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We consider the cosmology of the heterotic string above the grand-unification scale taking into
account the thermodynamical phase structure of an ideal gas of heterotic string excitations above
the Hagedorn temperature. We find that the Universe expands up to a critical volume a’ above
which the massive (Planckian) excitations should decay into massless excitations (nonequilibrium
regime). The Universe then goes on expanding in a radiation-dominated phase with a scale factor
a(t)~pP(1). Because the heterotic string is self-dual with respect to temperature, it is argued that
there is an induced duality relation for the scale factor a (7).

I. INTRODUCTION

Since the late 1960s and particularly in recent years,
much interest has been devoted to the thermodynamical
properties of an ideal gas of string excitations. It has
long been known that the canonical partition function as
well as the energy density of open strings is not analytic
above and at the Hagedorn temperature,’'? therefore
making the latter point a true maximum temperature.
For closed strings, this situation is somewhat improved
since thermodynamical quantities remain analytic at the
Hagedorn temperature, although fluctuations become
unacceptably large. This has led to the suggestion that
the use of the microcanonical ensemble for closed string
is more appropriate.>* In the context of the phenomeno-
logically promising heterotic string, it has been shown
that the equilibrium configuration for the massive excita-
tions above the Hagedorn temperature is not thermal.
The preferred configuration is for one string (neglecting
winding states around some compact dimension®) to car-
ry most of the energy. This very inhomogeneous energy
distribution is the source of the very large fluctuations
one would obtain near the Hagedorn temperature making
use of the canonical ensemble. Furthermore the specific
heat of the massive excitations has been shown to be neg-
ative for such a system. Note that similar physics has
been obtained long ago in some particular cases of a sta-
tistical model of hadrons.®’

Equilibrium between massive and massless (the heat
bath) string excitations above the Hagedorn temperature
can be achieved in a finite volume.® If the volume of the
system is increased above some critical volume V,, ther-
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II (dual canonical high-temperature phase) ,

modynamical equilibrium is lost. This is a consequence
of the fact that massive excitations have negative specific
heat. This situation is reminiscent of the physics of
black-hole evaporation. Below the Hagedorn tempera-
ture, the microcanonical and the canonical ensemble are
equivalent. In a very interesting paper, O’Brien and Tan®
have recently shown, taking advantage of modular invari-
ance and making use of a Poisson summation formula,
that the canonical heterotic string partition function is
self-dual (in the sense of Kramers-Wannier duality) with
respect to temperature, i.e.,

InZ(B,V)=InZ(B,V) . (1.1

The “dual” inverse temperature J is given by

g=_;§ ) (1.2)

in which B is the inverse temperature and T is the string
tension:

1

=ra (1.3)

A relation similar to (1.1) also occurs in the context of
the two-dimensional Ising model in which the low-
temperature region is mapped into the high-temperature
region.’ Since the heterotic partition function is not ana-
lytic above the Hagedorn temperature ;5 !, O’Brien and
Tan distinguish essentially three phases for the ideal
heterotic string gas:

(1.4)
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in which B, is the inverse Hagedorn temperature.

The nature of the excitations “living” in the dual phase
has been discussed in the literature and can be visualized
from the fact that, writing the string partition function
(1.1) as the (connected) contribution from the torus to the
Polyakov sum over surfaces with Euclidean time (inverse
temperature) compactified on the circle,'? one gets, in ad-
dition to the usual Kaluza-Klein (KK) modes (discrete
Matsubura frequencies), the winding (solitonic) states
around the circle. While the KK modes are quantized in
units of 1/8% in the string Hamiltonian, the solitonic
modes are quantized in units of 82, Summation over all
Matsubara frequencies and winding numbers yields the
duality relation (1.1). As in the case of the two-
dimensional Ising or Abelian X-Y model, one can con-
struct “order” and ‘‘disorder” variables for the closed
string. While phase I may be expressed in terms of the
“order” variables at inverse temperature 3, phase II is ex-
pressed in terms of the dual “disorder” variables at in-
verse temperature B. However, as discussed by
Sathiapalan,!! there is no way to distinguish physically
whether one belongs to a given phase. Transforming “or-
der” variables into ‘“disorder” variables and vice versa
can always be done through a general coordinate trans-
formations (diffeomorphism) on the world sheet. In other
words high temperature is equivalent to low temperature
through the relation (1.2). Other recent studies on phase
transition near the Hagedorn temperature include Ko-
gan'? as well as Atick and Witten.!?

As in the Ising model, a duality relation such as (1.1)
would imply the existence of a critical point at B=p:

B=B=mV2a'=8,, . (1.5

For the heterotic string, however, the critical point S,
lies outside the region of analyticity of the canonical en-
semble. Nevertheless, since the thermodynamical proper-
ties of the heterotic string excitations can be analyzed
through the microcanonical ensemble above the
Hagedorn temperature, canonical self-duality implies
that a similar analysis can be done for the properties of
the dual excitations above the “dual” Hagedorn tempera-
ture B !. The discussion is completely symmetric to the
case dealing with the order variables. This suggests an
effective splitting in half of the microcanonical region.
B;;! becomes then the true maximum temperature of the
theory. The energy density as well as all other relevant
thermodynamical quantities can be expressed in terms of
either the original or dual excitations, since one has com-
plete degeneracy at that point. The microcanonical re-
gion has then the structure

Bm SB<B0, II1a ,
(1.6)
TTlT?o <B<B,,, IIb (dual) .

The existence of a true maximum temperature 3;,' has
cosmological consequences. In particular, taken as an in-
itial condition, it implies, together with the adiabaticity
assumption, the existence of a minimum radius (scale fac-
tor) for the Universe. There would be no initial singulari-
ties. Cosmological scenarios with a maximum tempera-
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ture have been studied in the context of dual models of
hadrons.? However, the maximum temperature was usu-
ally identified to the Hagedorn temperature and the
analysis was carried through entirely in the region of
analyticity of the canonical ensemble. More recent stud-
ies have also been made but emphasis has been given to
the period following localization (zero-slope limit)'# !>

True string cosmology has recently been investigated
in a number of papers for cosmic strings as well as funda-
mental strings.

In the context of cosmic strings, Mitchell and
Turok!%!7 have shown that the statistical properties ob-
tained from numerical simulations of the evolution of a
string network can be analytically reproduced through
the statistical mechanics of the quantized closed bosonic
string in four space-time dimensions (neglecting ghosts
and tachyon states). Their study suggests that in an ex-
panding universe, a string-dominated phase should be
disregarded in favor of a “‘scaling solution”'® where the
ratio of the string density to the total density is a fixed
fraction (M gyt /Mp, ~ 10~3) with the right magnitude to
account for galaxies and clusters formation. It is interest-
ing to note the equivalence of these authors’ “dual” for-
mulation to the numerical simulations of the Higgs con-
densate.

Fundamental strings have also been argued'® to play a
significant role in the onset of an inflationary period of
the expansion of the Universe.

Very recently, Brandenberger and Vafa? have studied
the thermodynamics and cosmology of fully compactified
closed superstring theories, arguing that one must rather
explain dynamical ‘“decompactification” of three spatial
dimensions rather than the compactification of six “inter-
nal” dimensions. These authors have also discussed the
physical relevance of duality relations for finite
compactification radii (in spatial as well as temperature
channels). However, their considerations lack dynamical
equations determining the (cosmic) time dependence of
the compactification radii.

Other recent articles on string cosmology include the
work of Tye?! and also Kripfganz and Perlt.??

In this paper, we wish to study the implications for
cosmology, above the grand-unification (GUT) scale, of
the thermodynamical phase structures (1.4) and (1.6) of
the heterotic string. We shall assume adiabaticity and
point out under which circumstances such an assumption
breaks down. In the following, we choose the ten-
dimensional metric tensor to describe a spherically sym-
metric homogeneous space-time:**

. 2
dst=dt*—a¥1) dr%u% , (1.7)

in which a(z) is the time-dependent scale factor,
k=-1,0,1,and r’= 3?_, x>~

The basic equations are Einstein equations, the
energy-momentum, and the entropy conservation law.
The energy-momentum tensor is taken to have the
perfect-fluid form in a comoving frame:

T,,=pg,,+p+p)UU,, (1.8)
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where p is the pressure, p is the energy density, and U,
has the form

U,=(1,0,...,0). (1.9)

Both the pressure and energy density are taken to be de-
pending on time alone. Note that the scale factor a (¢) in
(1.7) is the same for all spatial directions. Since we re-
strict ourselves to energy scales above the GUT scale
(~10" GeV) and consequently prior to inflation (.e.,
inflation obtained from standard scenarios), we assume
that the size of the Universe is small enough to allow
such a symmetric treatment. Inflation is not a solution of
Einstein equations at the energy scales consider here. It
has been argued by Alvarez'* that compactification con-
traction of the extra dimensions should occur after locali-
zation. Consequently, inflationary scenarios based on
compactification of extra coordinates should be treated
within the effective low-energy limit field theory. Here
we discuss the string phase prior to localization.

When solving Einstein equations, our initial conditions
will be such that the initial state of the Universe is that of
an ideal string gas of massive excitations in equilibrium
with its radiation in a small volume at very high tempera-
ture (of the order of the Planck mass) and high-energy
density.

II. THE COSMOLOGICAL MODEL

In the following, we shall make the simplifying as-
sumption that the gravitons condense to create the metric
tensor described by Eq. (1.7) with scale factor a(t) and
that the relevant dynamical equations are Einstein equa-
tions. Alternatively, one could consider condensation of
the dual gravitons with scale factor @(¢). One should also
perhaps take into account the string theoretic corrections
to general relativity with curvature square terms in the
effective action.?* Nevertheless, we shall ignore such
terms for simplicity.

From the metric tensor (1.7) it is straightforward to ob-
tain the Ricci tensor in d dimensions. It is obtained ex-
plicitly as?

Ryp=(d —1< | 2.1
a
and

8ij .. .2

Rij=——lad+(d —-2)(a"+k)]. (2.2)
a

From the Einstein equations,
R,,—38,,R=—87GT,, (2.3)

and the energy-momentum tensor for a perfect fluid (1.8),
one gets the equations

)
(d—=1)d—=2) |a*+k _87Gp (2.4)
2 a’
and
1 |a*+k d|
—(d=2) |5 |75 |(d=3)+ | =87Gp . 2.5)
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Combining Egs. (2.4) and (2.5) one gets the energy-
conservation law

p+(d——1)%(p+p)=0, (2.6)
which can also be written as
a‘“‘p:%[ad‘l(p—%p)] , 2.7)

where a?~! can be taken as the spatial volume of the

Universe (d =10).
Denoting by S, and S the entropy of the Universe in
phases I and IIla, respectively, one has

S (a®,B)=Ba’[p(B)+p(B)], (2.8)

and
SB(ag,B)=Ba9[p,(B)+p,(B)]+an(Es,ag) ,

in which p and p stand for the total energy density and
pressure while p, and p, denote the contribution from the
massless modes (radiation) of the heterotic string. The
second term in Eq. (2.9) is the entropy of the massive ex-
citations in phase I1la.

Allowing the scale factor and the temperature to be-
come time dependent one can show that the adiabaticity
condition

S 4.5(a’(1),B(1))=0

2.9)

(2.10)

for the evolution of the Universe is equivalent to the
energy-conservation law (2.6) or (2.7). Equations (2.4)
and (2.8)—(2.10) are the basic equations of our cosmologi-
cal analysis.

In the next section we will write down explicitly the en-
ergy density and the pressure in each of the phases of the
heterotic string described in the Introduction.

III. COMPUTATION OF THERMODYNAMICAL
QUANTITIES

In this section we proceed to determine explicitly the
behavior of the energy density and the pressure of the
heterotic string excitations as functions of the inverse
temperature 8 and the volume factor a?~!. Because of
duality, we need only consider the cases of phases I and
IITa. The corresponding behavior for the dual excitations
can be obtained readily by substituting 3 for 8 and @ for
a. From now on, we take the Regge slope a'=1Mp?
where My, is the Planck mass.

A. Phase I

In the low-temperature phase I, the canonical partition
function for the heterotic string is analytic. Such a parti-
tion function has been derived several times in the litera-
ture. Here we simply state known results.

Near the Hagedorn temperature S5 !, the logarithm of
the partition function can be expressed as®

a9M;l9
2By
XT(—at 2, 9(B—By) (B—By) ,

InZ(B)~ I_Q/Z(B—Bo)a"”/z

(3.1
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where I'(a,b) is the incomplete y function. The parame-
ters a and 3, take on the values

a=10, B(1+V2)rMy', (3.2)

while the usual infrared cutoff 7 is of the order of the
Planck mass. Consequently, the massless modes of the
heterotic string are absent from (3.1). We shall treat
them separately later on.

Expanding the incomplete ¥ function in (3.1) about
(B—By), one gets

a9M1:19

InZ(B) ~ —— o ~MF~F)
nZ(B) 2B
S S
na-l]/Z(a__%)
(B—By)
_ T g a5 (3.3)
3 2

From (3.3) it is straightforward to obtain the energy
density p, and pressure p; of the massive string excita-
tions by making use the thermodynamical relations,

9

My 3 9
ps= 0 a‘Ban(B,a ) (3.4)
and
M3d
pe=B~'——InZ(B,a") . (3.5)
oa

The results are
1—9/2

a —n(B—By) 1
~— —_— )
Ps (277_3)9/29 ne 2 q— 1) B—Fo
(3.6)
and
a' =" i1, BBy 1
Ps= B~ e —— T BBy .
s = (2 )2 7o 12 (q—11)
(3.7)

Furthermore, in ten dimensions, the energy density p,
and pressure p, of an ideal gas of massless heterotic string
excitations are given by

&

pr:UB—-lo’ pr= 9 ’ (38)
where the proportionality constant o is given as®
5 1
7=Z465 n, + 1——2; ngl, (3.9

with ng=n,=4032 for the massless modes of the heterot-
ic string. Consequently,

o~5.7x10*. (3.10)
The total energy density and pressure are now given as

pP=p,+pss P=P,+ps - (3.11)

One can compare the energy density and pressure of
matter (massive modes) and radiation (massless modes)
near the Hagedorn temperature. Although we must cau-
tion that the size of energy fluctuations becomes rather
large near that point, it can be used nevertheless to give a
rough idea of the order of magnitude involved. Defining

pOS,rEps,r(BO)’ pOs,rEps,r(BO) ’ (312)
one gets
Pos =2—”[<1+\/T2)7r]“/2~1 (3.13)
Por To
and
Poo 7 Po . (3.14)

Por  (14V2)1 po

Therefore, as one approaches the Hagedorn tempera-
ture from below, matter and radiation contribute equally
to the total energy density and pressure. However, as one
goes to lower temperatures, the Universe soon becomes
radiation dominated because of the exponential decrease
of matter contribution in Egs. (3.6) and (3.7).

B. Phase IIla

The region described by the phase I1la lies outside the
region of analyticity of the canonical partition function.
Making use of a microcanonical ensemble analysis, it has
been shown that the microcanonical density of massive
states Q(E, V') has the same functional form as the densi-
ty of states in mass space for closed strings, thereby meet-

ing the so-called bootstrap condition. Therefore one
has3,6,7

QUE,,V)~VE %xp(ByE,) (3.15)

with the parameters a and S, given by Eq. (3.2). The
density of states (3.15) is valid for energy densities higher
than the critical density p,, in Eq. (3.12). Making use of
the thermodynamical relations
dInQ(E,, V) d
F=""3E

InQ(E,, V)

=— 3.
v Ps=3p B ) (3.16)

s

one obtains the following expressions for the energy den-
sity and pressure of the massive string excitations:

aM%l b= M%l
(Bo—B)®” 7 Ba’®’

in which we replaced the volume factor ¥ by a’Mp°.
The contribution to the energy density and pressure from
the massless excitations is the same as in phase I and is
given explicitly by Eq. (3.8). An important offshoot of
(3.17) is that the massive modes have negative micro-
canonical specific heat above the Hagedorn temperature.
Consequently, one can have equilibrium between massive
and massless modes only in a finite volume. The condi-
tion for equilibrium between massive and massless modes
has been given by Bowick and Wijewardhana.> In terms
of the volume of the system the condition is stated as

p,= (3.17)
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BIO
[4
a’<al=

a

© By—B.

in which E_ is the total energy of the system at inverse
temperature 3,. This critical temperature is related to E,
through the formula

1 B L B:
10 (Bp—B.) 10 (B,—B,)?

For a volume larger than the critical volume a?, ther-
modynamical equilibrium breaks down.

In the next section, we will take a closer look at the
adiabaticity condition.

E M3, (3.18)

BoE.=a |1+ (3.19)

IV. THE ADIABATICITY CONDITION

The adiabaticity assumption for the evolution of the
Universe has been formulated through Egs. (2.8)-(2.10).

If we denote by S, and S the initial entropy content
of phases I and IIla, respectively, then inserting the cor-
responding energy density and pressure into Egs. (2.8)
and (2.9), one finds an expression relating the scale factor
to the temperature in each phase.

In the canonical phase-I region, such an expression
take a rather simple form for a temperature lower than
the Hagedorn temperature, when matter contribution is
effectively damped down and the Universe becomes radi-
ation dominated. Insertion of Eq. (3.8) into (2.8) leads to
1/9

L1 BUMy, 4.1)

100

a(t)~

In the microcanonical phase-IIla region, the situation
is somewhat less trivial. Insertion of (3.8) and (3.17) into
(2.9) yields the transcendental equation

afy
a’=exp |Sp—aln(By—BIMp — =
P |98 Bo—BIMp, Bo—B
-9.9
_710039 2 Ma0l, (4.2)

where Sy differs from Sy by an irrelevant constant term.
It is easy to show that there is a maximum volume @ 9 at
inverse temperature 3 satisfying the relation

_,_aB'my,

100(B,—B)?
Further comparison with Eqgs. (3.18) and (3.19) yields

B=B., a’=a], 4.4)

(4.3)

a

i B.=778,

ol—u
4 5 6 7 8 9

Bm B [BQ]

FIG. 1. Behavior of the scale factor a as a function of the in-
verse temperature 3 for two different values of the critical tem-
perature 5. .

as expected. It is now possible, making use of Egs.
(4.2)-(4.4) to express the entropy Sp as a function of S,
alone. One then obtains a one-parameter family of curves
a(B;B.). Figure 1 displays numerical solutions to (4.2)
for two different values of the critical temperature 5. .

In the next section, we will analyze the solutions to
Einstein equations (2.4) for various choices of initial con-
ditions at temperatures above the Hagedorn temperature.

V. INITIAL CONDITIONS
AND EXPANDING SOLUTIONS

At initial time, we shall assume that the Universe was
described by a mixture of matter and radiation in ther-
modynamical equilibrium at a temperature above the
Hagedorn temperature.

In phase I1Ia, the formal solution to Einstein equation
(2.4) is given by

4
tzf daa 9 172 » (5.1)
2mG Ly 9, 9BM, |a 8
— |oB a7 +——— | = —ka
9 Bo—B | B

in which we used expressions (3.8) and (3.17) for the ener-
gy density of the massless and massive excitations, re-
spectively. However, as is readily seen from Fig. 1, B(a)
is not single valued and one must specify the integration
path in temperature space. Converting (5.1) into an in-
tegration over the inverse temperature [3, one gets

2
a’ 100093_9M1?,9——aﬁ 5
t_fB(t)ﬁ (Bo—B) 5.
o 172 » .
B0 B 97—9 -9 2mG —9 9 (ZBM%] a 8
(10c0a’B MP] +9) T of " ’a +W E——— a
0 —
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® Blo) =978, ®

BE)=Byn=.415,

Qe+

afo) =ap =136
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t [Mp]

FIG. 2. (a) Behavior of the inverse temperature 3 as a func-
tion of time for two different initial conditions 8(0). Note that
B.=0.77B, and k =0. (b) Behavior of the scale factor a as a
function of time for two different initial conditions a (0) [corre-
sponding to the initial conditions B(0) on (a)]. a.=2.24 and
k =0.

in which a(p) is a single-valued function of temperature.
Figure 2 displays numerical solutions to Eq. (5.2).

Clearly, the results indicate that for initial inverse tem-
perature 3(0)£f,, the Universe expands adiabatically up
to the critical volume a.. If the initial temperature is
such that B(0) < B,, expansion is accompanied with cool-
ing. On the other hand, if B, < < B, the Universe actu-
ally becomes hotter as it expands toward a’. That this
can be possible should not be too surprising if one recalls
that the massive string excitations have negative micro-
canonical specific heat in that region.

For volumes larger than a?, the present model does not
provide answers. Rather, thermal equilibrium between
massive and massless modes is lost above the latter criti-
cal value. A complete discussion would necessarily in-
volve the effects of the string interactions. One could
then argue that the massive modes decay into radiation
and that, subsequently, a radiation-dominated universe in
thermal equilibrium finally emerges. In such a situation,
the relation between the scale factor and the temperature
takes the simple form described by Eq. (4.1). Insertion of
(4.1) and the relation (3.8) for the energy density of radia-
tion into Eq. (2.4) yields the following solution for large
time (k =0):

Blt)~t'/3 . (5.3)
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Recalling (4.1) one gets

a(t)~t'3 . (5.4)

At later times, standard cosmological scenarios may
proceed with possible symmetry-breaking mechanisms
giving rise to mass generation for some of the mass-
less heterotic string excitations (perhaps through
contraction—compactification of the internal coordi-
nates).

VI. CONCLUSION

In this paper we discussed an evolutionary scenario
based on the condition that the Universe was initially
filled by an ideal gas of heterotic string excitations in ten
dimensions, with thermodynamical equilibrium between
massive and massless modes at a temperature above the
Hagedorn temperature.

We then showed that irrespective of the initial value of
the temperature, the volume expands and actually
reaches a critical value above which a nonequilibrium re-
gime sets in. Taking into account the string interaction,
the massive modes should decay into radiation. When
the new equilibrium regime is achieved, the early
Universe keeps expanding in a radiation-dominated phase
with the power law:

a(t)~t'”> . (6.1)

It is interesting to note that the duality relation (1.2)
for temperature induces a duality relation for the scale

factor:
a=ala) . (6.2)

In radiation-dominated periods of the expanding
Universe, one has usually

a~f3.

Correspondingly, in the dual phase, one should have

(6.3)

a~p. (6.4)
Equation (1.2) then implies
a~1. 6.5)

a

Although the above duality relation for the scale factor
(radius) of the Universe is an induced one in the present
context, such a relation naturally occurs if one truly
compactifies from the start all the heterotic string coordi-
nates.””> Cosmological studies follow a different route in
that case (see Brandenberger and Vafa®®). Our choice
(1.7) for the metric mimics this compactification of space.
It is therefore not too surprising to obtain a duality rela-
tion in the present context.
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