axis. This condition, hence, expresses the fact that the Dirac string cannot exist be-
fore the vortex is created. One may verify that (4) is Lorentz invariant by keeping in mind that the Dirac string as well
as the vector ro should also be rotated by the Lorentz transformation.

The algebra (4) is analogous to the one introduced by t Hooft for the Wilson loop in (2+1}-dimensional Yang-Mills
theory. ' "The main difference is that the symmetry in our case is local.

We now generalize for the present case our prescription for the computation of kink correlation functions in 1+ 1 di-
mensions. Extending the arguments introduced in Ref. 4 (and Ref. 6), we write, in Euclidean three-dimensional (3D)
space,

(p( xc, ) )M'(y;c i)) =Z 'f DPD(t)'DA„exp —f d z X+X(S,TL)+ f d P+„5 (z —()
1 2

+ f dri)'+„(S)53(z —rl )
s

+ X (5)

y( )
—iso(z)e(hv) (6a)

A„(z) A„(z)+~(z)—a„8(aV)+8(aV)—a„~(z)1 1

e e
(6b)

[8(hv) is the 3D Heaviside function with support on
5V].

If we choose co(z) =a(z;x,y) = [8(z —x )arg(z —x)
—8(z —y }arg(z —y}], corresponding to a vortex placed
on x =(x,x ) and an antivortex placed on y =(y,y ), we
see that the last term in (6b) corresponds to two Dirac
strings going from (x,x ) to (x, + cc ) and from (y, + cc )

In this expression S(C„C2 ) is an arbitrary surface such
that its boundary is BS=C&UC2. T, and T2 are the
minimal surfaces bounded, respectively, by the plane
curves Ci and Cz. d P are the surface elements along S,
T„and T2. L is an arbitrary curve connecting x and y
and de" is the line element along it. tp„, 4&(s), and X„
are functionals of the fields, to be determined (observe
that we allow 4 to depend on S}. X(S,T,L) is a renor-
malization counterterm, also to be determined, intro-
duced in order to compensate for the eventual singulari-
ties coming from the line and surface terms. Z is the vac-
uum functional.

As in Refs. 4 and 11 we are going to determine 4„,4„,
X„,and X(S,T,L), by imposing surface and path indepen-
dence on (5). Let us take an arbitrary surface S'(c),cz)
such that we also have BS =C&UC2 and call hV the
volume bounded by SUS'. We will assume for simplicity
that the surface S' is always exterior to S. Let us call I
the closed surface made out of S and S' such that

= f s, —f r[a(b, v)=I']. Later on we will consider
5

the most general case.
Let us perform now the following change in the func-

tional integration variables inside b V:

FDirac string p 53(z g) dg
n1 y

p,v P,Va
x, L

[a„,a„]aL(z;x,y) .
1

27Te

In this expression, L is an arbitrary curve connecting x
and y and dP is its line element. The U(1) transforma-
tion which switches from one to another configuration of
Dirac strings is given by (6) with co=aL —a. Since L is
arbitrary, we are going to choose it coinciding with the L
in (5).

The only terms in (5) which are affected by the change
of variable (6) (with to=aL ) are F„„and possibly (Ir„, 4„,
and X„. We assume X(S,T, C) to be invariant under it.
An explicit computation taking in account the properties
of the derivative of the Heaviside function shows that un-
der (6) F„„~F„„+F„,with

F „=— a r=s sd k„5 (z —g) —(p v)
CXL 2 3

e

+—8(aV)[a„,a„]a, .
1

e
(8)

After the transformation (6), we may write the exponent
of the integrand in (5) [E(S)]as

to (y,y ), respectively, along the z axis. Of course, this
is equivalent by a U(1) transformation to a configuration
having a single Dirac string going from z to y along an ar-
bitrary curve. This configuration may be introduced by
choosing tt)(z}=aL (z;x,y) in (6), where aL is the obvious
generalization of a defined by (see the Appendix)
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E(S)=f d z X&+ ,'F—„„F„„+,'(F—„„)+ f d P —f ~d P %„5 (z —f)

+ f d P5%„5 (z —g)+ f dg"[@„(s)+54„(s)]5(z —g)
t

+f d P(X„+5X„)5(z —()+X(S,T,L)
Ti UT2

(9)

In this expression, 6O„, 64„, and 5+„represent the possible variations of the respective functionals under the trans-
formation (6).

Introducing (8) in (9) and imposing the cancellation of terms containing a single closed surface integral, we get

QL
(z;x,y)F""8„,

e

from which we immediately find

QL5tIt"= (z;x,y)F„„B„.
e

(10)

Let us call Vs the volume bounded by S(c,, cz )UT, UTz. Then, we may write 8(b V) =8( Vs ) —8( Vs) (remember we
are assuming S is always exterior to S). Inserting this form of 8(h V) in the second term in (8},which by its turn was
introduced in (9) one may see, making use of (7) that surface invariance forces us to choose

4 (S)=—8(Vs)F„„e"" (12)

whereupon

54 (S)=—8( Vs )F„„e"" (13)

Introducing (8), (10), and (12) in (9), we get

E(S)=f d'z XE+f, d, 'g„+„5'(z —g)+ f ' dpi'@„(S')5'(z —q)+-,'(F„„)'

+ f d P5+„5 (z —g)+ f de"5Ct„(S)5 (z q)—
t

+ f d'P(X„+5X„)5'(z g)+X(S, T—, L)
Tt UT2

(14)

' f d'g„5'(z —g)

+ —[8( V, }—i]a„~,(z;x,y),1

e

A„(S)=—

Let us introduce now (the minus one term is intro-
duced for later convenience; it may be eliminated by a
gauge transformation)

and taking into account this expression for F„„,we find
that the sum of the fourth, fifth, and sixth terms in (14)
may be written as

r4+ t, + r, = ——,
' [F„„(S)]'+ -,' [F„,(S')]'——,'F„„Tt'" .

(17)

Choosing

from which we find that F„(S)=B„A„(S)—B„A„(S)is
given by

F„.(S}= 'a„f d—'g„5'( —g) —(~- )
1' 2

X(S,T,L)=—,'[F„„(S)]

we get

E(S)=E(S')+f d z ,'F„,T""——
+ f d'g„5X~5'(z —g)

(18)

where

+ —[8(V, ) —1][a„,a,]a +T„„,1

e (16a)
Taking (16b) into account and choosing

SX~= ——a~,F„.,
1

(19)

(20)

T„= B„aL d g„5 (z —g)——(p~v) .
1 2

(16b)
whereupon

It follows immediately that we may write (8} as
F„„(S}=F„(S')F„„(S).Inserting (1—1) and (13) in (14) X"=——i3~L (z;x,y)F"1

e
(21}
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we cancel the remaining terms and obtain E(S)=F.(S'),
that is, surface invariance. L independence may be seen

by making the transformation (6) with co =aL —at,
which takes L in L (observe that at coincides with aL ~

on T, and T2). The surfaces T, and Tz are fixed.
Inserting (10), (12), (18), and (21) in the original expres-

sion (5) one may write that awkward expression in the
nice compact form

( p(x;c& )p"(y, c& ) )

=Z ' D D 'DA„

X exp —fd'z [X[F„,~F„„+F„„(S))I

(22a)

with F „(S)given by (16). It is clear now that surface in-

variance is just a consequence that, under (6)

A„(S)~A„(S') and F„„(S)~F„,(S').
Shifting the A„variable of functional integration as

A„~A„—A„(S),we get the equivalent expression

(p(x;c& )p, '(y, c, ) )

=Z ' D D 'DA„

X exp —fd'z[X(D„J~D„Q)], (22b)
L

where D„=B&+ie[A„—A„(S)]. Expressions (22) are
our final result for the vortex two-point function. Mixed
correlation functions may be obtained by just introducing

P and A„ fields in (22) in the usual way. Surface invari-

ance for these functions is attained up to multiplicative
+i aL (z;x,y)

factors e
' '

for P fields and additive factors
(I/e)B„aL(z;x,y), for A„ fields. These ambiguities are
just a manifestation of the dual algebra (4} in the func-
tional integral. By analytic continuation back to the
Minkowski region, the di6'erent possibilities would corre-
spond to the various operator orderings in the correlation
function. Upper vortex correlation functions would be
obtained by just introducing additional external fields
A„(S).

In our derivation, we assumed S' to be always exterior
to S. In the most general case where S' is sometimes ex-
terior and sometimes interior to S, we must subdivide 6V
in regions b, V, such that in each of them S is either exte-
rior or interior to S. We should then perform the trans-
formation (6) in each region b, V; with 8(b, V;) exchanged
by ( —1) 8(EV;), where P =0 (1) for S' exterior (interior)
to S, along with the corresponding obvious modifications
in the subsequent formulas. The final result (22} remains
unchanged and is completely general.

From (22a) and (22b), dropping the renormalization
counterterms and analytically continuing to Minkowski
space, we may extract two equivalent realizations for the
vortex operator ILt(x;c). We first use surface invariance
and choose S(c&,cz) in (22) as S(c&,c2)=(E,
—T~ )U(E —Tz), where E„ is the plane at x =const.
We see, then, that Vs in (15}is the infinite slice between
E„and E, E~, implying that that the second term in (15)
vanishes. With the choices above, we immediately see,
from (22a) and (22b), that the vortex operator is given by
(Minkowski space)

p(x;c)= exp i f d z—F""d A„(S„) = exp ——' f d zarg(z —x)B;F' (z, t)p " e 1R2 T
Z Z

(23a)

or

p(x;c)= exp i fd zj "A„(S„) = exp fI —TZ Z

d'z [P'(z, t)m'(z, t) —n(z, t)P(z, t)]arg(z —x) (23b)

In the expressions above j„=ie[p"D„p (D„p)"p], —
A„(S„)= —(1/e)arg(z x)f„,— 5 (z —g)d g„[A„(S)

Z Z

= A„(S„)—A„(S )], and m=(DO/)'=P* ieA P —is the
momentum canonically conjugate to P. That (23a) and
(23b) are equivalent may be seen by the use of r}„F""=j'
plus integration by parts.

Using the expansion for the operator product e Be
it is straightforward to verify that p, (x;c) as given by (23)
satisfies the dual algebra (4), from which we started.

Let us remark here that the algebra used to determine
the vortex operator just depends on the asymptotic be-
havior of the classical vortex field. The full vortex solu-
tion contains a smooth function f (

~

x
~

), such that
f (0)=0 and f ( 00 ) = 1, that is, a smeared out (around c)
2D Heaviside function with support in R —T (Ref. 8).
Since we want to work with unsmeared fields, in the spirit

of local QFT, we use a Heaviside function in (4) which
means that only the asymptotic behavior (3) is important.
It is interesting to remark that p(x, t;c}creates a vortex
in a definite point of spacetime, (x, t), the curve c being
related to its extension. As a consequence, in order to ob-
tain vortex eigenstates of the Hamiltonian, one would
have to consider the Fourier transform of p(x, t;c)

~

0).
One of the greatest virtues of the method introduced

above is that the evaluation of vortex correlation func-
tions reduces to a standard computation of QFT in the
presence of an external field. We are presently applying
this method to the Abelian Higgs model' in order to ob-
tain explicit expressions for the vortex two-point function
and for the quantum vortex mass. We are now also ex-
tending the method for the case of magnetic monopoles
in the Georgi-Glashow model in 3+ 1 dimensions. '
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APPENDIX

[i);,8 ]arg(z —x)=2m. e"5 (z —x) . (A3b)

Going now to 3D Euclidean space and choosing L as a
straight line parallel to the z axis, connecting
x =(x, —ao ) and y =(x, + ~ ), we may write the last ex-
pression as

[B„,B„]arg(z—x)=2me„„sI dg'5(g —z )5 (z —x) .

Let us demonstrate here Eq. (7) and explain what

aL (z;x,y) is. Let us start by considering the plane z =0
in 30 Euclidean space. The Cauchy-Riemann equation
relating the real and imaginary parts of
lnz(z =

~

z
~

e' "s ' } [t)„,B„)a (z;x,y )=2me„„dP5 (z —g)
p zp, Lp

(A5a)

(A4)

Restricting x and y to finite times: xo=(x,x ) and

yo =(x,y ), we immediately get

e'
t)& arg(z —x)= t)'in

~

z —x
~

(A 1) with

aL (z;xo,yo) —8(z' —x )arg(z —x)
where z and x are vectors in the z =0 plane, implies that

e'JB, B,arg(z —x)—:[t)„Bz]arg(z—x)

=5'ln[z —x/ . (A2)

The derivatives are taken with respect to z. Since the 2D
Green's function satisfying d D (z) =—5 (z), is D (z)
= —(1/2m )ln

~

z ~, it follows that

—8(z —y )arg(z —x) . (Asb)

In the above expressions Lo is the segment of the z
axis connecting xo and yo. The generalization of
aL (z;xo,yo) for arbitrary x, y, and L may be obtained

straightforwardly as

aL(z;x,y)=[8(z —x ) —8(2 —y )]

&& arg[z —x~ (z') ],

or

[Bt,Bz]arg(z —x)=2m5 (z —x) (A3a) where xL (z ) are the points of L. Observe that
aL (z —x )=arg(z —x) and aL (z —y )=arg(z —y).
This and (A5) establish Eq. (7).
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