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Attempts so far at constructing a covariant closed-string field theory have been frustrated by the
fact that modular invariance always appears to be violated. At both the tree and loop levels, moduli
space is either overcounted an infinite number of times, or undercounted because of a missing re-
gion. We solve this problem by demonstrating that a new closed four-string interaction is necessary
to reproduce the closed-string amplitude which precisely fills the missing region. This closed four-
string interaction, which has the topology of a tetrahedron, is predicted by geometric string field
theory. The tetrahedron graph is generated by gauge fixing the geometric theory’s local gauge
group, the unified string group, and is the exact counterpart of the instantaneous four-fermion
Coulomb term found in QED. We prove the existence of this tetrahedron graph both analytically
and by direct computer calculation and show that it is the key to reproducing the Shapiro-Virasoro

amplitude.

L. INTRODUCTION

Modular invariance is a crucial component of string
theory which is intimately linked to space-time supersym-
metry and finiteness. The original closed-string field
theory in the light-cone gauge! can be shown to be modu-
lar invariant.>> At the tree level, this is just the statement
that the closed-string field theory reproduces one confor-
mally inequivalent Riemann surface, the complex plane.
However, at the loop level, the proof of modular invari-
ance is nontrivial, because of the existence of Dehn
twists, global diffeomorphisms which cannot be connect-
ed to the identity map.

However, attempts at generalizing string field theory to
the covariant case have so far failed to reproduce modu-
lar invariance either at the tree or loop level. Generaliza-
tions based on the “covariantized light-cone”* approach
are plagued by an infinite overcounting of moduli space,
even at the tree level. This is because the fictitious “pa-
rametrization length” is not treated as a gauge degree of
freedom. Furthermore, proposals based on generalizing
Witten’s action > can be shown to undercount moduli
space because of a missing region. For example, the s-
channel four-point amplitude does not continuously de-
form into the z-channel or the u-channel graphs.® As a
consequence, there is a large chunk of the complex plane
that is missing. This is not a trivial question, because the
heterotic superstring theory,” which is the leading candi-
date for a theory of all known forces, is a closed-string
theory.

Recently, one of us proposed an entirely new approach
to string field theory called geometric string field theory®®
which is free of the problem of overcounting. Because the
o parametrization (including the parametrization length)
is treated as a local gauge degree of freedom, we are free
to gauge fix the parametrization length, and hence over-
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counting is avoided. As in Yang-Mills theory or general
relativity, geometric string field theory can be derived by
gauging a certain local gauge group (the “unified string
group,” which contains the Virasoro group as a sub-
group).

Geometric string field theory is based on the physical,
invariant length of strings,

2ra o 1 \2
L=["doVX, (a),
rather than the fictitious parametrization length:

2ra= fozm do

(1.1)

(1.2)

which can be changed at any time.

The essential feature of the geometric theory is that it
is defined in loop space, i.e., the space of physical, space-
time strings, rather than parameter space. In loop space,
we can isolate the essential physical dynamics of the
string theory without the gauge-dependent complications
due to parametrization lengths, parametrization mid-
points, ghost counting, ghost insertions, etc. Thus, the
theory necessarily contains a “string vierbein”%° el
which allows us to change the parametrization of the
string at will. The string vierbein separates the geometric
theory from the usual Becchi-Rouet-Stora-Tyutin (BRST)
theories, which are defined in parametrization space and
hence are “rigid” string field theories.

For open strings, the fictitious parametrization lengths
in geometric string field theory can be gauge fixed either
to reproduce the “end-point gauge” (i.e., the covarian-
tized light-cone gauge) or the “midpoint gauge” of Wit-
ten. In fact, geometric string field theory, when gauge
fixed, yields a new vertex function with arbitrary parame-
trization lengths which allows us to smoothly interpolate
between the end-point gauge and the midpoint gauge,’
see Fig. 1.
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FIG. 1. The relationship between various closed-string field
theories. The geometric string field theory is based entirely on a
new “transfinite Lie group,” which we call the unified string
group. When gauged, we uniquely arrive at the geometric string
field theory action. When we fix the parametrization of the
various strings in an arbitrary way, we have the “interpolating
gauge.” When all strings are defined to have the same parame-
trization length | @ | =, we have the “midpoint gauge,” which
necessarily has a four-string interaction. If the sum of the pa-
rametrization lengths equals zero > a=0, then we have the
“end-point gauge.”

Midpoint Gauge

Geometric string field theory explains the origin of the
open four-string interaction first introduced in Ref. 1.
The meaning of this open four-string graph is simple: it is
the counterpart of the instantaneous Coulomb term gen-
erated by gauge fixing the unified string group. In QED,
for example, choosing the Coulomb gauge generates the
instantaneous four-fermion term

L=y V- Dy v

when we eliminate the gauge field 4. Similarly, the open
four-string interaction emerges when we eliminate the
string vierbein e;. The open four-string interaction van-
ishes for the midpoint gauge but occupies a large portion
of the integration region for the end-point gauge. In the
interpolating gauge, the four-string interaction smoothly
interpolates from the usual one found in the end-point
gauge to the one for the midpoint gauge, where it van-
ishes.

We will see later that the origin of the open four-string
interaction is due to the fact that the gauge group does
not close properly in the end-point gauge unless the
four-string interaction is added to the action.

For the closed-string case, however, the picture
changes dramatically. Let us define the end-point gauge
for closed-strings to  describe  light-cone-like

(1.3)
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configurations (a ring, of course, has no end, so we define
the “end point” of three closed strings to be the mutual
joining or splitting point). We then find the opposite situ-
ation: the unified string group closes properly for the
end-point gauge, but not for midpoint-type
configurations. This means that the midpoint-type
configurations must necessarily have closed four-string
interactions, rather than the end-point configurations,
which is the opposite of the open-string case. Thus, from
group theory alone, we can show the necessity for a new
closed four-string interaction which smoothly interpolates
from midpoint-type configurations to end-point configur-
ations, where it vanishes.

The new closed four-string interaction, which we call
the “tetrahedron graph,” is shown in Fig. 2. Notice that
the diagram is defined in physical loop space, so the in-
teraction is spatially extended over several physical di-
mensions. Notice that the four strings collide at the
center, forming the outline of a four-sided tetrahedron.
If we parametrize this tetrahedron in o space, we find the
topology of Fig. 3. It is important to notice that Fig. 3 is
defined totally in o space, not o, space. Geometric
string field theory predicts that the new interaction in the
midpoint gauge can be written in the form

4
Ly= f I1 Q,[X;)DX,d*z 8,534 (1.4)

i=1

where 8,3, is the overlap function for Fig. 3, where d %z
indicates that the tetrahedron graph occupies a nontrivial
portion of the complex plane, and @, is the usual closed-
string field functional projected out by the L, — L, opera-
tor. [We will also present the closed four-string interac-
tion term in the interpolating gauge, which has a smaller
region of integration than the midpoint contribution. We

FIG. 2. The tetrahedron graph. In the midpoint gauge and
the interpolating gauge, this four-string interaction must neces-
sarily be added to action to restore modular invariance. This
graph is a gauge artifact, a by-product of breaking the unified
string group and choosing the midpoint gauge or interpolating
gauge. It is the counterpart of the instantaneous four-fermion
term found in QED, created by breaking U(1) invariance and
choosing the Coulomb gauge.
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FIG. 3. In parameter space, the four-string graph has the to-
pology of a tetrahedron. (The arrows point away from the ori-
gin.)

have omitted the contribution from the tangent space,
i.e., the “ghost sector,” which can be easily inserted into
(1.4).]

The fact that this tetrahedron graph must be added to
the action in the midpoint gauge can be seen intuitively.
In Figs. 4(a) and 4(b), for example, we see two graphs
which contribute to the s-channel pole for 1+2—3+4
for strings of equal parametrization length 27 in the mid-

FIG. 4. The three “Rubik’s cube” points. These three graphs
correspond to the collision of four closed strings of equal pa-
rametrization length in the midpoint gauge. Notice that there
are four ways in which the graph can be smoothly deformed by
sliding strings of equal parametrization length past each other
(vertically and horizontally, clockwise and counterclockwise), as
in a Rubik’s cube.

point gauge. Figure 4(c) is contained in the ¢- and u-
channel poles. Notice, however, that there is a missing
piece of the integration region. Specifically, one may
suspect that Fig. 5(a), which is an s-channel graph, might
allow us to smoothly continue in the complex plane to
the ¢- or u-channel graphs. But this is not so. If we move
point b and point ¢ past each other, keeping all string
lengths constant, then we can topologically deform Fig.
5(a) into Fig. 5(b) such that the position of the second and
fourth strings are reversed. Although Fig. 5(a) and 5(b)
are topologically the same, the assignments of string
lengths in Fig. 5(b) are not the usual ones. Thus, the
string lengths are all wrong for it to be a ¢- or u-channel
graph. It is easy to show, by this argument, that no dia-
grams of the type Fig. 5(a) can ever be smoothly contin-
ued into the ¢- or u-channel region. Thus, it is impossible
to construct a modular-invariant theory based on the
three-string vertex found in the midpoint gauge.

However, we have checked by explicit calculation,
both analytically and on computer, that we reproduce the
correct region of integration for the Shapiro-Virasoro
amplitude once we include the four-string interaction for
the midpoint gauge and the interpolating gauge. Thus,
the missing piece of moduli space is given by the
tetrahedron graph. The missing region, as expected, van-
ishes in the end-point gauge, smoothly increases in size in
the interpolating gauge, and finally occupies most of the
complex sphere in the midpoint gauge. By neglecting the
tetrahedron graph, therefore, we accidentally throw away
most of the integration region for the midpoint gauge.

For closed-strings, we can summarize the situation as
follows.

End-point gauge:

3
>, a;=0, no four-string interaction;
i=1

Midpoint gauge:

| a; | =a, four-string interaction;

(a) (b)

FIG. 5. In the midpoint gauge, it is impossible to continuous-
ly deform s-, t-, and u-channel graphs into each other, which
means that the midpoint gauge with three-string interactions
necessarily violates modular invariance. This missing region is
filled by the tetrahedron graph. In (a), we see a typical s-
channel graph. However, when we deform it into either a ¢- or
u-channel graph (keeping all parametrizations length constant)
notice that the parametrization lengths are all wrong.
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Interpolating gauge:
a; arbitrary, four-string interaction .

We should emphasize, however, that our end-point
gauge is different from the formalism of Ref. 4 for several
reasons, although they use essentially the same vertex
function. First, there is no problem with overcounting of
the parametrization length, because a is now treated as a
genuine gauge degree of freedom in the geometric theory.
Second, our higher loop graphs are totally different from
those of Ref. 4. Our geometric theory has a proper time
parameter, which yields the same number of diagrams as
the old light-cone theory. By the results of Refs. 2 and 3,
we know that the resulting theory is modular invariant.
The theory of Ref. 4, however, because it does not have
the usual light-cone counting for higher graphs, ap-
parently has seven Teichmiiller parameters (rather than
the usual six) for each loop. Thus, even if the problem of
overcounting of a could be solved, it is not clear whether
the remaining theory is modular invariant because of this
overcounting of Teichmiiller parameters.

We stress that, by contrast, using the results of Refs. 2
and 3, our theory is modular invariant to all orders in
loops. We will demonstrate this in a later paper.

II. TETRAHEDRON GRAPH

The advantage of geometric string field theory®® is that
it is based on an entirely new infinite-dimensional Lie
algebra defined in physical loop space, rather than ficti-
tious parameter space. We have the freedom of either
choosing the end-point gauge* or the midpoint gauge.’
Thus, the problem of overcounting moduli space, which
is a persistent problem for the end-point gauge, is not a
problem for geometric string field theory. The parame-
trization length of a string is a gauge artifact in the
geometric theory. When we choose a different gauge,
such as the midpoint gauge, geometric string field theory
predicts that a new interaction must be added to the ac-
tion, a tetrahedron graph as in Fig. 2 and Fig. 3. For de-
tails, see Refs. 8 and 9.

Earlier, we found that the midpoint gauge prevented us
from going from one channel to the next. Let us now
check that this tetrahedron graph allows us to go
smoothly between the s-, -, and u-channel graphs.

Let us define the symmetric a;; as the parametrization
length of the line common to both the ith and jth strings
in Fig. 6. Let the parametrization length of each external
closed-string be 27a;, where the a; are arbitrary, so that
we are in the interpolating gauge. (When |a;| are all
equal, we are in the midpoint gauge. When the sum of the
a; equals zero, we are in the end-point gauge. The inter-
polating gauge allows us to smoothly interpolate between
these two gauge choices.) We have

ap+a;+a=27la,
ay +axy+a=2r|a,| , 2.1
ay+aptay=2r|asl,

agytagptas=2m|al .

FIG. 6. The length g, is equal to the parametrization dis-
tance which is common to strings / and j. Notice that there are
six such a;;’s, but there are four constraints on them because the
external string lengths are all fixed. Thus, the tetrahedron graph
is parametrized by precisely two degrees of freedom, exactly the
correct number of moduli to fill the missing region of the
Shapiro-Virasoro amplitude.

Notice that there are six independent a;; lengths. But
there are only four constraint equations. This means that
there are 6 —4=2 degrees of freedom in constructing the
tetrahedron graph. This is precisely the number of de-
grees of freedom needed to account for the two-
dimensional missing region of the complex plane. For ex-
ample, let us parametrize the configurations shown in
Figs. 4(a)-4(c) in the midpoint gauge. Let us label them
by the points A, B, and C:

A: ap=7,auy="m,
B: a,=m, a;,=0, (2.2)
C: a;=0,a="m.

If we plot this region in the a,-a,, plane in Fig. 7, then
we find that the region covered by the tetrahedron graph
is a right triangle. The lines which connect these three
points can be parametrized as

A—B: ap,=mT, al4=7T—>0 N
A—C: a,=7—>0, ay=m, (2.3)
B—"C: alz+al4=77' .

We will see that the region within this right triangle is
the missing region of the complex plane. An integration

FIG. 7. In a,; parameter space, the missing region can be
shown to be a triangle. The corners of the triangle are the
Rubik’s cube points.
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FIG. 8. A stereographic projection. The complex z plane of
the Shapiro-Virasoro amplitude is mapped to the sphere.

over this two-dimensional region can be performed using
the following:

4
da=[]da; [16 27— 3 a;|0(7—a;).

i<j i=1 j i)

(2.4)

To see how this parametrization can be viewed symme-
trically, it is helpful to visualize the two-dimensional
complex plane as a sphere. We map the two-dimensional
complex plane to the sphere by a stereographic projection
as in Fig. 8. The resulting figure is shown in Fig. 9,
where the original triangle in Fig. 7 is now mapped to a
triangular region in the northern hemisphere. Points in-
side the regions I, II, and III correspond to the s-, -, and
u-channel graphs. These two-dimensional regions
represent the state of four strings before they collide.
They are parametrized by two variables: the angle 6
which the two three-vertices make with respect to each
other before they collide and the separation 7 between
them. Notice that these regions do not make up the com-
plete conformal sphere, and hence modular invariance is
broken. It is impossible, as we saw, to smoothly go from
one region to the next in the midpoint gauge with only
three-point vertices.

Points A, B, and C, which correspond to Figs. 4(a),
4(b), and 4(c) and which used to form the vertices of a
right triangle in Fig. 7, are now mapped to the equator of
the sphere in Fig. 9. Most important is the “north pole,”

avay
D

FIG. 9. Regions I, I1, and III are filled by the midpoint gauge
with only three-string interactions. Notice that there is missing
region in the northern and southern hemispheres. This missing
region is precisely filled by the tetrahedron graph. Points A, B,
and C are the Rubik’s cube points of Fig. 4.

the point in which all lines have the same parametriza-
tion length, i.e.,
2

north pole: =3 -
(Notice that the north pole is clearly outside the region
parametrized by the three-string vertex in the midpoint
gauge without the tetrahedron graph.) Thus, a large por-
tion of the conformal sphere is actually outside the region
parametrized by the midpoint gauge vertex.

Similarly, there is also the “south pole” on the sphere,
which corresponds to reversing the cyclic ordering of the
external lines on the tetrahedron, which can be accom-
plished by reversing the order of two external lines. To
see visually how we can enter the southern hemisphere,
notice that there are two ways point A can be converted
into point B in (2.3). We can either rotate strings 3 and 4
clockwise or counterclockwise with respect to 1 and 2,
which remain stationary. Depending on our parametriz-
ation, one rotation puts us into the northern hemisphere,
while the other puts us in the southern hemisphere.

Notice that from point A, there are four distinct rota-
tions that we can make among the four strings in the
midpoint gauge. We can rotate strings 3 and 4 clockwise
(or counterclockwise), which will take us to point B on
the sphere via the northern (southern) hemisphere. Or
we can rotate strings 2 and 3 clockwise (counterclock-
wise) and reach point C via the northern (southern) hemi-
sphere.

Points A, B, and C on the equator of Fig. 9 thus corre-
spond to what we call “Rubik’s cube” points. As in the
Rubik’s cube puzzle, we have the freedom of rotating the
object clockwise or counterclockwise via an axis which is
either horizontal or vertical. The four different rotations
we can make at the Rubik’s cube point correspond exact-
ly to the four ways we can move from point A to either
point B or C via the northern or southern hemisphere in
Fig. 9.

Putting everything together, we can now write down
an expression for the closed four-string interaction in the
midpoint gauge (see Fig. 3):

(2.5)

4
Ly= f I1 @:[X;1DX;8,y34u1da ,

(2.6)
i=1
where
disa=11 11 6(Xi(ai)—‘9:'1‘"’]“’1'1—(71‘)) >
i<j 0<U,<21‘r
2.7)
91]=9(C‘}_U‘)9(01_d’1) s
and where
b12 =27T, b13=27T, b14=27r+012 ,
byy=2m, byy=2m—ay, by=2r—ay+ay,
C1y=Qqyy, C13=2T, C14=0a1,+ayy4 ,
12 12> €13 14 12 14 (2.8)

€23 =033, Cya=0dy3+ay, C33=a;3+ay, ,
d;=0, diz=a;+ay, dy=ay,,

dy3 =0, dyy=ay, dyy=a,; .
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u is the Jacobian which takes us from the sphere to the
usual Koba-Nielsen plane. We will show how to write
down an explicit representation for u, as well as show
how to derive (2.6) from geometric string field theory, in
Section V. There, we will also show how to write down
the closed four-string interaction in the interpolating
gauge.

It is essential to point out that the closed four-string in-
teraction is defined in loop space in Fig. 2 and in o space
in Fig. 3 with no extension in 7 space. It is nontrivial,
therefore, to show that a conformal map exists from the
complex plane to this configuration such that the four-
string interaction occupies no extension in the 7 direc-
tion. We will now show this, both analytically and by
computer calculation.

III. CONFORMAL MAPS

Now that we have exhibited the topology of the four-
string interaction, let us verify, by explicit construction,
that there is a missing region in the complex plane which
is filled by the tetrahedron graph. Let us first begin by
discussing the end-point configuration for the
4—1+2+3 and the 1+2—344 processes. There is no
missing region for the end-point configuration.! When we
smoothly make the transition from the end-point
configuration to the interpolating gauge, the four-string
interaction begins to occupy an increasingly larger por-
tion of the complex plane. Finally, in the midpoint gauge,
the four-string interaction actually occupies most of the
complex plane.

The light-cone mapping!® is given by

By varying & from —1 to 1, we make the transition from
the 4—1+2+3 process to the 1 +2—3+4 process in the
end-point gauge.

Let us call w, and w_ the turning points in the com-
plex z plane where p’(z)=0. Then

wy ={2x +1-8+[(2x +1-8)?
—42—8)x 1" [22—-8)1"". 3.3
Setting w . =w _, and solving for x, we find

+1(26—-89)'2 . (3.4)

Let us now choose 8= —1 for the process 4—1+2+3.
In Fig. 10(a) we sketch the three regions of the complex x
plane which describe the various physical processes.
Each of the three regions described in the figure corre-
sponds to the values of x which enter into the various
channels of the Shapiro-Virasoro amplitude. The most
important point is

xozeim'/l (35)

which is the point common to all three regions. (Notice

that the entire complex plane is filled, without the neces-

sity of any closed four-string interaction. This was first

pointed out in Ref. 1.) At this point, we have
i

V3

Zp=w, =w_=1+ (3.6)

The boundary of all three regions can be found analyti-
cally. It corresponds to an equipotential line formed if we
place equal electric charges at 0, x, and 1:

p(z)=In(z—1)—8In(z—x)+Inz , (3.1 Injw, | |w,—1]||w, —x |
where the lengths of the four strings are given by =ln|lw_||w_—1||w_—x]|. 3.7

ay=a3=7, (3.2) We can rewrite this equation totally in terms of x by

ay=—md, a,=mb—2m. inserting (3.3) into (3.7):

J

[(x =P x=2)x + D+ (x?—x+1)"?| = | (x =) x =2)(x +1)—(x*—x +1)*%] . (3.8)
We can see that some of the solutions of this equation are x = —1, 1, 2, +i, 1=i and e*™/3. By solving this equation,
we find

(x =D *(x=2)*(x + D*(x2—x + 124 (x = 1)(x —=2)(x + D(x2—x 4+ 1)*32=0 . 3.9

|

We now use the equations The map (3.1) with §= —1 corresponds to having three

- B . 4 : external charges with equal magnitude, with the charge
(x —3)*(x =2)"(x + 1)* =x ""(x — ) (x —=2)(x +1) (’3 10) at infinity having charge —3m. We could also have

(x2—x+1)*32=4(x I)(x2=x+1)3"?,

which are satisfied if xx*=1 or (x —1)(x —1)*=1. (The
particular branch of the cut we are using can be deter-
mined by placing simple values into the defining equa-
tion.) Thus, we find that the boundary separating the
three regions is given by a circle of unit radius centered
around the origin, as well as centered around the number

1, and the vertical boundary between them, as in Fig.
10(a).

chosen =3, which would correspond to having three
equal charges with the charge at infinity having charge .
Since conformal transformations treat the point at
infinity as an ordinary point, we must also analyze this
configuration as well. If we solve (3.3) for this choice and
then solve (3.7) to find the lines which separate the three
regions, we find that (3.10) is again the solution. Thus, the
three regions still remain the same, even with this choice
of 6.

Next, let us make the projective transformation which
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(b)

FIG. 10. In (a), the complex z plane in the end-point gauge
has no missing region. Regions I, II, and III, which are generat-
ed by three-string interactions in the end-point gauge, fill up the
complex plane entirely. The missing region has degenerated to
the north and south poles. In (b), the complex z plane in the
end-point gauge has been remapped, such that the north pole is
now the origin. In (c), the complex z plane has been stereo-
graphically mapped to the sphere.

maps x, to the origin and A, B, and C to the circumfer-
ence of a circle:

i /3
' _e2mis3 Z —e™

Z_e—m/3

z (3.11)

Notice that the real axis of the complex plane is mapped
to a circle, and that the circles of the complex plane are
mapped to straight radial lines, as in Fig. 10(b). Then, we

stereographically map the new complex plane to the
sphere, as in Fig. 10(c). The origin of the new complex
plane is mapped to the north pole, and the point at
infinity in the new complex plane is mapped into the
south pole.

In summary, we have now mapped the original com-
plex plane to the sphere such that the sphere is divided
symmetrically into three regions, with each region
representing a different process:

I: (142)4+3—4,
II: 14(2+3)—4,
III: (143)+2—4,

such that the configurations A, B, and C lie on the equa-
tor.

Now let § gradually change to + 1. The three regions
then slowly collapse onto the real axis. At the point
8= +1, the three circles have collapsed totally onto the
real axis from the origin to the point + 1. Thus, for
8= +1, the three separate regions of the complex plane
collapse into one region.

Now that we have mapped out the complex plane for
the end-point gauge (where the four-string interaction
vanishes), let us investigate the mapping for the interpo-
lating gauge, when the external strings can have arbitrary
parametrization length. By the Schwartz-Christoffel
transformation, we have the following map:'!

N2
II [(z—w Xz —m;)]'?
dp _, i1 At (3.12)
dz N-1 glz)’
I1 (z—x;)
j=1
where x;, =1, x, =x, x;=0, xy = and
k=—aN . (3.13)

This transformation guarantees that the points x; corre-
spond to the points at + o in the p plane, and that w;
corresponds to points which are the zeros of p’, the
“turning points.” We connect the pairs of points w; and
; by Riemann cuts, which are in general not straight
lines.

Furthermore, we must impose boundary conditions,
such as those at infinity, which will fix the lengths of each
string in terms of the w’s. If each string has parametriza-
tion length «;, then the conditions are

o flz)Nz—x;)
a;=lim —— . (3.14)
z—>x, g(Z)
Furthermore, we must impose
Rep(w;)=Rep(w;) . (3.15)

This guarantees that the interaction of three strings takes
place instantaneously in 7 space. Finally, we can also im-
pose

ij o

where the constant g;; in (3.16) and Fig. 6 determines the
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parametrized distance over which the ith and jth strings
merge during the interaction, for some j. (a;, =0 for the
end-point vertex.)

We have defined our conformal map in the interpolat-
ing gauge with arbitrary length strings. To reach the
end-point configuration, in (3.12) we set

N

end-point gauge: w;=i;, Y a;=0. (3.17)

i=1
When we smoothly change our parametrization to (3.17),
the map (3.12) smoothly turns into the usual end-point
map (3.1) and the Riemann cuts that extend from w; to
w; smoothly collapse into a point. (We have analytically
shown that the transition to the end-point gauge is a
smooth one in Ref. 9. There are no singularities in the
map as we approach the end-point gauge.)

Similarly, to reach the midpoint gauge, we impose the
following on the map (3.12):

la; | =a . (3.18)
It is obvious that this map (3.12) allows us to smoothly go
from the midpoint gauge in (3.18) to the end-point gauge
in (3.17).

For N=4, we can perform the integration exactly in
terms of elliptic functions of the first and third kind. The
calculation is similar to but different from the calculation
for the open-string case’ in several important ways. No-
tice that we are allowing the w; to roam over the entire
complex plane, while @; =w;* for the open-string case.
This small but important distinction will vastly increase
the complexity of the closed-string theory.

To solve the problem, let us change parameters from
w; to the following:

fAz2)=[B(z—BP+C,(z—y)*]
X[B,y(z—B)+Cy(z—yH)], (3.19

where B, ,,C,,,7,B are constants. Let us now change
variables from z to &:

L B—v

_§-12=Y

§=0"""p 61 (3.20)
where

8=(—B,/C)'?. (3.21)

The point of changing variables is that we can now write
J

f(z)=n(B,B)""Hz—B), (3.22)
where
?=(1—E*(1—k%?), k*=B,C,/B,C, .
The Jacobian of the change of integration is
(z—B)*
dz=6—"--d¢ . (3.23)
v—B 5

For example, with this change of variables, we can write
the following integral as an elliptic integral:

I fi) =(—B,C)" Ay -8~

x [ la—ga—ken-de . (.24

To actually perform the integration, let us now decom-
pose the original expression for p’:

3

43=—§=f"<z> s 4

+a4z+as (3.25)

dz

i=1 Z2—X%;

where the a; are functions of x. For later convenience,
let us also define the following function:

g(:)ié’_ A§_+B
(A,B,C,D,k, = ’
¢ 2= n CE+D

where A4, B, C, and D are constants. All integrations can
be performed, and we find
4 A

&( A,B,C,D,k,z)=EF(k,z)— D

(3.26)

I(C?*D ~%k,z)
+AD2 [ %(I—CZD’2§2)“d§ ,

(3.27)

where A= AD — BC and F and II are the usual elliptic in-
tegrals of the first and third kind:

Fk,z)= [* dg(1—g)=12(1—k2)~172, (3.28)
Mv,k,z)= [ dE(1—g2)~172(1 - k2172
X(1—vg)~! . (3.29)

The last integral in ¢ is easily calculated totally in terms
of rational functions:

f (x —n)"Yax2+bx +c¢)"2dx =(—an?+bn +c)" " n{[(ax?+bx +¢)'*+(an?+bn +c)"/*)(x —n)~!

Now define, fori=1-3,
A4;=9, B;=—1, C;=8(B—z), D;=z;—v,
A,=8B, B,=—y, C,=—8, D,=—1,
As=C5=0, Bs=1,

(3.31)
D5=1 .

+3(b+2an)an®+bn+c)7'} . (3.30)

r

Our final result, written in our new coordinates, is given
by

5
p(z)=(—BZC1)#‘/2(Y—B)—‘ 2 ¢( A,‘)Biyci,Di,kiyz) .

i=1

(3.32)
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In summary, we have now found the conformal map
which takes us from the complex z plane to the p plane,
where the external closed strings have arbitrary parame-
trization lengths. All parameters, including the w;, can
now be uniquely determined once the value of x and the
various external parametrization lengths are fixed.

Although the transformation itself is not very difficult,
the main problem is enforcing the real and imaginary
constraints on the Riemann cuts, i.e., (3.15) and (3.16).
Both analytically and by computer, the Riemann cuts are
the main difficulty. There is, however, a very simple
technique which allows us to draw the qualitative
features of the p plane almost by inspection. This is the
method of “equipotential lines,” first introduced in Ref.
1. This method makes possible the visual resolution of p
configurations which are quite opaque or even intractable
analytically. The “equipotential line” method is based on
the simple observation that, in the end-point gauge,

T=Rep(z)= Y a;In|z—x; | . (3.33)

Physically, this is equivalent to the statement that 7 is
equal to the potential function generated by static
charges a; placed at positions x; in the two-dimensional
plane. Lines of equal 7 are therefore equipotential lines.
However, lines of equal 7 correspond to vertical lines in
the p plane. Since the evolution of vertical lines swept out
in the p plane is precisely the evolution of the string itself,
and since these lines are equipotential lines in the z plane,
then it follows that the evolution of equipotential lines
are topologically equivalent to the evolution of the string
itself. In this fashion, the open four-string interaction
was first isolated in the string model in Ref. 1.

Using the method of equipotential lines, we can now,
almost by inspection, show the existence of the closed
four-string interaction. Our first problem is to give an

electrostatic analogue of the Riemann cuts. We begin
with the Neumann function N, which satisfies
ViN(o,r0',7)=2m8(0c —0')0(T—7") . (3.34)

’

Now multiply both sides by 7', integrate over do'dr'.
The right-hand side just becomes 277. The left-hand side
contains a surface term in 7' space. By carefully analyz-
ing the surface terms, we find

1 ’ ’ ’
= ; fN(U,T,ai,T,.)da,» (3.35)

=1,

Normally, in the end-point gauge, the integral over o] is
taken at the points at infinity, so we conveniently re-
derive the usual equation for 7 in (3.33). However, for the
interpolating gauge, we also have the surface term
defined at the points at the instant the strings merge.
Thus, the sum over terms taken at the points 7; contains
both the points at infinity as well as the points in the p
plane when closed strings collide. By examining the pre-
vious equation, we now see that it is obvious that 7 is the
potential function created by external charges placed at
infinity with charge f do=2rma; as well as a string of
vertical charges proportional to a;; placed along the ver-
tical line where the strings 1nteract at some instant 7. But

this vertical line is nothing but the Riemann cut, so we
see that we must smear electric charges along the cut.
Thus, not only is the cut the analogue of a vertical smear
of charges along the lines where strings merge, they are
also equipotential lines in themselves. (In a later paper,
we will show how the equipotential method can be gen-
eralized to the case of multiloop diagrams in the interpo-
lating gauge.)

Once we know that Riemann cuts are sources of line
charges and are also equipotential lines, it is then a sim-
ple matter to verify the correctness of the topology of the
sphere in Fig. 9 given in the previous section. For exam-
ple, the equipotential lines formed by the charges create
precisely the topology of Fig. 3. In fact, we can even
show that two of the lines which form Fig. 3 are actually
Riemann cuts themselves.

In (3.32) we have an explicit, although complicated, ex-
pression for the mapping of the complex plane into the
configuration for four-string scattering. However, let us
now describe how the end-point configuration can be
smoothly deformed into the midpoint gauge. In Fig.
10(a), we saw that the complex plane for the light-cone
choice of parametrization can be divided into three re-
gions, depending on the pole structure of the amplitude.
Now let | a,| decrease by an infinitesimal amount, keep-
ing the other lengths the same. (This, of course, cannot
be achieved within the parametrization of the end-point
gauge. This parametrization is only possible in the inter-
polating gauge.)

In Fig. 11, we see the missing four-string region begin
to emerge when we choose the following parametrization:

a,=a,=aj,

3
- 2a3+6)

i=1

(3.36)

4
2 a=
i=1

where 8 measures the deviation from the end-point
gauge. When §=0, we have the end-point gauge. When
| a; | =a;, we have the midpoint gauge.

The north pole at x, now slowly opens up and becomes
a small triangular region, which represents the missing

aVa
el

FIG. 11. In the interpolating gauge, when smoothly going
from the end-point gauge to the midpoint gauge, the northern
polar region begins as a point, then starts to open up, and then
finally fills up most of the northern hemisphere.
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region of the complex plane corresponding to a four-
string interaction. Likewise, the point at z, splits into
four distinct points w,, @, w,, and W,. We now see two
Riemann cuts emerging where previously there was only
the point at z.

As & gets larger, the triangular region surrounding x,
slowly gets larger, until the configuration eventually ap-
proaches the midpoint gauge, when all strings have equal
parametrization length. When this happens, the small
triangular region around the north pole gradually gets
larger, until it swallows up the entire northern (southern)
part of the complex plane and becomes Fig. 9. Notice
that the three points marking the vertices of the small tri-
angular region all go to the equator. These three points,
in fact, are precisely the Rubik’s cube points A, B, and C
found earlier.

Flw,,w,,d)= f (ax?+bx +¢)"*(x —d)'dx

Fortunately, this behavior can actually be shown
analytically, without using complicated elliptic functions.
We can calculate the precise location of the three vertices
of the triangular missing region. Let us assume, for ex-
ample, that x is sitting at one of the three vertices. Then
the Riemann cuts degenerate, so that two of the w; merge

into a single point. For example,
lTJ]=lT)2=w3 . (337)

For this special case, the integration can be solved explic-
itly. The conformal mapping reduces to

ép_=k(z—wl)‘/z(z—wz)”z(z—w3) (3.38)
dz z(z —1)0z —x)

Fortunately, we know that

=V'¢+(ad +b)a =" In(2ad +b +2ax +2Va$)

—(ad?+bd +¢)"?Inx ~'[2(ad?+bd +¢)+x(2ad +b)+2V $(ad* + bd +¢)'"?]

where
¢=ax*+(2ad +b)x +ad*+bd +c .
Then the integration yields
p(z)=—w;x ~'F(w,,w,,0)
+(14w;y)x —1)"'Flw,,w,,1)

—(x34x)x “Ux —=1)7'F(w,w,,x) . (3.40)

Now let 8 be infinitesimally small, so that the three ver-
tices of the triangular region around the north pole are
located infinitesimally close to x,, i.e.,

x;=e™ 1€, . (3.41)

The points w; are also located infinitesimally close to z,:

w=1+—= 41, . (3.42)

2V'3
It is now straightforward to insert these equations into
(3.40), and we can now solve explicitly for €; and 7; in
terms of §, showing the location of the vertices of the tri-
angular region without elliptic functions.

So far, we have only discussed the missing region
analytically. We have also shown, by direct computer cal-
culation, that the closed four-string interaction corre-
sponds to the missing region. We have performed this
analysis for the process 1+2—3+4 for the parametriza-
tion

a=a,=—a3=—a, .
As we noted earlier, in the end-point gauge, the process
14+2-—3+44 corresponds to having all three regions col-

lapse into one. As we can see from (3.3) and (3.4), the re-
gions I and II in Fig. 10(a) collapse into the real axis from

(3.39)

the points 0 to + 1 as we let § approach + 1.

Now let us slowly make the transition from the end-
point gauge to the midpoint gauge. If we change the pa-
rametrization lengths g;; infinitesimally to the interpolat-
ing gauge, then the points which lie between 0 and + 1
slowly separate, creating a squashed ellipse. The two
halves of the ellipse, above and below the real axis, are
the precise analogues of the two triangular missing re-
gions appearing around the north and south poles in the
4— 14243 case.

We have performed a numerical analysis of the confor-
mal map (3.12) by computer to trace the development of
the missing region for the interpolating gauges which
differ by finite amounts from the end-point gauge. As ex-
pected, the squashed ellipse expands, reaching maximum
size for the midpoint gauge, as in Fig. 12. Points A and
B, which are the points where the ellipse intersects the
real axis, move smoothly from O and + 1 near the end-
point gauge to the points —1 and + 2 for the midpoint
gauge. —1 and + 2 are the other Rubik’s cube points.
Point C, at x =1, does not move at all, since it already

ya RN
Nl S

FIG. 12. By computer, we have independently checked the
correctness of our results. The diagram shows the z plane struc-
ture for four-string scattering: 1+2—344.
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lies both at the boundary of regions I, II, and III, its
proper end-point gauge location, and at the third Rubik’s
cube point, its proper midpoint gauge location. On the
sphere, the missing region expands from a narrow slice
around 1 of the equator to a large region covering most
of the sphere, both poles, and extending around 2 of the
equator.

The computer calculation is straightforward, with
most of the computer time going toward maintaining the
crucial constraints (3.15) and (3.16). This is important,
because these constraints maintain the topology of Fig. 3.
for the entire missing region. This is a nontrivial result.
For example, if the missing region corresponded to a re-
gion of the complex plane which could only be described
by a four-string interaction which had a finite extension
over 7 as well as o, then our analysis would collapse to-
tally. The would mean that string field theory can never
produce a modular-invariant closed-string theory. The
essential feature of this computer program is that it
proves that the missing region can be totally
parametrized by configurations which are instantaneous
in 7, i.e., which can be generated by string field theory.

IV. UNIFIED STRING GROUP

So far, we have not yet demonstrated the deeper,
group-theoretical meaning behind the closed four-string
interaction. The essential point is that, in geometric
string field theory, the group theory alone dictates that
the open four-string interaction must be added to the
end-point gauge but not the end-point gauge, and con-
versely, that the closed four-string interaction must be
added to the midpoint gauge, but not the end-point
gauge. This is because Jacobi identities for the unified
string group do not close properly for open strings with
end-point gauge vertices, or for closed strings with mid-
point type vertices.

To show this, let us review the basic algebra which un-
derlies geometric string field theory, which is called the
“string algebra.” The string group is defined totally in
loop space without any parametrization or any back-
ground classical gravitational field. It is defined in the
space of physical, space-time strings in 26 dimensions,
not two-dimensional conformal space. Let us define a
“triplet” as three oriented open strings which can be ar-
ranged in loop space as in Fig. 13. Let us define an anti-

FIG. 13. A “triplet” of open strings. These strings are un-
parametrized and exist in physical space-time. There is no such
thing as a parametrization midpoint in this space.

triplet as a triplet with the opposite cyclic ordering. Let
us define

+1 for triplets ,
fclczc3 = {—1 for antitriplets , 4.1)
0 otherwise .

Let us define C as the string C with reversed orientation.
Then the structure constants for the string group are

C3
fClC2 =fC‘C2€'3 s

¢ P c, 4.2)

fclc2 =-—Jc,c, -
Let us define L to be an operator associated with a phys-
ical string C. Then the algebra for the string group is
defined as

c
[LepLel=fc)e,Le, - (4.3)

(We sum over repeated indices. Notice that the joining
points of several strings do not necessarily have to meet.)
The essential point is that the Jacobi identities are
satisfied for this algebra. For example, the three strings in
Fig. 14(a) can be inserted into the Jacobi identity,

[LC[Iv[chyLC3]]]:0 ’ (4.4)
so that
c c c c C c
fele,feje, Hfcje fele, v feje feje,=0. 4.5

When we analyze the configuration of Fig. 14(a), we find
1-14+0=0. (4.6)
The string algebra (4.3) has cardinality
R, ~20 .

We call it a transfinite Lie algebra. We can now define
how covariant and contravariant fields transform under

+—3_P
2 2

(a) (b)

FIG. 14. In (a), we see three strings in physical space which
are used to prove the Jacobi identity. However, we can show
that a different definition of a triplet does not satisfy the Jacobi
identity. Let us define a new triplet such that the physical string
lengths sum to zero. Now calculate the Jacobi identity for this
new triplet for three strings given in (b). A simple check shows
that the Jacobi identity is not satisfied (unless higher string in-
teractions are added).
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the string group:

C C
5¢Cl=~fC]3C2¢C3A 2 ’
C C C C

867 =fclc, 8N .

Notice that we now have two invariants under the string
group:

8(¢hc)=0,
c, C, C, .
8¢ "¢ fc c,c,) -

The crucial step is now to observe that a theory based
only on ‘‘covariantized-light-cone”-type configurations
(in loop space) does not obey the Jacobi identities. Let us
now restrict the structure constants to those triplets
where

4.7)

(4.8)

Ly |+ [Ly|=|Ls], (4.9)

where L; is the physical length (not parametrization
length) of the ith string. In Fig. 14(b), we see a typical ar-
rangement of three strings. By checking the Jacobi identi-
ty for these three strings, we see

1+0+0-40 . (4.10)

Furthermore, we find that the ¢° interaction is not gauge
invariant:

8(¢%)50 .

There is a way out of this problem, which is to add a
four-string interaction, such that

(¢ +go*)~0.

This general effect (the nonclosure of the algebra) was
first noticed in Ref. 4. Even with the introduction of the
four-string interaction, however, the resulting action only
closes on-shell.

The important observation is that when we generalize
these results to the closed-string case, we find precisely
the opposite situation, that the end-point gauge closes
without any four-string interaction.

There are several key differences when we discuss the
closed-string group.

(a) Triplets are their own antitriplets. It is easy to
show that, by rotating a triplet of closed strings in physi-
cal space, we can convert it into the anticyclic ordering.
Thus, we cannot define antitriplets distinct from triplets.
Thus, the algebra collapses.

(b) It is impossible to construct constant antisym-

J

4.11)

(4.12)

FIG. 15. A “triplet” of closed strings. This arrangement of
three unparametrized closed strings in physical space-time (and
not the symmetric arrangement of Ref. 5) allows us to construct
a Lie algebra in which the Jacobi identities are satisfied. This
Lie algebra, which we call a “transfinite Lie algebra,” is the
foundation upon which we build the geometric string field
theory of closed strings.

. . c, . .
metric tensors like fc1c2 in loop space for symmetric

configurations as in Ref. 5. By rotating a triplet, we can
always invert the first and second strings and thus show
that the tensor is symmetric. Thus, antisymmetric struc-
ture constants are impossible to define.

(c) The Jacobi identities do not close for symmetric
triplet configurations considered in Ref. 5. Because this
configuration is fully symmetric, it produces four-string
diagrams in the Jacobi identity with the topology of a
tetrahedron, as in Fig. 3. Because these tetrahedron
graphs are symmetrical, we find

1+14+1£0 . (4.13)

No matter how we may modify the numerical assign-
ments of the structure constants with a symmetric three-
string vertex, we can never satisfy the Jacobi identity.

Thus, we are now forced to adopt a new approach to
closed-strings.

In order to cure the problem with Jacobi identities, we
are now forced to take diagrams such that
|L,|+|L,|=]|L;]|,asin Fig. 15. This new definition
of a triplet will guarantee that diagrams like Fig. 3 never
appear in the Jacobi identity. Let us define the constant
tensor for triplets in Fig. 15. Notice that we can define
an outer and inner string in Fig. 15 because the
configuration is not totally symmetric in three strings.
Then

+1 (—1) for triplets if C;=outer (inner) string ,

fc c,C, = .
1723 0 otherwise .

Notice, as we have stressed, that only symmetric matrices
in C, and C, are possible for closed strings. Now define

¥

C,C, :fcxczcz ’ 4.13)

(4.14)

where C is a closed string with reversed orientation from
C.
Our string algebra is now defined as

AC
{Lcl’chl= :

c,c,Lc, - (4.16)
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There are several surprising features to this equation. No-
tice that we are forced to introduce anticommutators
rather than commutators. Thus, the generators are
Grassmann type. In order for the right-hand side to have
the same statistics as the left-hand side, we are forced to
consider f as a Grassman operator. Thus, the algebra is
not a Lie algebra in the usual sense. (It becomes a stan-
dard Lie algebra only when we introduce a parametriza-
tion, which is done in Ref. 9.)

We will take the following choice:
AC c, A
fcle,=fc)c,ic,ne,nc, - (4.17)

Notice that 7 is a Grassmann operator which is defined
only at the interaction point of three strings (the end
point) in a triplet as in Fig. 15. If we now calculate the
Jacobi identities, we find®

1-140=0. (4.18)

The crucial minus sign does not come from the antisym-
metry of the structure constants, because the structure
constants are symmetric. It comes from moving the
Grassmann variable defined at the interaction points past
each other. (This is the origin of the “ghost insertion
operator” found in BRST theories.)

We can show that

8(¢ ¢c)=0,
C,AC
8(¢c bc,d °f c?cz)=0,

where ¢ and ¢ are independent fields. Thus, ¢ and ¢°
terms are again invariant. As in the open-string case, we
can retrieve the group theory for the midpoint gauge, but
only at the price of adding the four-string interaction
(and then only achieving local invariance on-shell).

The next step is to introduce parametrizations into the
algebra and write down the full universal string group
and unified string group. We wish to expand the original
string group to include the semidirect product of the
Virasoro group with the string group. Thus

USG
Diff(S,)_

(4.19)

=SG (4.20)

where Diff(S,)_ is the reparametrization group generat-
ed by L,—L , and is a subgroup of the full Diff(S,),
which is generated by L, and L,,.

It is straightforward to write down the universal string
group (USG) and then gauge it, in the same way we con-
struct the Yang-Mills theory and general relativity.

Let us briefly summarize the main points of geometric
string field theory.®®

(1) The entire theory, as in Yang-Mills theory or gravi-
ty, can be deduced by gauging a single local gauge group.
For string theory, it is the unified string group. There is
no ambiguity or guesswork in constructing the action.

(2) The tangent space of the theory, when gauge fixed,
becomes the “ghost sector” of the BRST theory, which
gives a simple, geometrical meaning to the origin of the
ghost sector.

(3) The arcane rules of bosonization and ghost count-

ing are a representation-dependent way of calculating the
Clebsch-Gordan coefficients for various tensor products
in the geometric theory. Thus, conformal field theory is
incorporated into geometric string theory.

(4) We do not have overcounting of the fictitious string
length a because a is now a local gauge parameter.

(5) When gauge fixed, the geometric theory produces a
vertex function with arbitrary string lengths, which we
call the interpolating gauge. We can show, at the level of
Neumann functions, that

lim

| V)imerpolating= ! V>end point »
0124>0

) (4.21)
]a‘hin—1>21r| V>mterpolating: ] V>midpoim .

(6) The integration rules for X and [ do not have to
be postulated. They are uniquely defined by the tensor
calculus of the group itself.

(7) The number of connection fields for the theory is
dictated by the structure of the group.

For the final action, see Refs. 8 and 9.

V. DERIVATION OF THE FOUR-STRING
INTERACTION

So far, we have exhibited the structure of the four-
string interaction, demonstrated that there is a missing
region of the complex plane which is filled by the four-
string vertex, and shown that the four-string vertex arises
from group-theoretical considerations alone.

In this section, we will explicitly show how the four-
string interaction can be derived in the same way that the
instantaneous four-fermion Coulomb term can be derived
in ordinary QED. The origin of the Coulomb term is
that the propagator is not invariant under a gauge trans-
formation. For example, in a covariant gauge the A field
may propagate as 1/0, while in the Coulomb gauge the
propagator for 4, becomes V™2, i.e.,

QED: O !'»V~2, (5.1)

Thus, because the 4, no longer has any time derivatives
on it, we may functionally integrate out over 4,, which
immediately leaves us with the four-fermion interaction.
An identical situation happens with the geometric
string field theory. The propagator for closed-strings,

D=

J'i z| <1
is not gauge invariant under a transformation generated
by the universal string group. We find

UDU~'«£D . (5.3)

L,—2_L,-2
z 0 70

d*z , (5.2)

In fact, as in QED, we can actually gauge rotate the

theory so that the propagator term 2797 becomes the
number 1. Instead of eliminating the A, field, as in
QED, we climinate the string vierbein® %, that exists in
the theory. The elimination of the vierbein creates the
closed four-string interaction. Since the vierbein couples to
the three-vertex, the four-string interaction is just the



3080

square of the three-vertex in the interpolating gauge.

This conveniently explains the reason for the shape of
the open four-string interaction. In the end-point gauge
for the open-string theory, the three-string interactions
take place at the end points of strings. Hence, we call it
the end-point gauge. However, the four-string interaction
takes place within the interior of the string, which seems
highly unusual. The explanation of this is that the four-
vertex is actually the square of the three-vertex in the in-
terpolating gauge.

Let us begin by first writing down the interpolating
gauge vertex:

3
I 1II

i<jO<o <2m|a, |

[Xi(o;)—6,;X;(b;—0;)]] Vala2a3>=0 ,

(5.4)
where
6,=0(a;,—0o,),
013=027 |a;| —0,)0(c,—a,,) ,
0,3=0(ay;—0,),
(5.5)

b12=277'a2 ’
bj3=27|as| +ay,,
byy=27|a,| .

We will use the key identity, which describes the action
of L, on a vertex function:

(L) /a,)| V)= é i nNp L* . /ag+ci/a, [|[ V),
s=1m=0
(5.6)
where
|
N(zz)=—L |22 ||4E _Zﬁ(z—-x )Z—x,)"!
’ z—z' | dz dz ot r r

=(1/a,)8,,

The structure constants of the geometric theory are
based on the vertex (5.6) except that we take a;, —0 and
the parameter o is now replaced by o +£°, where sum-
ming over the field {7 allows us to sum over all possible
parametrizations of the vertex function.

As explained in Refs. 8 and 9, gauge fixing implies tak-
ing various values of the £ field. For example, £ =0 cor-

BE—£) 3 e "0, —E) S e T | _(a,/02) 3 N
n=0
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n—1

=23 pln—pINJ, _,

p=1
n—1 . .

+ 3 (p*—ndN,, _,—n’Ny . (5.7)
p=1

(This identity can easily be proved. We know that L,
transforms as a tensor of weight 2, so its action on | V)
can be determined classically. The only problem is the
quantum anomaly, which can be calculated by hitting
this identity with (0. The proof that this anomaly can
be ignored for the interpolating gauge is quite involved,
requiring a rather elaborate mathematical apparatus in-
volving intricate identities on Neumann functions. For a
discussion, see Ref. 9.)

This identity alone is sufficient to determine the com-
plete vertex function, without the necessity of appealing
to “ghost” fields. Let us define the vertex function as

foBr=(e*| (| (e | V) .

By moving the various L, contained within each Verma
module to the right, and then reflecting them on the ver-
tex function, we obtain a series of L _,, terms which
eventually annihilate on the vacua on the left. By succes-
sive reflections, we can eventually eliminate all of the L,
contained within the Verma module, leaving only the c-
number Clebsch-Gordan coefficient left. The point is that
the transformation properties of L, on the vertex func-
tion alone are sufficient to determine the entire three-
string interaction.

However, it is also possible to obtain an explicit repre-
sentation of the vertex function in the more familiar
harmonic-oscillator representation. Let us now write
down an explicit representation of the vertex function:

Vo) =[y"* o) +v " Ao))]

(5.8)

(5.9)

xexp(ya” N, +y~"nN 5 v ,)[0)p,;,

nm

which satisfies the usual continuity equations for three
strings, where o, is the interaction point, and N are the
Neumann coefficients for the following:'?

(5.10)

nm
n=1 n=0
m=1

responds to taking the end-point gauge. In general, for
different gauges and different values of {?, we must insert
the determinant of the string vierbein e;% into the mea-
sure. The end-point and interpolating gauge, therefore,
have measure different from one.

This is the reason why we can use the end-point gauge
freely in the construction of N-point functions, but we
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must be careful to insert det|e)f | for all other mea-
sures.

To eliminate this troublesome measure term, we will
extract out the £° by taking a Taylor expansion of the
vertex function around the end-point gauge.

We wish, therefore, to write down the operator which
changes the parametrization lengths of the three strings

via a Taylor expansion. In general,

A %% _
URUZUZ | Ve = Vaaa,) - (5.11)
The operator U is easy to construct (and, in fact, is the
remnant of the string vierbein after gauge fixing and after
extracting out the Taylor series). In order to generate the
reparametrization which changes the string length, we

write

o—o+elo), e(a):%a . (5.12)
We use the operator

U=exp i e"(L, —L~_,,)‘ (5.13)
where

€lo)=—i i €"en’e (5.14)

Now let us write down the four-string scattering ampli-

tude in the end-point gauge, keeping strings 1, 2, 3, and 4
on shell with parametrization length a;:

A4=< Vala2a5 |D I VaGaJaA)
_ 1
=(Vaaa | US'DUG | Vygn) (5.15)
where
U5= H Ua K ’
i=125
a (5.16)
U6= H Ua ' ’
i=3,46

and &; are the parametrization lengths of the strings in
the interpolating gauge. We can always write equations
which are valid for arbitrary a;, but we are specifically
interested in the special case when the external strings
have equal parametrization length:

1=(Vana

1

r=12,5

[1+ b e'"(L,;—Ln')UR o7 (14 S enLi—Lt,)

a1=(—1'1=(12=(72=—a3=—53= —a4= ""64 5
a1+a2+a5=0 ) (517)
a3+a4+a6=0 .

The new string vertex is defined in the interpolating
gauge:

(_1_1+62+55=28 >

(5.18)
('1'3+(i4+(76: —28 ’
where & is a small number.
Infinitesimally, we can write
3 ©
U=|1+ 3 > €L, —L_,) (5.19)

r=1 —ow

Although the U operator contains factors of L, —L _,,,
we can always convert this to a factor which only con-
tains L _, and L _,. We can always show, via (5.6), that

3 a
| Va1a2a3 )= iI;Il Ua,» ' | Va]&2&3
r rs S Fr s S
=eL_nN"m8ameLAnNnm5am | Va&a ,
17273
where 8a), is linearly related to €™ in a simple way (see
Ref. 9). Physically, this means that the on-shell matrix
elements of the vertex function multiplied by any com-
bination of U matrices will always produce the usual ma-
trix elements of the Shapiro-Virasoro model. Off-shell,
however, remarkable identities are made possible by the
presence of these L _, factors.

In order to eliminate the U factors, we will find it con-
venient to split the propagator D into two pieces. Let the
unit circle surrounding the origin be broken up into two
regions: R, which contains the origin and R, being
everything else. We will define these two regions more
precisely in a moment. Then

L,—2_L,—-2
D= 2 070 g,
lz| <1

=+ 1,

1

Ly—2_L,—

o0 g, (5.20)

Then the amplitude A, can be broken up into two pieces
as well, which we call I and II. We find for the first re-
gion

(5.21)

V‘73‘7456>

5s=3,4,6 ]

where @; is defined in the interpolating gauge and where €” is the remnant of the vierbein which changes the length of

the strings.
Now comes the critical step.

In Ref. 9, we introduced the “method of reflections.” We will move each L, to the right, until it reflects off the ver-
tex and turns into L _,,. This reflection process also generates other terms as well, such as anomalous terms and terms
containing L,. Then, we move L _,, to the left, until it reflects off the vertex function and turns into L,, also leaving
other terms as well. We continue this process an infinite number of times. Each reflection, we pick up a factor of z".
But since |z | < 1, after an infinite number of reflections, we find that this term disappears completely.
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The only terms left are the anomalous terms and the L factors. To see this reflection process more clearly, let us
write

(VL2 | vY=(V|z"L,z"| V)
=(V|z"°nNSL_ V)t -

=(V]L,_mz'"zL°| V)z'"nN + -

=(V|L,z Lol yyzmivee z"mN o+, (5.22)

where the ellipsis represent anomalous terms and L terms.

(We also have terms like (5.22) coming from the tangent space of the geometric theory. The four-string amplitude
(5.15) contains a factor of y,7, in the propagator, a leftover from gauge fixing (see Ref. 9 for definitions and notation).
When L, moves past this factor, we use

[L,,v0]l=—ny, . (5.23)

This factor of y,, in turn, moves to the right. Since it has weight 2, it also reflects off the vertex function as in (5.6),
without the anomalous term. Thus, this term also generates its own infinite series of L, terms. The only difference be-
tween these terms and the terms found in (5.21) is that they contain one extra factor of n? rather than n appearing in
the series.)

Now let us collect this infinite number of terms created by the method of reflection. We find

. Ly—-2_Ly-2 5
I—<Va]m2a5 lez z d’z Va3a4a6>
(v, | [ e e rm - v (5.24)
T\ @@as | IR, |2z |2 Ry ’
where
z'=z[14&(2,8)], f(z)=14n(z), (5.25)
where
© 0 ) _ 1
&z)= S 3 s 'N ;5,, asz 2n,N ¢ ol sz N :,’I:;a—
r=1,2,5 i=2 n,=1 r
o o - . . 1
N s 3 sas"'Ni,‘},,zaéz"znzNii 3...zn1nj1vf,fj‘;a—, (5.26)
$=3,4,6j=2 n;= s,
and
12=3 3 3 38N ag" N
p r=1,25i=2n=1 e )
* = My~ n, sq 1
+3 S 3 da 'N%, agz “NJ
g s=23,6j=2n;=1 i aq
e i ed m n nr n’ =~ r‘r‘- 1
+ 3 33 3 8NP e N e
r=125i=21=2n;=1 r,
hed ‘] * sn n rr n. ~ 55 l
+ 2 2 E da ‘Nfr?nz 62 2 'z nan],r£1++]1 tz }an njjé—— »
s=3,4,6j=21=2n =1 a:j
where
i=even—r;=6, s;=5, p=3,4, ¢g=1,2,
(5.27)

i=odd—r;=5, s;=6, p=1,2, g=3,4.

(Notice that the last two terms appearing in the expression for 7 differ from the previous two terms because they have
factors of n%; i.e., they come from the ¥, contribution to the power series.)

Fortunately, it is possible to sum the entire series and obtain rather simple results. A careful examination of the
power series shows that we are simply reproducing the Neumann function for the four-string scattering amplitude. For
example, we have the well-known formula (in the coherent-state basis) which is often used to calculate the four-string
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interaction amplitude:

1
+ L2

(0| exp[4(a | M;|a)+(a | Ly)lexplila’| M, [a")+(a"|L)]]0)
—det-D72(1_ 1
=det (1—M,M )exp | |L, 1_M,M, L,

We will find it convenient to define our Neumann func-
tions in terms of

N - =\/;N;fn\/;zr’"zs" (5.29)
where
—(1;+i6;)/a;
z;=e )
(5.30)
Z=Z6ZS .

In terms of N, we can now explicitly contract the four-
string scattering amplitude (¥ | D | V). We find

LzzﬁSrIGTr) ,

L1=N6S|a‘h‘) ,

M.o—f 5 (5.31)
2= ’

M1=N66 ,

where r = 1,2 and s = 3,4. Putting these factors togeth-
er, we find that the four-string scattering amplitude can
be written in terms of Neumann functions M7 defined
over the two-dimensional four-string scattering surface:

4 (af Mi|at
e ™% oy, (5.32)
where
rr' __ r' r5 4y 66 5
MT=R TR RSl
MS ZN ss'+N 56 N 55ﬁ 7 N SSN 6s’ (5.33)
M'S::N rs ﬁGs

ﬁ66ﬁ 55

Now we are in a position to sum the series for § and 7
and compare them with the Neumann functions MY
defined over the four-string scattering surface:

Ez,8)= 3 S 8a"(MIS—MLS)

r=1,2n=0
+ 3 3 da™(ME-M:), (5.34)
s=3,4n=0
where
Sa ™= ?/a; 25—1 ,
(5.35)
sn
Sa " ?;1; 26—1 ,

1
M, 1—-M,M,

1—M2

e

(5.28)

and

n(z,8)= —&(z)+295 . (5.36)

dz
[At first glance, it may appear that the factor of d&/dz
appearing in (5.36) does not appear in the power expan-
sion for 7 in (5.25). Actually, this identity is satisfied be-
cause of the n? terms which originate from the y, factors.
The z derivative of & in (5.25) simply pulls down the ex-
ponent of z, which is n. This, in turn, produces factors of
n? which precisely cancel those n? terms coming from 7.]
With these identities, we can now show that

_ :LO—-I[‘0 dzz =
I*<Valazas leZ z |27|2f(2)f(2) Va3a4aﬁ>
= Vana D Vaga) - (5.37)

Q30,404

Notice that I is now defined in the interpolating gauge,
not the end-point gauge.

At this point, we will now establish the link between I
and II. Notice that the method of reflections altered the
complex variable appearing in the propagator, from z to
z'. This also affects the integration region as well. In gen-
eral, the region of integration shrinks infinitesimally,
from the unit circle to the region R ;. Let us call C;, the

boundary between region R, and R,. Let z=xe'®. Then
R;x <1—€(8),

R,:x>1—€(6),

where €(0) is a calculable function. The essential point is
that the boundary between R, and R, is the line formed
by | z'| =1. This means that the line C,, is defined by

|z[1+&(z,8)]| =1, (5.39)
which means that we can solve for €(8) explicitly:
e€(0)=¢&(x =1,6,8) . (5.40)

The effect of this constraint is to make the absolute value
of the propagator between the vertices vanish in (5.24):

ILO—Z-:I:

|z 0| =1. (5.41)

This is the counterpart of (5.1).

Now comes the important step. We will find that II
corresponds precisely to the tetrahedron graph.

Let us define § to be between zero and 8. Although we
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as a function of 5. We now find

|z[14+£(2,8)]] =1, x=x(6,8) .

can write down the arbitrary case, we will find it con-
venient to take the case where the external strings have
equal length. We will fix the value of 6 by the criteria

that |z'| =1 throughout the entire R,, not just the  with this restriction, we now find that II can be written
boundary between R and R,. This will fix the value of x = ¢

(5.42)

2 \
1= sz |j22| 7V e 2025 | ﬁE_IZLOELOUS | V—a,—a,2a72s>
N fRZ |‘21722| 7V e, —20425 | o't VY o —ara_25) (5.43)
where
2 —ei? (5.44)
and
Us=U"2, J;=0-2+% (5.45)

Notice that the propagator between the two vertices has completely collapsed. Instead of an x integration between the
vertices, we only have an angular integration which simply spins the relative orientation of these two vertices at the
same 7. Thus, II has now become an instantaneous four-string interaction with the topology of a tetrahedron. This is the
desired tetrahedron graph. To rewrite the tetrahedron graph in familiar coordinates, let us use a;, and a,; as the in-

dependent variables. Then

a,,=27m5, a;;=ab’ .
Putting everything together, our final result is therefore
Ay= ( Va,a,—Za |D | V—a,~a,2a )

=I141I

:< Va,a,—2a+28 l D 1 V—va,-a,2a—26 > + fRZ:u'daIZdaU( Va,a,—2a+a]2/1r | e

(5.48)

This is our final result. Notice that the closed four-
string interaction is simply the square of the interpolating
vertex.

There is a simple way in which to check the validity of
our results. Notice that (5.34) gives us an exact expres-
sion for the variation of our coordinates when we make
this reparametrization. This change in coordinates can
be checked directly against a conformal transformation
which also changes the parametrization lengths of
strings. For example, (3.35) gives us an expression for 7
in terms of an integral over the boundary of the Riemann
surface. Now let us calculate the variation of 7 given an
infinitesimal change in the parametrization lengths at
infinity and at the interaction points. A careful analysis of
the surface terms (which cancel against each other) shows
that

br=>-3 [ Nio,r0},7)0do} (5.49)
1

where the last factor symbolically means that we are

changing the integration region over the parametrization

lengths. (The variation of the N itself and the variation

(5.46)

ita,y/a)lLy—Lg) v (5.47)

a,~a,2a-—a]2/ﬂ'> ’

[
of 7 within N all cancel.) Now perform the integration in
(5.49), resulting in an expression for the change in the in-
teraction point due to a change in external parametriza-
tion. If we compare this against (5.34), we find that we
have an exact correspondence.

For example, in the end-point gauge, the variation of
the 7" created by a reparametrization of the end-point
vertex da; which maps the vertex back to the end-point
configuration is given by

87"= 3 cos(no’/a,)N];8a

n

s 9

where 3 6a; =0.

In fact, we can always check each of our equations by
going back to the end-point configuration, where the
technology of Neumann functions is quite developed and
we can perform almost all the summations explicitly.
This check on our results is nontrivial. Notice that the
change in 7 described by (5.49) is a two-dimensional con-
formal transformation. However, the change (5.34) in
our coordinates was due to a one-dimensional repa-
rametrization. Thus, it is not obvious that a one-
dimensional reparametrization should reproduce a two-
dimensional conformal transformation. We have found,
however, that they are indeed the same.

Several things should be noted here.
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(1) The method of reflections can be carried out with
any choice of parametrization lengths for the vertex func-
tions. We have chosen equal lengths for the external legs
only for convenience.

(2) Although we have only considered infinitesimal
changes in parametrization lengths, the method can be
iterated to produce finite changes in the parametrization
lengths.

(3) Only the end-point gauge is free of the closed four-
string interaction. All other gauges must have the closed
four-string interaction in order to maintain modular in-
variance.

(4) Our result is modular invariant because it repro-
duces the covariantized light-cone configurations without
four-string interactions, which are known to be modular
invariant at the tree level because it reproduces the
Shapiro-Virasoro amplitude and modular invariant to all
loop levels because of the arguments of Refs. 2 and 3.

(5) The method of reflections generalizes easily to the
multiloop amplitude. Because the various factors of L,
now reflect an infinite number of times within a loop, the
factors of 7 and & simply reproduce the Neumann func-
tion for the multiloop amplitude.

(6) Although we have performed our method of
reflections in the S matrix, we can always perform this
process in the action itself. Then the derivation of the
four-string interaction proceeds almost exactly as in
QED. This will help resolve the question of whether
there are five- or six-point closed-string vertices at higher
levels. This will be presented in a later paper.

VI. CONCLUSION

In summary, we have seen that the key to modular in-
variance in closed-string field theory is to formulate the
theory via geometric string field theory, which is defined
in loop space, rather than parametrization space. The ad-
vantage of this formulation is that we can change the pa-
rametrization lengths of our strings at will via string vier-
beins e £. Because the parametrization lengths are ficti-
tious, the advantage of formulating the theory in loop
space is that the extraneous complications due to ghosts,
midpoints, ghost counting, etc., are all stripped clean.

The essential point is that the geometric theory has
more fields than the “rigid” BRST string field theories.
The string vierbein e % is specifically designed to allow us
to change the parametrization at any time.

In the geometric theory, the ghost sector is the tangent
space of the theory, and conformal field theory is a
powerful method of calculating the Clebsch-Gordan
coefficients of irreducible representations of the local
gauge group, the unified string group. In geometric field
theory, the action arises as the unique gauge-invariant ac-
tion.

The closed four-string interaction arises when we
choose a specific gauge. As in QED, it arises when we
eliminate a gauge field. In QED, the instantaneous four-
fermion term arises when we eliminate A,. In string
theory, it arises when we eliminate the string vierbein
e;‘(’,. Thus, the four-string interaction (which is essential
for modular invariance) is a gauge-dependent artifact. In
fact, in some gauge it disappears altogether. In other
gauges (e.g., the midpoint gauge for closed strings) it ac-
tually occupies most of the integration region.

We have seen that the Shapiro-Virasoro amplitude
arises naturally when we include the four-string interac-
tion. In fact, our “method of reflection” is powerful
enough to solve for the four-string interaction in any
gauge.

In a later paper, we will prove modular invariance to
all orders at higher loop levels. We will show, at the level
of the action rather than S-matrix elements, that we can
always extract out the four-string Coulomb term when
we change the gauge. As stressed in Ref. 9, the
geometric theory for closed strings includes a proper time
parameter, so that the counting of diagrams is the same
as in Ref. 1. However, it has been shown in Refs. 2 and 3
that the light-cone counting yields precisely one
modular-invariant amplitude (due to the imaginary
periods of the Abelian integrals on the light-cone sur-
face).

In particular, we will demonstrate the nontrivial way
in which moduli space is triangulated when transforming
from the end-point gauge to the midpoint gauge. We
have three distinct ways in which this triangulation takes
place. In the midpoint gauge, moduli space is triangulat-
ed by cylinders of equal circumference but unequal and
uncorrelated lengths via three and four cylinder interac-
tions. In the end-point gauge, however, moduli space is
triangulated by cylinders of unequal circumference and
unequal (but correlated) lengths via three cylinder in-
teractions. In the interpolating gauge, moduli space is tri-
angulated by cylinders of unequal circumference and un-
equal (but correlated) lengths via three and four cylinder
interactions.

Thus, our counting differs considerably from that of
Ref. 4, where there are apparently seven Teichmiiller pa-
rameters for each closed-string loop (rather than six), be-
cause they have no proper time parameter.
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FIG. 7. In a;; parameter space, the missing region can be
shown to be a triangle. The corners of the triangle are the
Rubik’s cube points.



