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Quantum evolution of an unstable field in a de Sitter-space thermal bath
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We discuss the evolution in time, from an arbitrary initial state, of the low-momentum modes of
an unstable field (i.e., the inflation field) which is coupled to a thermal bath in de Sitter space. For
convenience, the thermal bath is modeled as a massless scalar field conformally coupled to a back-
ground de Sitter space. W'e give the exact solution for the Feynman-Vernon influence functional
which describes the coupling of the thermal bath to the inflation field, as well as an exact solution to
a simple evolution problem in which instability of the inflation field is modeled with a negative mass
term, in the manner of Guth and Pi. Coupling to a thermal bath leads, in principle, to viscosity and
momentum-space diffusion; these effects are not describable with a conventional Hamiltonian.
Viscosity and diffusion govern the approach to thermal equilibrium, and compete with de Sitter-
space gravitational expansion.

I. INTRODUCTION

The concept of an inflationary early Universe, ' now
modified to embrace a slow-rollover phase transition, '

seems to be a very successful solution to the problems
which plagued the standard big-bang cosmology. Slow-
rolling inflation raises a number of dynamical questions
concerning the thermal properties of the inflation field 4,
and we begin to address these problems in this paper.
One fundamental problem is that the standard assump-
tion of thermal quasiequilibrium throughout the inflation
period requires a certain strength of coupling between the
inflation field, which we call 4, and whatever fields con-
stitute the thermal bath. Yet such couplings are limited
by the constraint that inflation not yield too large density
fluctuations. Since there are competing requirements on
the thermal-batch-inflation field couplings, we must be
prepared to examine a range of possibilities for expansion
versus thermalization time scales. Moreover, there may
be no compelling reason to assume that 4 is initially in
thermal equilibrium at a very high temperature.

The unstable 4 potential plus de Sitter-space expan-
sion always tends to drive 4 out of thermal equilibrium,
while coupling with the heat bath, which is stable but
subject to expansion effects, tends to restore thermal
"equilibrium" at a temperature which depends on the de-
gree of expansion. In the semiclassical limit these restor-
ing forces can be described as a combination of viscosity
and thermal diffusion, both arising from inelastic scatter-
ing of 4 from the bath field. {The scattering also tends
to destroy quantum phase-coherence effects, leading to an
approach to classical behavior in 4.) Beyond the semi-
classical limit diffusion and viscosity appear as the real
and imaginary parts of a certain function, and are related
by a fluctuation-dissipation theorem.

Our purpose here is to give exact solutions to three
prototype problems which arise when 4 is coupled to a
thermal bath in a de Sitter space. The de Sitter space is
treated as a fixed background metric, parametrized by the
Hubble constant H; because of the time dependence of

the background metric, the concept of true thermal equi-
librium loses meaning, and a canonical thermal distribu-
tion can be at most invoked as an initial condition for,
e.g. , a density matrix. (In a complementary development,
Eboli, Jackiw, and Pi have discussed out-of-equilibrium
quantum thermal dynamics using time-dependent varia-
tional principles akin to those used for the functional
Schrodinger equation. )

The standard machinery for dealing with out-of-
equilibriurn quantum thermal dynamics is the Feynman-
Vernon ' influence functional. One couples a system of
interest —in our cases, the inflation field —to a thermal
reservoir, described by other quantum fields, and then in-
tegrates out the reservoir degrees of freedom to arrive at
a description of the time evolution of the system density
matrix. The influence functional F is a multiplicative
contribution to the path integral which would describe
the system evolution in the absence of coupling to the
reservoir. In general, F is not describable in terms of an
effective Hamiltonian; if we write F =exp(iS), the action
S has both real and imaginary parts. Under certain plau-
sible simplifying assumptions ' F can be calculated ex-
actly. These are (1) the thermal bath consists of free
fields (i.e., an infinite set of harmonic oscillators), except
for their coupling to the system of interest, (2) the bath-
system coupling is weak, and can be treated as a linear
perturbation of the bath degrees of freedom, and (3) at
some initial time, the bath is in thermal equilibrium, and
the density matrix of the combined bath and system is a
product of density matrices, one for the bath and one for
the system. The system need not be in thermal equilibri-
um at the initial time. Some examples of influence func-
tionals calculated under these assumptions can be found
in Refs. 6 and 7.

In the present case, even though we adopt assumptions
(1)—(3), there are complications which make it rather re-
markable that we can calculate F exactly, yet that is what
we do. The main complication is that both the thermal
bath and the system live in a background metric which is
time dependent, which in general makes it impossible to
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solve even free-field problems explicitly. But the special
properties of a de Sitter space, with its time-independent
Hubble constant, allow us to find F by making a canoni-
cal transformation of a time-independent free field. For
convenience we will model the thermal bath as a massless
field, conformally coupled to gravity; the conformal cou-
pling obviates certain infrared problems which arise for a
massless nonconformally coupled field in de Sitter
space. ' This is not the most general case which can be
handled exactly, but for this simplest case the formulas
are already quite complicated, and we leave to the reader
the task of working out more complicated special cases.
We will, in fact, solve two problems exactly; not only do
we find the influence functional F, but also we give the
exact time-dependent density matrix for the thermal bath
uncoupled to the inflation field. The primary effect of de
Sitter space is to replace ordinary time by conformal time
[see Eq. (3.4b)].

With the influence functional F in hand, the work has
only begun; the next step is to calculate the evolution of
the inflation field 4 under the influence of F and of the
self-couplings of 4. This is impossible in general, even if
only quadratic terms in the Lagrangian for 4 are saved,
because F represents a complicated time-dependent quad-
ratic action with both real and imaginary parts. With
certain further simplifications we can solve our third
problem exactly, which is to model the evolution of the 4
field in an unstable potential, while coupled to a thermal
bath in de Sitter space. One simplification, already dis-
cussed without the coupling to a heat bath by Guth and
Pi, ' is to mimic the unstable potential by a wrong-sign
mass term. Other simplifications have to do with F itself.
As Caldeira and Leggett discuss, with a suitable distri-
bution of thermal-bath oscillators and in the high-
temperature (or semiclassical) limit the effects described
in F reduce to simple viscosity and momentum-space
diffusion. For time-stationary problems, with stable po-
tentials, the competition between these two effects even-
tually leads to thermal equilibrium. We also will discuss
only the semiclassical limit. However, for us things are
more involved, since the "temperature" which follows
from the momentum-space diffusion constant is time
dependent, and because of de Sitter-space horizon effects
which influence the largest-wavelength modes of the
thermal bath. Actually, these latter effects are not quan-
titatively dominant, and we gain much in simplicity by
dropping them while losing little that is of interest in
principle. As for the time-dependent temperature, it
turns out that we can exactly solve the evolution problem
of an upside-down oscillator in a thermal bath in de Sitter
space for any time dependence of the temperature, as
long as we are allowed to approximate the viscosity by a
constant. This approximation we will make, in somewhat
the same spirit as one goes from a general Friedmann-
Robertson-Walker metric to de Sitter space by assuming
that the expansion rate aa '=H is constant. In view of
the great generality allowed, because of our present ig-
norance, of the coupling between the thermal bath and
the inflation field, we will not offer specific physical
justification of the assumption of constant viscosity. The
final simplification we will make, which is not essential to

the existence of exact solutions, is to save only one mode
of the inflation field, corresponding to an average of this
field over the horizon volume or equivalently to saving
only the largest-wavelength mode of 4. In future work
we will discuss a very important fourth problem, to
which the three problems discussed here are preliminary:
the evolution of density fluctuations in the early
Universe. " This will require discussion of short-
wavelength modes of 4 as well as the long-wavelength
mode.

The exact solution for evolution of the upside-down os-
cillator will be presented in terms of the Wigner distribu-
tion function W rather than in terms of the density ma-
trix. Using W is appropriate for a semiclassical treat-
ment, and makes it physically evident how viscosity and
diffusion due to the thermal bath play a role. As Guth
and Pi' point out, at late time the evolution of an un-
stable oscillator becomes describable in classical terms,
with quantum-mechanical effects appearing as a distribu-
tion of delay times (the times at which the oscillator be-
gins to roll classically). In the Wigner-function case, the
distribution of delay times is determined by the initial
density matrix. Coupling to a thermal bath in de Sitter
space changes this picture somewhat; as long as diffusion
is important, the trajectory is not classical, but Brownian.
However, the diffusion constant is proportional to the
temperature T which is decreasing like e ' (until reheat-
ing begins). At late inflationary times only viscosity (and
decay) may remain to signal the coupling to the thermal
bath, in which case the evolution equation for W can be
solved in terms of its characteristics, or classical trajec-
tories, but this time with viscous damping. The concept
of delay time can still be used, provided that viscosity is
accounted for. When diffusion is important, the evolu-
tion equation for W is a Fokker-Planck equation with
various time-dependent coefficients. One could deal
directly with the evolution equation for the reduced den-
sity matrix, but it is perhaps more perspicuous to use the
Fokker-Planck equation for W, since the effects occurring
have an intuitive and classical interpretation. Unfor-
tunately, the formulas in the solution are long and com-
plicated and it is not easy to see what is happening by
mere inspection, especially as such a wide range of pa-
rameters can play a role.

The reader, seeing the words viscosity, diffusion,
Fokker-Planck equation, etc., may be tempted to draw
analogs between our paper and other recent works in
which the same words appear in an early-Universe con-
text. For example, Starobinsky' and Linde' have given
a Fokker-Planck equation with damping due to Hubble
expansion and diffusion due to infrared quantum fluctua-
tions. Graziani, ' following this lead, has discussed the
uses of the Wigner distribution in the early Universe.
Not only the physics but also the mathematics of our
Fokker-Planck problem differs from that of the above
references. Other authors' have invoked strong viscosity
as a possible driver of inflation, by giving rise to an
effective negative pressure. This certainly cannot occur
for sufficiently weak viscous coupling' and we do not ad-
vocate this as one of the physical applications of our for-
malism.
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What, then, are the potential physical applications of
this work? (We say potential because none will be dis-
cussed in detail here; future work will be devoted to ap-
plications. ) First, one may ask questions related to the
preinflationary universe: It is usually assumed that
preinflationary dynamics brings the 4 field to a state of
thermal equilibrium at the initial time when inflation is
about to start, and at this time the effective potential for
4 has a T 4 term which stabilizes the inflation field
(e.g., Refs. 4 and 10}. But the time constants of thermal
processes may not allow for establishment of full equilib-
rium, and the approximation of an effective potential may
break down. In any case, one wishes to be able to de-
scribe the evolution of an arbitrary initial 4-field
configuration, not just an initial thermal distribution.
Second, during inflation viscosity could have an effect on
the evolution of density fluctuations, which drive galaxy
formations and microwave background fluctuations.
Conventional (i.e., ignoring cosmic strings, chaotic
inflation, etc.) wisdom, " based on the assumption of
thermal equilibrium of 4 throughout inflation, holds that
the 4 self-couplings are very small; e.g. , A, in a A,4 cou-
pling is —10 ' . This is because the fractional density
fluctuation 5plp scales like 1, '~ . The couplings of 4 to
other fields, such as the thermal bath, are limited—
usually like A,

' —so that radiative corrections do not in-
duce a large 4 term. In consequence, the effect of the
thermal bath during or before inflation may be too weak
to be noticed, This leads to the logical dilemma that
there is then no reason to assume that 4 was ever in
thermal equilibrium, at least before reheating. On the
other hand, it is conceivable (we have no arguments to
back up this possibility) that A. is not so small, and that
fluctuations are damped to an acceptable level by viscous
effects. In either case, it is essential to have in hand a
dynamical formalism capable of dealing with out-of-
equilibrium coupling of 4 to a thermal bath. Third, the
exit from inflation to the reheating era is again one where
the assumption of thermal equilibrium is only approxi-
mate. One could imagine dealing with this problem, in
which both the Hubble constant and the viscosity may
change rapidly, by joining together our exact solutions
over approximately chosen time intervals and at some
point turning the upside-down oscillator into a stable os-
cillator to yield the potential well in which reheating
takes place. Finally, we know that CP-violating effects
cannot lead to a baryon asymmetry unless the Universe
evolves for some time out of thermal equilibrium, so it
will be interesting to discuss baryon generation in the
context of our model.

The work is organized as follows: Section II contains a
I

brief introduction to the Feynman-Vernon ideas and sets
the notation; Sec. III gives the calculation of the time-
dependent density matrix and the influence functional for
the thermal bath; Sec. IV solves the evolution problem
for an upside-down oscillator; Sec. V discusses the mean-
ing and possible applications of the solutions. An Appen-
dix gives some details of the algebra needed for Sec. IV.

II. THE INFLUENCE FUNCTIONAL PICTURE

The Feynman-Vernon formalism is not an everyday
tool of particle physicists and cosmologists, so we give a
brief description of it here. (A recent work by Niemi'
also discusses the incorporation of this formalism into
quantum field theory. )

We are interested in the time evolution of a single
quantum degree of freedom P (later to be identified with a
low-momentum mode of the inflation field 4). The re-
striction to a single degree of freedom is unnecessary, and
made only for concise notation. The P degree of freedom
will be called the system. It is coupled to another quan-
tum system, described by an infinite number of coordi-
nates q&. These coordinates are the Fourier-space corn-
ponents of one or more quantum fields, free except for
their coupling to the system and to a background gravita-
tional field. The q& degrees of freedom are called the
(thermal) bath. We will assume that the bath is in
thermal equilibrium at t =0, at which time the system-
bath density matrix p is a direct product of a system den-
sity matrix ps(0} and a bath density matrix ps(0). The
overall Hamiltonian u (we use u instead of H, a notation
used later for the Hubble constant) is the sum of three
terms, as are the Lagrangian and action:

u =us(y)+us(qk )+up(y, qk ) . (2.1)

Bp i [u,p], — (2.2)

p(0) =ps(0)ps(0), (2.3a)

ps(0)=Zs 'e (2.3b)
—pA'~

where Zs ——Tre, so Trps(0) =1, and p is the inverse
temperature at t =0. Of course, Trps(0)=1 also. Note
that (2.2}holds even if u explicitly depends on r.

We are interested in the coordinate-space representa-
tive of the reduced (traced over bath coordinates) density
matrix, which we call p:

Each of these terms may have an explicit time depen-
dence, because of the background gravitational field. The
density matrix p obeys

0(4 4' r }=f gdqk & Ak l
p(r)14'qk &

=f H~qkdq„dq„de, d&,K(&qk, &,q„;r }&&,q, k li(0) I O,q„&K'(O q„e,q2k;r), (2.4)

(2.&)

where K is an evolution operator. If the Hamiltonian u
is time independent, K can be written as a path integral
of the usual type:

K(pqk, p'qk;r)= f d$, gdq, k
e'

where the parentheses indicate functional integration,
and S =S&+Sz+Sq is the total action of the system plus
bath. In our case, u does depend on time, so integrations
over coordinates are replaced (up to an overall normali-
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zation) by

f dlH&qk e"-f dtdpH&qkdpk (2.6)

with the definition

i [S~+Sl(P)]~,(qk, q„;t}=f(dq2k)e (2.9)

where p,pk are momenta conjugate to the coordinates.
Also the action S is written in the form

S= dt' Pkqk +P —H
0

(2.7)

and qk, p are to be expressed in terms of the coordinates,
momenta, and time. In practice, all evolution operators
needed in this paper will be calculated without actually
doing any path integrations, and we will, for simplicity of
notation, use the form (2.5) for K in the formal develop-
ments of this section.

We now combine the factors of (2.4) depending on the

qk into a single factor, the influence functional

I'(p, 4';t) =f gdqkdqlkdq2k+$(qk qlk

&«qik l
pa(0)

l q2k &&pqk q~k't }

(2.8)

Thus K4, is the evolution operator of the bath in the pres-
ence of coupling to the system at functional coordinate
P(t); that is, K& is a functional of the history P(t). With
(2.8), we find that (2.4) becomes

p(P, P';t ) =fdg, d$2(dg&drtr~)e

& I' ( rtri rtr4» t ) & 4 i l ps (0 )
I 42 ~ (2.10)

with the coordinates ((), P' appearing as boundary condi-
tions on the functional integrals (Pi=/ at time t, $3
at time 0, etc.). As we will see, F is not in general of the
form exp[iS(gi, $4}with real S, so that the time evolution
of p is not given by the quantum Liouville equation (2.2).

When the thermal bath is a set of harmonic oscillators
coupled linearly to P, Feynman and Vernon have shown
that the general form of the influence functional is

F(g, rtr', t}=exp —f dt, f dt, [P(t, ) —P'(t, )][/(t2)a(t, , ti) —P'(t 2) a'(t, , t, )] (2.11)

The real and imaginary parts of a represent, respectively, diffusive and viscous processes. For example, suppose that n
is a real function art(t&, t2). Using (2.11) in (2.10) shows that the latter expression is equivalent to adding a term

J

Veldt

to the action for P and averaging over V, where V is a random Gaussian-distributed potential with zero mean

and variance:

( V(t, ) V(t2) ) =a„(t„t2) . (2.12)

These random forces represent thermal diffusion of P in the presence of the bath. The imaginary part of a, called ar,
contributes two terms to lnF:

lnF= —i t, dt2ul t, , t2 t, t2 — '
t&

'
t2 + t, '

t2 — t2
' t, +real terms . (2.13)

Sr= fdtXr= fdt ggkq (2.14)

The coefficients gk may be time dependent also. Of
course, the concept of an influence functional does not
depend on this linearization, but the existence of exact
solutions does. For example, suppose that the thermal
bath corresponds to a real scalar field tP(x) and that P is
the zero-momentum mode of another field N(x). These

The first term in square brackets is equivalent to adding
an extra quadratic term to the action S, . The effect of
the second square-bracketed term is not immediately ob-
vious, but we will see in Sec. IV that it represents viscous
damping, damping which is related to the fluctuations
(2.12) by a fluctuation-dissipation theorem.

This reshufHing of functional integrals would be of lit-
tle use unless F could actually be calculated, which re-
quires the previously mentioned assumptions. First, the
action Sz describes a free quantum field, except for the
coupling to gravity. The second assumption, which is al-
ways made but requires some discussion here, is that the
system-bath interaction can be linearized:

fields interact through a term g4tP . For the zero mode
P, the corresponding Xr is

&i=gbfd'x 0'-gkglkf k (2.15)
k

where gk is the Fourier transform of f (Ref. 18). A sim-

ple procedure is to identify qk with ij'rkg k and assume, in
the spirit of the random-phase approximation, that the qk
dynamics is that of free oscillators. It is not the purpose
of this paper to discuss detailed models of the system-
bath coupling in de Sitter space, but in Sec. V we will
make some general remarks on the possible ranges of
couplings in the context of inflation.

Further details of the calculation of F, for a specific
realization of the bath (a massless conformally coupled
field) will be given in Secs. III and IV.

III. DENSITY MATRIX
AND INFLUENCE FUNCTIONAL OF A BATH

OF CONFORMAL OSCILLATIONS

In this section we solve two of the three problems set in
the Introduction, and in the following section we use
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0= y le'""ek(t)+H c ]
k

(3.3}

these results in calculating the evolution of an upside-
down oscillator coupled to the thermal bath of conformal
oscillators. All three problems refer to evolution in a
background de Sitter space, whose metric we write

s =g dx"dx~=dt —e2Hfdx2 (3.1)

The Hubble constant H is given by aa ' in terms of the
scale factor, and is not literally unchanging in time, but
we will take it to be constant throughout this paper.

Let 1( be a real scalar field, free except for its conformal
coupling to gravity. In the de Sitter metric (3.1), the La-
grangian for g is

fd2x e3Ht[ i/2 ie —2Hi(gg)2 iggg2] (3 2)

where R is the curvature scalar (R =128 ), and g= —,
' for

conformal coupling. By decomposition of g into a
Fourier sum,

The canonical momentum p is

p =qe

and the Hamiltonian A' is

i e 3H—t 2~ i k2eHi 2+H2 2e3Hi

Corresponding to (3.4) we change variables to Q(ri):

q(t)=e 'Q(rt)

in terms of which the action is

f d [i(Q )2 &k2Q2] 3Hi 2~ i

(3.8)

(3.9)

(3.10)

(3.11)

we can write 2 as a sum of terms, involving the (real}
coefficients of cos(k x) and sin(k x) in (3.3). We will re-
turn to this mode sum, but for now let us note that the
change of variables

1t(t) =e 'X(g), (3.4a)

dt~e —Ht' I—1(1 —Ht) (3.4b)
0

allows us to write the action S = jX dt as a flat-space
free-Geld action plus end-point terms:

&= fd'« "'[-'(X')' —-'(VX)'] ———(1'e"')H d

(3.5)

In particular, the classical action S,(qf, q, ; t ) for the path
beginning at q; at t'=0 and ending at qf at t'=t is

S,(qf, q, ;t)= cot(—kri)(e 'qf+q, . ) — . e
k 2Hi 2 2 qfqi Hi

2 sin kit

——(e qf —q, ) .30' 2 2 (3.12)

We will use S, to construct the evolution operator:

K(qf, q, ;t)=(qf
~
Texp i f d—t'8(t')

~ q;) . (3.13)
0

This can be written as a path integral, which differs from
the conventional form f(dq)e' because of the time
dependence of the kinetic terms, as discussed in Sec. II.
Nonetheless, K can be expressed in terms of the classical
action S, as

S2i= f dt'X(t') K(qf, q, ;t )=N(t)exp[iS, (qf, q;;t)], (3.14)

=fd'x f di)'[-,'(X')' —
—,'(VX)']

which is to be expected for a quadratic Lagrangian. The
function N(t) is determined by corn aring the equation of
motion for K with p = —i8/Bqf in

f d3& q2e3Hi'
~

t

2 (3.6) (3.15)

where 7'=dx/dg'. It follows that the classical action
S~, on which all further developments depend, can be
found by inspection of the well-known results for a free
6eld.

It is now convenient to decompose g into its Fourier
modes which, for a given wave vector k, evolve as would
a harmonic oscillator of frequency k —=

~

k
~

. Let q be the
coordinate of such a mode, we suppress the labels, such
as k, which identify the particular mode in question. The
Lagrangian for this mode is

p=,q =qf,'t
r)t 8qf

The correctly normalized result is
1/2

(3.16}

, 2mt
L

k I

exp f dt' ——cot(ki)')e
0 2

, +—e
0 3Ht

2t 2
(3.17)

and the Hamilton-Jacobi equation satis6ed by S, of
(3.12):

e3Ht( ]
q

2 ] g2q2e —2H& H2q2)
2 2 (3.7) where g'=g(t').
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A. The density matrix

Now we can construct the time evolution of the density
matrix p~, obeying the equation

k
&qi I pB(0)

I q2 & = —tanh —2'pk

~pa

at
+i[8,pB]=0 .

The solution for the matrix elements of pz is

(3.18}
X exp ——cothpk (q i +q 2 )

k 2 2

2

kq1q2+
sinh(Pk )

(3.20)

&q
I PB I

q'&= fdqidq2«q qi, i)&qi
I
p(o)

I q2& The normalization is such that

XK'(q', q2, t) (3.19) Trp~to)= J qq & q l
p~(o)

l q & = t, (3.21)

in terms of the initial density matrix pB(0). We choose
the latter to represent a thermal bath at temperature
T —1.

a normalization which in fact holds at all times. To cal-
culate the time dependence of pB, use (3.11},(3.13), (3.17),
and (3.20) in (3.19) and find

—tanh —'Pkk
2

' —1/2

& q I pB(t) I
q' & =G i 'exp —Gi —(q +q' )cothpk—

2

kqq'

sinh(Pk }
(3.22)

where G-1, G2 are functions of t, given by

G ge 2Ht

G cot(~k )e2Ht(1 g) (e3Ht+ge2Ht)k H
2 2 2

(3.23)

(3.24)

constants gk. As with the density matrix we suppress the
subscripts k. We write our result for any one of the oscil-
lators, forming the results for all oscillators by multiply-
ing together the single-oscillator formulas. For every k
we have the action

2H . H1+ sin(21k )cos(21k )+ sin(21k )
k

(3.25}

Of course at H =0 where 6, =1, G2 ——0 we recover the
result that pz for a harmonic oscillator in flat space is
constant in time. In the present case p& is time depen-
dent but Trpb ——1.

Sy=SB+Sl(4)=SB+f «'gq0 (3.26)

where SB is given in (3.11). The influence functional is
found by calculating the evolution operator K& of (2.9)
and then performing the integrations in (2.8). It is
straightforward to calculate K&, just as we did for K of
(3.14), modifying S, to account for the source term, linear
in q of(3.26). We find

B. The in8uence functiona1

Here, as discussed in Sec. II, we couple the conformal
oscillators linearly to a coordinate P(t}, with coupling

K&(qf, q;;t )=lV(t)exp(iS, 4),

where

(3.27)

S,~(qf, q;;t;P)=S, (qf, q;;t)+ dt'gP(t')e '
qfe

' . +q,H, sin(kg') sin[k(2l —21')]
0 sin k71

' sin k21
q

+,' f 'dr, f 'dr2gy(l, )G(r, , t2;t)gp(r2)
0 0

and the Green's function G is given by
—H(t +t )

1 2

G = . I 8(t, t )2ins[k—( ,21—21)]sin(k212)+(t, ~t2) ) .
k sin(k21)

(3.28)

(3.29)

In (3.27) and (3.28), the functions S, and iV (t) are given in (3.12) and (3.17). As before, the evolution operator obeys
(3.15), with 8& in place of g.

The evolution operator is calculated by doing the threefold integration in (2.8), using (3.20) and (3.28}. The result is
Yl

F(p, p', t) =exp — f d 21 i f

drl2[q))(2)i�

)—p'(21, ) ][a(el i, 212)p(712 }—a*(21i, rl2)p'( vl2) ] (3.30)
0 0

where

k

H . H2coth 'pk cosk(21—
~

—212)+—sink(21, +212)+ sink2l, sink212 i sink(21, —21—2)2 k k
(3.31)
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We have assumed (see Sec. IV) that g& is time indepen-

dent, which is not the most general case. The general
case is easily recovered by using (3.28), where g can be
dependent on time; it simply amounts to replacing g by

g(g, )g(g3). Note that a has both a real and an imagi-
nary part, as we have already discussed in Sec. II. If one
sets the explicit H's in (3.31) to zero, the result is the usu-

al influence functional ' for flat space, but with confor-
mal time replacing ordinary time. In this case, which we
will pursue in Sec. IV, the real and imaginary parts of a
are related by a conventional fluctuation-dissipation
theorem. The H-dependent terms are unimportant if
k &&H. Note that the imaginary, or dissipative, part of a
in (3.31) is independent of temperature and depends on H
only through the conformal time. The real, or fluctuat-
ing, terms in a can be interpreted as in (2.12) via a fluc-
tuating Gaussian-distributed potential whose statistics
are not time stationary for k small compared to H. In the
next section we will use the approximate a with no expli-
cit H dependence to investigate the evolution of the
Wigner distribution function.

(If we considered modes with finite momentum the corre-
sponding solutions ~ould be Hankel functions, which
would lead to a soluble but messy problem. ) Equation
(4.3) suggests the change of variables

3HtP=z exp
2

(4.4)

in terms of which the Lagrangian becomes

2 =-'z +-'A, z — —z
. 3 33 3Hd 3

4 dt
(4.5)

Sgf cot& t(ff +Ijk )
sinhA, t (pg —p; ) . (4.6)

which is a harmonic oscillator plus a total time deriva-
tive, just as before. So we can calculate all quantum-
mechanical properties of this system, e.g. , the evolution
function, in terms of the classical action S,&. This turns
out to be, for a system beginning at P=P, at zero time
and P=P& at time t,

IV. EVOLUTION OF AN UNSTABLE OSCILLATOR

3Ht( j2+ 2y2) (4.1)

with corresponding canonical momentum and Hamiltoni-
anH:

3HJt, H 1
—3Ht 2 ] 3Ht 2y2 (4.2)

The solutions to the equations of motion are linear corn-
binations of the exponentials

T

exp
3Ht A, t g2 9 H2+ ~2

2
7 4 (4.3)

In this section we discuss the only problem we know
how to solve exactly, involving the (approximate)
influence functional in de Sitter space. It is a variant of
the Guth-Pi' problem of the time evolution of an
upside-down oscillator. To get a soluble problem we
must make some approximations in the general expres-
sion (3.31) for the influence functional, which amounts to
dealing with a viscosity coeScient which is constant in
time. This may or may not be physically realistic, but we

can at least make a quantitative judgment of the influence
of viscosity and thermal diffusion on the evolution of an
unstable oscillator in de Sitter space, for any given time
interval during which the viscosity changes little.

We will describe explicitly only one mode of the
inflation field 4(x). The mode in question is a long-
wavelength mode, with little or no spatial variation over
the volume included in a causal horizon; we can consider
it as the spatial average of the field 4. As such, it de-
pends only on time, so we will introduce (as in Sec. II) a
single coordinate P(t) to describe the inflation field. It
would, in fact, be possible to add to our treatment finite-
momentum modes, but only at the expense of a great deal
of complexity which is not, at the moment, called for.

We begin with a discussion of the dynamics of P when
it is uncoupled to the heat bath. The approximate La-
grangian in de Sitter space is

One could try to calculate the evolution operator occur-
ring in (2.10) for the system in contact with the heat bath
by using (4.6) and (3.30), then doing the Gaussian func-
tional integrals over P.

Unfortunately, it is impossible to do this analytically
because of the complicated time dependence in the in-
tegrand of F. We will approximate F so that (2.10) can be
exactly calculated by doing some Gaussian functional in-
tegrations. However, we will not, in fact, proceed this
way; instead (following Caldeira and Leggett ) we will
deal with the problem through the Wigner distribution
function in the semiclassical limit (see also Ref. 14). This
way of proceeding has certain conceptual advantages
which can be used in more complicated situations,
through the use of physically motivated approximations.
To begin with, we discuss an approximation to the
influence functional F which allows for an exact treat-
ment of the unstable oscillator.

The first step in the approximation is to drop the expli-
cit H-dependent terms in a of (3.31), leaving only terms
which implicitly depend on H through the conforrnal
time g. The next, and crucial, step is to replace the t- and
k-dependent terms ~gt, ~

in (3.31) by a constant y,
which we will introduce via

(4.7)

Note that y has dimensions of mass to the first power,
since the coordinate P, being the zero-momentum mode'
of a scalar field of mass dimension 1, has mass dimension

This makes the action JX dt based on (4.1) dimen-

sionless. The final approximation we will make is to con-
sider only the high-temperature, or semiclassical regime
in which we replace coth ,'Pk by 2T—k ', where T=P ' is
the initial (t =0) temperature of the heat bath. Given
these three approximations, it is straightforward to calcu-
late the influence functional, with a result quite similar to
that of Caldeira and Leggett:
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F(ttt, ttt', t)=exp —2yT f dt'e '[P(t') —P'(t')] —iy f dt'(P+ttt')(ttt —P')
0 0

(4.8)

where the overdots indicate derivatives with respect to
ordinary time, not conformal time. The appearance of
e ' in the first term of (4.8) indicates the time depen-
dence of the temperature; recall that T is the initial tem-
perature of the heat bath.

At this point, the equation of motion for the reduced
density matrix can be found following Caldeira and Leg-
gett. Because of the inhuence functional, the reduced
density matrix p, defined in (2.4) as the trace over the
reservoir coordinates of the full density matrix, obeys an
equation such as (2.2}with some additions:

with

W(p, ttt, t ) =f dp'dP'K(pttt, p'ttt'; t) Wo(p', P') (4.15)

would not be justified if higher-order terms in A are to be
saved.

It is convenient to solve (4.12) by exploiting its formal
similarity to a Euclidean-space evolution function equa-
tion, such as (3.15) with the factor of i deleted. That is,
we can define a pseudo-Hamiltonian 8 and correspond-
ing action S, solving the Hamilton-Jacobi equation, such
that Wis of the form

i [8(P—) P(P—')]p y(ttt —ttt')—
ay ay

K=Q(t)e, K(t =0)=5(p —p')5( tt—t P'), (4.16)

Here,
'2

Q(y) t e
—3Ht

2y T—(0 0')'—P .

3Ht 2y2
2

(4.9)
and Wo(p, ttt) is the initial Wigner distribution function at
t =0 [i.e., the Fourier transform of the initial density ma-
trix p(t =0)]. Of course, K itself satisfies the equation for
W in (4.12). In constructing the pseudo-Hamiltonian, we
think of both p and P as coordinates, for each of which
we introduce a corresponding canonical momentum. So
we use the notation

is the coordinate-space version of the quantum Hamil-
tonian (4.2) and

y&=p y2=~ (4.17)

T Ht— (4.10)
with corresponding momenta p &,p2. The required
pseudo-Hamiltonian is

is the time-dependent temperature. We wish to convert
this into a dynamic equation for the Wigner distribution
function, defined by

W(p, g, t ) = f dy e'~~p(P ,'y, ttt+ ,'y;t—) —. (4.1—1)

where

Da w+ 2
p

(4.12)

D =2yf' . (4.13)

This equation is exact as it stands for a uadratic poten-
tial, but for a general potential V(tI}) in (P) there is an
infinite series of terms explicitly dependent on fi. More
generally, the second term on the right-hand side (RHS)
of (4.12) is of the form

V'(P)
Bp

(4.14)

and the leading correction in powers of A is of order
A V"'(p)a W/ap . The techniques we use to solve (4.12)
are valid semiclassically, and O(A' ) and higher correc-
tions can be systematically included for more general
V(P), but we will not discuss that here. Recall also that
we have used the high-temperature (classical) expansion
of coth —,Pk in evaluating the infiuence functional, which

Substitution of (4.9) into (4.11) yields the Fokker-Planck
equation for W:aw, aw, aw

2
a

)

~=Dp i (2yy i
~'—e'"'y2)p—1 +y le (4.18)

We note that if S(y;,y,';t } is a classical action based on

&, satisfying the Hamilton-Jacobi equation

as
at p; = as

(4.19)

and Q obeys

Q as—=2y —D
Q ay2i

' (4.20)

a& 2 3Ht
y&

—— ——2Dp& —2yy&+co e y2,
api 3Ht-

y, =' =y, —

~p2

(4.21a)

(4.2 lb)

3Ht-
p] ——— ——2'] —p2

By(
(4.21c)

2 3Htpp= — = —6) e p)
By2

(4.21d)

Note that the p equations do not depend on the y;, and
can be solved without reference to them. If D were equal
to zero, the y equations would be independent of the p;.

then K (and consequently W) obeys the Fokker-Planck
equation (4.12). Although & is degenerate, in having no

p 2 term, this will give us no trouble.
To find the classical action S, we need the classical or-

bits satisfying Hamilton's equations. These equations are
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In fact, in the D =0 limit (4.21a) and (4.21b) are simply
the Hamiltonian equations for the original Hamiltonian
8(P) in (4.2), except that the equation for p has an addi-
tional term —2yp. In this limit (4.21a) and (4.21b) are
the characteristic equations of (4.12) and can be interpret-
ed as classical trajectories in the presence of viscosity.
Knowledge of these characteristics leads to a complete
solution of Eqs. (4.21) for D&0, but the concept of a clas-
sical trajectory is replaced by that of a Brownian trajecto-
ry resulting from momentum-space diffusion.

We proceed by eliminating y( from (4.21a) and (4.21b)
which leads to

S= J dt' gp, .y,. —% =I dt'Dp( (4.32)

where the last equality uses (4.21a) and (4.21b). In terms
of A and B, S is given by

A

(4.25) is to write yz as the sum of four exponentials, with
coefficients to be determined by solving four simultaneous
linear equations. However, if D has a more complicated
time dependence, (4.25) must be used. ] All we need out
of these extensive calculations are the coefficients A, B in
(4.30), since the classical action S is given by

y'2+ (2y+ 3H)y z
—co y2 2Dp——, e (4.22)

Similarly, elimination ofp( in (4.21c) and (4.21d) gives

P2 —(2y+3H)p2 —a) p2 ——0 . (4.23)
—I +tAt D =0 the solutions are linear combinations of e

+r+t
for y2, and e for p2, where

B2 (2I —7H)t+ (e —1)

2AB (r +r —7a((

+r, +r 7H
' '

(4.33)

r =r+-', H+[(r+-,'H)'+~']'" . (4.24)

where the homogeneous (D =0) solution is

(4.25)

From these and the Green's function for (4.22), the neces-
sary classical solutions are found. For example, y2 has
the form

yq(t') = Y2(t')+ J dt "2D (t")p((t")e2r' G(r', t";r ),

(7 —2H)(2r, —7H)
A=

rT
(y —2H)(2r —7H)B=

rT
where

2

(4.34a)

(4.34b)

Recall that T stands for the time-independent initial tem-
perature. The coefficients A, B are given by the expres-
sions

with

u(r'), u(r' r)-
u(t) u( t)— (4.26)

A; =(Q+R'N '),, 'P

and the vector P is

(4.35)

u (r ') =e -r+' —e -r-'
(r +I )t

u( t)= —e + u—(t),
(4.27)

u (r)

+p'(r+e —I e + )], (4.36a)

and

G(r', r";r)=(I + I ) (u '( —r)—
x [u(t')u(r" r)8(r" r')+—(t'~t" ]— (4.28)

(3H —I (t (3H —I + )i

u (t)

(4.36b)

y2(t'=0)=p', y2(t'=t)=p .

The pseudomomentum p, is of the form

(4.29)

is the Green's functions vanishing at t' or t"=O, t. The
function y2 solves (4.22) with t' as the independent vari-
able, subject to

The matrices Q and R are

I"+ —7H I —7H

(r —7H)e' + ' " (r 7H)e'—
(4.37)

(I' 3H)t' (I 3H)(—'—
p( ——2 te + +Bre (4.30)

ti +2
3at ~

at' 2e 3Ht =p . (4.31)

[In the simple case at hand, where D depends exponen-
tially on t" via (4.10) and (4.13), an alternative to using

where A, B are found by evaluating (4.25) and imposing
the boundary conditions following from (4.21b) and
(4.17):

R = —u ( —t) (3H —r )t (3H —I )t
I +e + I e

(4.38)

Finally, the matrix 'N is given in the appendix, Eqs. (A2)
and (A3). This appendix gives some details of the deriva-
tion of these expressions.

It only remains to solve the differential equation (4.20)
for the normalization factor Q(t). This is trivial in prin-
ciple but messy in practice, and we do not write the
lengthy and unilluminating formula here. In the con-
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eluding section we discuss the interpretation and poten-
tial applications of these results.

simplest case is H =0, so the temperature is constant,
and then the time-independent solution to (4.12) is

V. DISCUSSION W(p, g)=const&&exp ——[—,'p + V(P)] (5.4)

W(p, g; t ) = W0(p', P'),
p'=p coshcot —coP sinhtot,

coP' =cog coshcot —p sinhcot .

(5.1)

(5.2a)

(5.2b)

Here W0 is the t =0 Wigner function, and p', P' are the
t =0 values of p and P; they can be found from (4.36) by
setting P =0. From (5.2) one finds

Even though we have not had to deal with anything
more difticult than a harmonic oscillator, the final formu-
las for the evolution of an upside-down oscillator are very
complicated and hard to see through. Serious applica-
tions will depend on extensive numerical work. Still, it is
useful to make some general comments.

Our results extend the simple upside-down oscillator'
in three different ways, governed by three parameters: (1)
inclusion of a de Sitter-space background, with parameter
H (Refs. 8 and 10); (2) inclusion of viscosity, governed by
y(3) inclusion of diffusion, governed by D =2yf'. One or
more of these effects may be negligible, depending on
whether one is dealing with preinflation, inflation, or
postinflation reheating.

The simplest case is H =y =D =0, which is the Guth-
Pi case. These authors discussed their results in terms of
a delay time, showing that the upside-down quantum os-
cillator behaved classically at large times, but that the in-
itial wave packet led to a distribution of classical trajec-
tories parametrized by the time at which the classical os-
cillator started to roll. The Wigner-distribution approach
we use leads through (4.21) to the following solution to
(4.12) at H=y =D =0:

(e(t)e(t')) =4y Te '5(t —t') .

A solution for P is thus

p(t) =(r —r+ )
' (p'+ r {t')e +

(5.5)

where V(P) is the classical potential ( V= ——,'to P, in our
case). As expected, W is Maxwellian. This time-
independent solution is valid when y t ~& 1, so that viscos-
ity and diffusion have had plenty of time to act. Of
course, this Maxwellian distribution makes sense only if
the energy —,p + V(P) is positive, which it is not for the
unstable oscillator. In general, an unstable system will
not approach any time-independent equilibrium.

After a certain amount of work, one can see from the
explicit formulas of Sec. IV that the classical action S
behaves like D 'F(P ) for small D, so that at small D the
Wigner function has support only at the zeros of F.
These zeros turn out to be P =0 which, as we have al-
ready mentioned, yield the D =0 characteristics of Eq.
(4.12}. Thus, as expected, the solutions for small D join
onto the characteristic classical trajectories. But for
finite D the Wigner function is determined by Brownian
trajectories, and it is not clear how to implement the
Guth-Pi concept of a delay time. We can gain some in-
sight into the dynamics when H, y, and D all play a role
by replacing the diffusion term of (4.12) by Langevin
forces. This amounts to replacing the term 2Dp, in
(4.21a), (4.22), and (4.25) by e(t), a random force with
zero mean and (nonstationary) variance

(5.3)

which shows that the classical result p =cog holds, up to
exponentially small terms at large t if the initial values
p', P' are bounded. It is now convenient to think of W0
as a function of the variables a +——=p'+co{{)'. Obviously the
distribution of W0 in a can be thought of as a distribu-
tion of delay times in (5.3) by writing p+coP =e 'a+

co(t —to )—=e '. At the same time, as long as 8'0 decreases
rapidly for large a, p —coP is forced toward the classical
value of zero.

Similar remarks hold when H and/or y are not zero
but D is zero; the case H&0 and y =0 has been discussed
by Guth and Pi, for example, while H =0 and y, D&0
has been studied by Caldeira and Leggett for a right-
side-up oscillator; the upside-down oscillator at
D =H =0 is easily recovered from their results. In these
cases the concepts of a classical trajectory [in the sense of
a unique relation between p and P, as determined by the
D =0 solutions of (4.2la) and (4.21b)] and of a distribu-
tion of delay time are valid. We will return later to cases
when both H and y are nonzero.

Next, consider what happens when D, the thermal
momentum-space diffusion constant, is not zero. The

+ J dt'e(t')e 'H' G (t, t')
I r

G(t, t')=(e —e '— )8(t —t'),

(5.6)

(5.7)

which reduces to (5.2) at H =D =0. The corresponding
momentum can be calculated using (4.21b). From these
formulas various moments of P and p can be calculated,
which will indicate how diffusion modifies the classical
characteristic solutions. We give one example: The dom-
inant terms in ( P ) at large t are given by

4yT+ 7H —2r (5.8)

[recall that, from {4.24}, I is negative]. The exponential
growth of the second moment is due to the unstable po-
tential plus expansion, but is quantitatively modified by
viscosity, which occurs in I, and by diffusion. Note
that the t =0 temperature appears in (5.8).

Let us now ask: under what physical circumstances
can H, y, and D all be important parameters? First, con-
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sider the initial conditions for inflation. We will suppose
that in any case the thermal bath —consisting of all other
fields except for the inflation field —has strong enough
self-couplings so that it can be, and is, in thermal equilib-
rium prior to inflation. Usually it is also assumed that
the inflation field 4 is similarly in thermal equilibrium,
with a +T 4 term in the effective potential stabilizing
the slow-rolling potential, and driving 4 near to zero. If
this thermal equilibrium has come about because of in-
teractions with the bath, then it is evident that H and y
must be of the same order. Note that this is not the same
thing as saying that the rate of decay of the 4 field is
comparable to H; viscosity comes from collisions with the
thermal bath, not from decay. It may, in fact, be possible
to construct scenarios where H —y in the early stages of
inflation. Suppose that the slow-rolling potential is quar-
tic (e.g., Ref. 19) instead of quadratic as we have so far
used in this paper:

(5.9)

APPENDIX

We give here a few details of the derivation of (4.35) to
(4.39). Equation (4.26) turns out to be

yz
——F2+X;%',,a, +a,Z (A 1)

where

(A3)

The vector a; is related to the integration constants A, B
of (4.30) by

where repeated indices are summed over. The matrix
'N;. and the vector a; (i,j =1,2) depend only on t, and
'N, .J. is given by

W + 8'
(A2)

Then at small time the Hubble constant H is
'lV,,(t)a =A;, (A4)

' 1/2
@o

3 Mp
(5.10)

The f field induces a 4 coupling, of strength -g . This
must be of order A, , so g -A, '~ . From (4.7), the viscosity
coefficient y-g, so y-k' times a mass. At the earli-
est times, one expects the mass to be determined by the
Planck mass, that is, y-M A,

' -H. Finally, in the
reheating phase ' ' one expects both y- and 4-decay
rates to be comparable to or even much larger than H,
which decreases as 4 approaches its minimum. When
decay is important a term —I 8' should be added to the
RHS of (4.12), the evolution equation for the Wigner
function. During reheating the temperature is changing
rapidly, but (4.12) can still be solved if H is not too rap-
idly changing, with the help of the Green's function
(4.25). In this phase a right-side up oscillator potential is
appropriate.

In summary, we have found exact solutions to some
idealized but still physically interesting problems of the
evolution of unstable fields coupled to a thermal bath in
de Sitter space. Applications of these solutions to the
preinflationary universe, to density fluctuations, and to
reheating are now under investigation.
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where 4p Mp the Planck mass, at early times. Thus
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(5.11)

yTA
(y —2H )(2I 7H )—

yTB
( y 2H )( 2I ——7H )

(A5)

with u (t) given in (4.27). The solution to (A4),

a, = lV,, '(t)A,

can be written in terms of 'N( —t) using

'lV '(t)= —[4sinh —,'(I + —I )t] 'W t) . —

Thus (A1) is

y2= Y2+Z;%,, 'A, +X,A; .

(A7)

(A8)

(A9)

Now the A, (or equivalently the a;) are determined by
imposing the boundary conditions (4.31). This gives

(A 10)

as one finds by using the following definitions for X„Z,
and substituting in either (4.26) or the equation of motion
(4.23) for F2..

(I —7H)t'
e +

(A6)
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(A11)

These are easily converted into the form given in the text.
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