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Third quantization and the Wheeler-DeWitt equation
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Beginning with a proposal for the normalization of solutions to the Wheeler-DeWitt equation put
forth by DeWitt we argue that the Wheeler-DeWitt equation naturally lends itself to a second
quantization in analogy to the second quantization of the Klein-Gordon equation. We identify a
conserved current, as well as I3eWitt's proposal for normalization, as coming from a Lagrangian
which is the analog of a second-quantized string theory whose spatial coordinates parametrize the
coset manifold SL(3,R)/So(3). We derive a mode decomposition of the second-quantized Wheeler-
DeWitt field in the linearized approximation to quantum gravity, the zero modes of which are given

by the total three-volume as well as various anisotropy parameters. We discuss the possibility of
adding topological interactions for the linearized theory and find a representation in terms of vertex

operators. In a two-dimensional setting we discuss a connection between our formalism and a pro-
posal by Green which may shed light on some of the interpretational problems of string theory.

I. INTRODUCTION

Recently there has been renewed interest in the quan-
tum theory of gravity with emphasis on topology-
changing processes. ' All such inquiries are eventually
based on the Wheeler-DeWitt equation. In the pioneer-
ing work of DeWitt it was noticed that the Wheeler-
DeWitt (WDW} equation is a hyperbolic differential
equation of signature ( —+++++ ) over the space of
three-metrics y;, superspace, and y' =&dety was a
timelike coordinate. Because of the fact that the WDW
equation is of second order in its derivative with respect
to this timelike variable, the equation is of the Klein-
Gordon type and led DeWitt to a natural definition of the
inner product of two of the solutions to this equation
(that is, consistent with the invariances of the WDW
equation itself) this in turn led to a problem with negative
probabilities. Although in certain cases this problem was
not insurmountable, the resolution in the ordinary
Klein-Gordon equation (which can be interpreted as the
WDW equation for one-dimensional gravity coupled to
four scalar fields) of the negative-energy and negative-
probability problems lead to the reformulation of the
theory in a many-body context. Then the inner product

tending what we know about second quantizing particle
theory (one-dimensional gravity plus matter) and string
theory (two-dimensional gravity plus matter} to the four-
dimensional case. (The recent work of Banks follows
this line of thought. ) We shall touch upon that argument
in Appendix C.

This paper is organized as follows. In Sec. II we re-
view the Wheeler-DeWitt equation and the natural inner
product which can be formed between its solutions. We
shall construct a current density and a Lagrangian from
which it follows by considering global U(1) invariance.
The Lagrangian is that of a scalar-field theory taking its
values on superspace. The indefinite nature of the metric
on superspace led to the problem of negative probabilities
referred to above. In Sec. III we derive an analogy be-
tween second quantizing the WDW equation and second
quantizing a string whose spatial coordinates are con-
strained to move on a coset manifold. In the first case the
WDW field 4 maps

4:[map(S'XS'XS'~R XSL(3,R)/SO(3))]~C

while when second quantizing a string which moves on a
group or coset manifold one needs a field which maps

(41&02) 1 fd +(01~002 02~041) 4:[map(S' —+R X G/H)] +C . — (1.3)

becomes reinterpreted as inheriting its invariance from a
charge Q =i fd x(p't}0$ —pt}0$*) which is associated
with a global U(1} symmetry. Also one can define a
current density which is conserved, and a Lagrangian
from which all this follows. The negative norm becomes
reinterpreted as the charge associated with antiparticles.
We shall follow the same procedure with the Wheeler-
DeWitt equation. The analogy with the Klein-Gordon
theory is not perfect, however, and we shall highlight
some of the differences. A somewhat different motivation
for second quantizing the WDW equation comes from ex-

We specialize to S'XS')&S' spatial topology because it
is closest to the S' spatial topology used in closed-string
theories and a great deal is known about how to second
quantize this system and to normalize the states. Also
k =1 S spatial topology is treated by Hawking in Ref. 1.

In order to understand the physical interpretation of
our second-quantized Wheeler-DeWitt field we develop a
mode expansion in terms of creation and annihilation
operators. In doing so we shall need a complete set of
solutions to the WDW equation orthonormal with
respect to the above-mentioned inner product. The fields

38 3031 1988 The American Physical Society



3032 MICHAEL McGUIGAN 38

y' (x) and y; (x) living on the three-manifold naturally
separate into a piece which is independent of x, which
will be called zero modes, and a piece which depends on
higher oscillations of the fields. The terminology is inher-
ited from string theory where one separates the fields
X"(cr ) into a piece which is independent of o, xo, and a
piece which depends on the oscillating modes X„". We
shall show that the portion of the WDW equation that
depends on the zero modes is equivalent to a minisuper-
space model with an effective cosmological term generat-
ed by the oscillating modes. We discuss in detail the
structure of this minisuperspace model as most of the
qualitative features of our second-quantized WDW field
are contained in the zero modes. In the space
R XSL(3,R)/SO(3) the zero modes of the first factor R
are associated with the total three-volume, and those of
the second factor SL(3,R)/SO(3) give rise to various an-

isotropy parameters. The advantage of going to such a
formalism is that we no longer have to restrict ourselves
to single-universe states. By operating with creation
operators on the so-called third-quantized vacuum (the
vacuum state of our second-quantized WDW equation)
we can construct multiuniverse states or even coherent
states of universes discussed by Coleman. In addition it
appears that such states are necessary to form a complete

Hilbert space. These states have physical applications
with regard to the anthropic principle as well as to the
cosmological-constant problem. Finally in Sec. IV we
discuss the possibility that one can include interactions in
our second-quantized WDW equation in order to gen-
erate certain topology-changing effects.

II. THE HYPERBOLIC NATURE OF THE
WHEELER-DeWITT EQUATION

When one tries to extend ideas with which we have in-

tuition in one and two dimensions to gravity in D & 4 one
must realize that one is generalizing from a system which
is usually taken to be noninteracting on the world sheet
to one in which we certainly have interactions on the
world volume. As yet, for gravity the best we can do is to
expand the metric about flat space and treat the interac-
tions perturbatively. By adding an infinite number of
matter fields to gravity with such content that all matter
fields plus gravity can be encoded into one string field,
string theory has been remarkably successful in describ-
ing the interactions of gravity perturbatively. So when
considering gravity plus matter in D )4 dimensions we
assume that the path integral

T

Z(0) =fDQ'(x)Dg„„(x)exp i f d x v' —g (' 'R +g""'(3„/t)'d, /t)') (2.1)

has an appropriate generalization with an infinite number
of matter fields to a string model which can give (2.1) a
well-defined meaning perturbatively. The action has the
symmetry g„,(x)~g„„(x)+V„e„+V„e„associated with
the reparametrization of the world volume and leads to
four constraints for which goo and go. act as Lagrange

multipliers. They are

( y ik y Jl +y il Y 'k y 'J y kl )~1/2 ij kl

+( yl/2(3)R) 0
(2.2)

X'= —2~'J.,

tion. The "metric" for this Klein-Gordon-type equation
Gijk/ p y ( y/k yj / +yilyjk y /j yk/) is indefinite of in-

dex ( —+++++). This caused concern for DeWitt
who realized this fact naturally leads to a problem with
negative probabilities. One can change variables to
make the indefinite nature of (O'J"') more explicit. Take
as variables y'/ and y,, where det(y; ) =1 so that we re-
place (y; )~(y'/, y;, ) through the relation y; =y'/ y,,
It is straightforward to verify that the canonical momen-
tum conjugate to these variables are given by

jy , ( 2yj lkyj kl,)+,Ij il jk and (2.5)

X'$=2i f =05
5y;

(2.3)

with dynamics determined by

Y (y'k3 J/+y'/yjk y''yk/)
g Vij Xkl

+( y
1/2 (3)R )q 0 (2.4)

The above equation is the Wheeler-DeWitt (WDW) equa-

where y, =g; the remaining spatial components of the
metric and m'j are the canonical momentum conjugate to
it. Again y=det(y;j).

The constraints become conditions on the wave func-
tion in the usual tradition of quantum gravity:

Fr' =(n' 'y' n"k)y'" .-.—
3

In terms of these variables H becomes

3
y
1/2/r2+ y

—1/2y y ~ /k/r jl+ ( y
1/2 (3)R ) (2 6)

and the indefinite nature is manifest. For "particle"
theory the analogous expression is

H = (n)+ G, ( x )m—'~'.+m (2.7)

where we have allowed the particle to move on a curved
surface. Thus one may suspect that the proper treatment
of the wave functions which solve (2.4) should be similar
to the treatment of wave functions associated with parti-
cles constrained to move on a surface. The original
motivation for this paper was to see in what sense this is
true. In our case the inverse of this background metric is
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given by Gjki ———,'y '
(y;kyjl+y;iy/k y—,jyki). H is in-

variant under SL(3,R) group multiplication and the set
I y;l I becomes identified with the coset space
M =SL(3,R)/SO(3) which is five dimensional. The
inner product introduced by DeWitt,

(g, i, (=zf tgrt Dx'G;, ,
x ykl

G(jklDX'
Ykl

(2.8)

[where g„DX"(x) denotes a topological product of the
set of five-dimensional hypersurfaces in the superspace],
respects the global symmetries of H. A difficulty with the
above definition is that negative-frequency components
with respect to the timelike variable y' can make the
above norm negative. If one resticts oneself to positive-
frequency components then ij/ can vanish nowhere in the
range —GQ & y'/ & GG. However, one wishes to have the
wave function vanish for y' & 0, so that one is forced to
admit negative frequencies and must worry about nega-
tive probablites. The above inner product can be given a
natural interpretation by constructing the Lagrangian
density in superspace

product in terms of a conserved charge derived from the
Lagrangian L. In terms of the decomposition

(y;j )~(y', y;~. ) we obtain

Q= fDy;, (2y) '" », , »

Oe=( —6)-'"
5y;,

( —6}'/ 6;jk(
Ykl

(2.14)

The quantity ( —y' ' 'R) contributes as an etfective
(mass} term for our Wheeler-DeWitt field. This is analo-
gous to the role played by [(8/Bo )X"] in string theory
where one imposes the condition —(5/5X")(5/5X„)%
=[(8/Bo )X"] q( associated with timelike reparametriza-
tions of the world surface.

(2.13)

where we have used the fact that ( —6)'/2
=[—det(6'j"')]' =(2y) ' and we have chosen a
spacelike surface y' =const. The WDW equation can
be obtained by varying (2.10) with respect to 4 and one
obtains the form

where

( [ 6]1/2@e[O ( y
1/2 (3)R ) ](P (2.9) III. THE MODE EXPANSION

FOR THE WHEELER-DeWITT FIELD

OC =( —6)-'"
5y;,

( G)' 'Gi&kl-
Ykl

In this section we develop a mode expansion for our
WDW field. Given the normalization

is the Laplacian in the presence of our background field
and G =det( 6'j"') where G is expressed as a 6 X 6 matrix.
Up to a total divergence in superspace we can express L
as

(P„,P„)=ifDX,,
Y ij Y ij

and WDW equation in the form

(3.1)

5y ij 5y kl

(2.10)

6)—1/2 5
( 6)'"6;,k(

—
5Ykl

(3.2}

The Lagrangian has the symmetry 4~e' 4. Because of
this syrnrnetry a conserved current can be derived and is
given by

Jij =&—G Gijkl 4 4—4 4 . (2.11)
»y kl »y kl

r

=i DX,
» v»yj- (2.12)

Now this charge is invariant under global rotations in

(y,j) space just as the corresponding quantity in I( lein-
Gordon theory is invariant under Lorentz transforma-
tions. We can then naturally reinterpret DeWitt's inner

It can readily be verified that (5/5y; )J, . =0 if 4 solves
the WDW equation. One can define a conserved charge
with respect to a timelike displacement in superspace by
forming

&=fD& 6 Jk(

one can expand 4 in a set of modes if one has a complete
set of solutions g„ to (3.2) which are orthonormal with

respect to (3.1). This can easily be done in the case of the
particle or the string but the presence of the metric 6" '

as well as the term ( —y'/ ' 'R) which is not quadratic in

the y;~ or its derivatives will prevent us from finding such
solutions here. Actually both problems do not occur in
the linearized (noninteracting) approximation to gravity
and in that case we can explicitly construct P„and devel-

op an expansion

+(y,, )= g t(„(y,, )&„+g if„*(y,, )&„', (3.3)

where the index n symbolizes the particular set of quan-
tum numbers associated with that state. For example, in
the linearized form of gravity they are occupation num-
bers for gravitons with certain values of the spacelike
momentum. For particle theory in flat space the com-
plete set is given by teak(x)=(2co&V) ' exp(ik-x —ice„)
where co&

——(k +m )'/ and V the volume in x space. We
need to find such a set for our system. The presence of
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the background metric 6 ' ' over superspace provides

only a minor obstacle as, for example, one can quantize a
particle or a string on a group or coset manifold. ' In
this case the relevant manifold has been identified by
DeWitt and the coordinates y, parametrize the coset
manifold SL(3,R)/SO(3). Our second-quantized WDW
field maps (y'~, y,. ) into C the complex numbers. That
is7

4:[map(S'XS'XS'~R XSL(3,R)/SO(3))]~C .

(3.4)

This is similar to the problem of second quantizing a
string which moves on a group or coset manifold

4:[map(S'~R X(G/H))]~C (3.5)

or in the usual notation (3.4) is expressed as
@(y' (x),yj(x)) and (3.5) is expressed as
4(X (o ),X'(0 ),g'(a)). So our problem is analogous to
second quantizing a string that moves with its spatial
coordinates restricted to SL(3,R)/SO(3) a five-
dimensional space. The timelike coordinate y

' is all
that is left of the Minkowski-space factor [the R" in (3.5)]
but additional matter fields will add additional spatial
coordinates to the superspace. We shall add a single sca-
lar field P for illustrative purposes.

Following Ref. 1 we expand our WDW field as

+(y'" yij 4)= g i'(.)(yo" y,,o 4'o)4('.")(y'"(k»yi)«) 4( k}}~(.)
(n)

+ g 0(,'i(yo y,,o, Po) lt(„')'( y' '(k), y J(k), P(k))A(„i,
(n)

(3.6)

where we have separated off the zero modes, x-
independent portions of y', y,, and i}). We further wish

to isolate the dependence of the wave function which de-
scribes the physical components of the graviton as was
done in Ref. 1 for the case of k = 1 S spatial topology.
In our case we have chosen the k =0 S ' XS ' ~S ' spatial
topology as it is somewhat simpler and more straightfor-
ward to generalize to a string model where one has an
infinite tower of matter fields. Because of the boundary
conditions on the S '

)& S ' &(S ' spatial topology the scalar
field (as well as all other fields) can be Fourier expanded
as

(()(x)=g 3 g g g P(n)e'"'" '
g~

——oo gl~
———~

d k ik x

(2m-)'
(3.7)

where we have assumed that the radius a is so much
larger than any length scale inherent in P(k} that we can
approximate the sum by an integral, that is, the allowed
values of the momenta become approximately continu-
ous. We develop the following expansions for y ', y;
and P:

y (x)= y' (k)e'"'" and y' (k)= fd'x y' (x)ein d'k
(2m )

y;J(x)= f y;, (k)e'"" and y'~ (k)= fd x y,, (x)e
d'k

d k
iI)(x)= f 3

P(k)e'"'" and ~I)(k)= f d x P(x)e
(2n )

(3.8}

y;Jo yyo;~o a(e ——~ );, w——ith tr(P}=0 (3.9)

and we write the zero-mode portion of the wave function
as 0 ( Yo yijo)=e '(a ~iJ 40).

The zero modes, x-independent portions of the fields, are
defined by yo~ =y' (k=O), y; o=y;J(k.=O), and

go= g(k=0). These portions of the fields do not oscillate

spatially. Now clearly yo ——f d x y' (x) is the total

volume of the system. We sha11 denote it by a . The zero
modes of y, are associated with the anisotropy parame-

ters of the three-space. These are conventionally denoted

by y;.o ——(e ~ ); with tr(P)=0. So our zero-mode

Inetric is given by

Now let us turn to the portion of our solution to the
WDW equation associated with the oscillating modes of
y', y;J and P. As we expect P~'„''i to give us the wave

function associated with n (k) gravitons of momenta k,
we keep only the portions of y'~ (k), y,"(k) associated
with physical gravitons. Setting y;~ =(e };, these will be
the transverse traceless components of h; -. We can
decompose h; ( x ) into transverse and longitudinal parts
(it must be traceless from the condition dety = 1) as

h; =h; +(8;h +8 h;) ——', (Bkh&)5; (Refs. 10 and 11).
So we will transform the oscillating portion of
y,. ~(h, j. , hk). Now h;. has two components —the

physical degrees of freedom of the graviton. Keeping

only these degrees of freedom in the weak-field approxi-
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mation, as we are for the moment interested in construct-
ing the wave function in an asymptotic region of super-
space, we can find their contribution to H. So we rewrite
our fields as

ical momenta are obtained from the above Lagrangian in
the usual way. Further simplification results if one passes
over to momentum space for the oscillating modes and
defines a (k) and a'1(k) by

d3k
p(x)=p+ f 3q(k)e'"*,

(2n. )'
3

m.~(x) =a m.
t,+ 3 p(k)e—3

(2m )

d ky' (x)=a'+ f y'"(k)e' '"
(2n. )

d k
m.(x)=a m., +f y' (k)e'"'"

(2m )

(3.10)

q(k)= —,'[a(k)+a ( —k)](2/to(, }'/ a

p(k)= —[a(k) —a ( —k)](2'„)' a' ',1

2l

qij(k } i [a &((k }+a&1t( k }](2/03 )1/2a 3/2

(k) = [—aij(k) aijt( —k)](2' ) i/2a 3/21

21

(3.12)

For these variables the Hamiltonian derived from (3.11)
equals

d k
y;1(x)=(e ~ )1.+ f q; (k)e'"'"

5 "(x)=a ~F d'+ f p'((k}e'" *,d'k
(2ir )

where we have listed our fields and below them their
canonical conjugate momenta. We shall denote the
Planck length lp as l. In terms of these variables the
action S = fd x& g(1 —' 'R+g""8„$3„1t(+m P )

b~~om~~ S = fdt(LOG+L031+L )=SOG+Spst+S„„
where

H =HpG+Hp~+H,

where

HOG 2
c ir

2
+ 3 24yoikyoj(tt t('ro

I
' 2a 2a

—a—[1—V(P,") ]
k

2 1 m 2 3
2

HOM ——c nt, +. Pa
2a

(3.13)

(3.14)

3 a 24
OG

———
3
— dt ca —,, + 2 yo'yo y koy, .(0

i' kl ~

l 2 c a c

+, [1—V(y...)]k

a

2

SpM=2 dtca
2

—m1 23 (3.11)

S, = f dt c,' fd x—[hik,oh(k, o h(k &(—hick &(

+2(((} piI) p

and we have set c =gpp which will become the Lagrange
multiplier for the constraint H =0. The function V(y . .0)

lJ
represents the complicated dependence of ' 'R on the an-
isotropy. Note that we have not included a cosmological
constant term in SpG. Such a term will be generated by
quantum fluctuations in the oscillating fields. The canon-

I

H„,=ca f [ i
k

i
[a' (k)a' (k)+ —,']

++k +m [a (k)a(k)+ —,']) .

So in the linearized form we obtain the separation
H =Hpg +Hpl +H . Wave functions are constrained
by H11 =0 [analogous to the (Lo+Lo —2)/=0 condition
in string theory] and the Hamiltonian is naturally
separated into a piece involving the zero modes and those
involving the oscillators [as Lo+Lo —2=p "p„
+ (N +N ) —2 in string theory]. The main complication
is that the radius a is treated as a quantum variable and
couples to every term including the oscillators. This
keeps one from being able to separate variables. Howev-
er, under the condition that the variable a changes only
adiabatically' the oscillating portion of the wave func-
tion retains its form with frequencies evaluated as
0(„/, ——[(n/a) +m ]' and the WDW equation
effectively separates. The WDW equation HQ=O
reduces to the equations

a — 4n, —
2 z [1—V(y jo)]+24yijo~o yk 0'tt0+ 6irg +ml'41+ 2«n) &'( y;,o it(01)=04 l2 2 J IJ Pl 6 OI 3l

(3.15a)

and

d k a 3
a f {[a"(k)a'(k)+ —,']

~

k
i +[at(k)a1(k)+ ,']}(/ k m+)g1' ——(—( A( n}it„'(' (.

The solution to (3.15b) simply reduces to an infinite set of harmonic oscillators with

d kA(n)=1 f [n (k}+—,']
~

k
i + g [nt(k)+ 2])&/k +mt—2~' I

(3.15b)

(3.16)
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where we have generalized our system of matter fields to a collection of scalar fields labeled by (I) and have defined the
number operators n (k) =a'~ (k)a'J(k) and nr(k) =ar(k)ai(k). We can find explicit expressions for the wave functions

g~ „", as follows. Define

qi(k)= —,'[q(k}+q (k)]a ~ and p, (k)= —,'[p(k)+pt(k)]a

qz(k)= —.[q(k) —q (k)]a and pz(k)= —[p(k) —pt(k)]a1

2l 2l

as well as

a, (k)=(2) ' [(a)„)' q, (k)~i(cgj, )
'~ p, (k)],

az(k) =(2) ' [(co„)' qz(k)+i (cok )
'~ pz(k)] .

In this (1,2) representation the oscillator contribution to H can be written

d kH„,=a a& k a, k +a& k az k + —,'+ —,
'

coI, .
&o (2ir)

(3.17)

(3.18)

(3.19)

In this representation one restricts oneself to the region of momentum space k» 0 to avoid overcounting' as the vari-
ables of the phase space (q„p, , qz, p, ) obey the relations q, ( —k)=q, (k), p, ( —k)=p, (k), qz( —k)= —qz(k),
pz( —k)= —pz(k). Now defining n, (k) and nz(k) as the eigenvalues associated with a, (k)a, (k) and az(k)az(k), re-
spectively, one writes the solutions as

4(n)(q»qz}= II „,(k,
2 ' [nz(k)!]z

' 1/4

2 ' [n (k)i]

' 1/4

d k
&&H„i~k(m k qi(k))H (k)(~i qz(k))exp 2~

z [qi(k)qi(k) +qz(k)qz(k)]cok
1 "2 k, )0 (2m. )

(3.20)

the full wave function is given by Pt„"~(q'i', qz')Pifi„"~(q, , qz) and H„(co' q) is the nth Herinite polynomial. The value

of A(n) that feeds back into (3.15a) is given by

d kA(n)=l f„[n,(k)+nz (k)+ —,']
~

k
~
+ g [n, I(k)+nzI(k)+ ,']Qk —+mI (3.21)

"~ ~0 (2ir)

Clearly A(0) is the quantuin-mechanically induced cosmological constant:

d k d'k
A(0)=l f„2~

k
~
+ g Qk +mI I ,' f—— —2

~

k
~
+ g Qk +mI

I 217
(3.22)

Although this expression diverges, the corresponding quantity in string theory is finite and well defined. '

The states we have constructed above do not obey the constraint 1'/=0 in (2.3) however. We shall have to make a
projection from the above states to physical states which satisfy this constraint. Again decomposing
yJ=Ii;, +8;hj+8 h; —

—,'5J(B&hk) as well as ir,, =ir; +B,m+8 n; ,'. 5; (B„irk—) —the integrated form of the X' con-
straint becomes

(3.23)

The integrand of the first of these operators can be readily verified to be canonically conjugate to h;(x) («fs 10 and 11}
and is conventionally denoted by p'(x) = —2(b,m'+ir k, )(x). Introducing the Fourier decomposition
p'(x) =a I [d~k/(2ir) ]p'(k)e'"" we obtain the expression

d k 8 kf d x X'=a p'(k=0) a f — k'a„, (k)a„,(k) —a f k'aI(k)aI(k),
(2ir) (2m )

(3.24)

where we have included the contribution from our matter fields. Quantum mechanically then the condition Jd x X =0
becomes the following condition on the wave function P~„,.

d'k d k
a a f —k'a„, (k)a„(k)—a f k'aI(k)aI(k) P~„'~(q'j, q, h, o) =0 .

i}";0 (2ir ) (2ir }
(3.25)

So we see that the wave functions above will, in general, develop a dependence on the zero mode h,-o given by
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g~'„'~(q 'J, q, h;o }=exp( ih;DP,'„)g~„'~(q'~, q, 0),
where P,'„is defined by

dk;t d kP,' =f d x h„, ;n. + fd x $1;m =a f k'a (k)a„,(k)+a f k'art(k)ai(k) .

(3.26}

(3.27)

This represents the oscillator contribution to the spatial momentum of the Universe. In order to form "physical" states
which do not have spurious h, o dependence one constructs

g~„„,(q'j, q )=f d h;011(q'~, q, h, o)= f d h;oexp(ih;OP' , )g(q'j, q ) . (3.28)

Our expansion for the WDW field must be modified to include this constraint and is given by

~ (y y j } X f(n)(a y jo 00'}IV( )phys (q' j, q ) A (n)+c c.
(n)

= g lP~„~(a, y;~o, gt)5 (P'„, )g~„~(q'J, q ) A (n)+c c.
(n)

3
= g p~„~(a, y,jo, po)5 a f 3 k'[ng(k)+n&1(k)] f~'„~(q'j, q ) A (n)+c.c. ,

(„) (2m )
(3.29)

so that we must restrict our expansion to include only wave functions which describe universes of zero spatial momen-
tum. In terms of the (1,2} representation used to find the explicit form of the wave function the operator P„,is written

d'k
P,'„=

k3 &0 (2m ) 2i

By making the substitution

a', (k)=(2) '~2[a&(k)+ia2(k)], a2(k)=(2) '~ [ia&(k)+a2(k)],

which can be shown to be a canonical transformation in (q„p„q2,p2) phase space H, and P,' take the form

(3.30)

(3.31)

d'k
H„,=a f„[a'

t( k) a'&(k)+a'2(k)a2(k)+ —,'+ —,']cok,
(2n )

d kP,'„=a f —[a', (k)a', (k}—a2(k)a'2(k}]k',
k3&0(2m)

and the expansion of our second quantized WDW field in the {1,2} representation is given by

(3.32}

C'(y', y;J ) = g g~„„~(a,y;Jo, po)5 a f„3 k'[n&( )k——n2(k)]
(ni, n2)

X Q(„)(q'(,q ) )f(„)(q'j',q2 ) A (n (,n2)+c. c. , (3.33)

d k
A(n) =l f cok[n, (k)+nz(k)]

k, &o (2n. )

but are subject to the constraint

d k
l f k'[n, (k) —n~(k}]=0 .

k3 &0 (2~}3

(3.34)

(3.35)

where g~'„~(q'(, q &) are given in (3.20). So physical oscil-
1

lator states are characterized by (n „n2 )

=[n, (k), n ( 2)k~ kCR ] the total occupation numbers
for given value of spatial momentum. They contribute to
the quantity A(n} in the zero-mode equation (3.15a)
through

The constraint X'/=0 is the analogue of condition

f do (X p++X'—p'')P{p+, xX'( ))o=0 (3.36)

which is the second constraint of string theory

f1crX"(o )P„(o ) written in the light-cone gauge
(8/Bo )X+(o)=0. For our system we have chosen the
gauge (arax'}y,j =~h, +-,'a,.(a h)=0 in order to obtain
the physical components of the graviton. We have three
times the gauge conditions as we have three times the re-
sidual gauge invariance. Physical states are formed in
string theory by'
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P h„,(p+,x+,X')= fdooexp iao f do X'((7)'lI'(o ) tP(p+, x+,X') (3.37}

which reduces to the projection operator Idaoexp[i(ro(LO —Lo)] on physical states. This amounts to requiring equal

numbers of left and right movers. Physical states have the property that they are invariant under translations in o.
That is,

/phd, (X'((r ) )= fp),y,(x'(a+ (ro) ) .

In our case we have

g „„,(hr (x")}=/„„,(h,, (x "+x() )) .

(3.38)

(3.39)

The condition clearly implies that the state be annihilated by the operator which generates spatial translations, that is,
the momentum operator P,'„and the associated absence of the h; mode from the wave function.

Now Iet us return to Eq. (3.15a) for the zero modes:

a — 4m, —
2 2 [1—V(y,ro)]+ 624y, ro@ro yknoF0+ 6ny +mr(t)or+ 2

A("} 0 (a yrro rt)or) ——0 .0

31
(3.40)

Upon substitution n., = iBlda—, fr/'= —i()l(}y,"0, and
= —i()/()pol we obtain a partial differential equation

governing the minisuperspace consisting of our zero
modes. We wish to obtain an expansion of our WDW
field in asymptotic regions of superspace (indeed we do
not think such an expansion is possible for small values of
y'r ) which we expect to represent large values of the ra-
dius a and small values of the anisotropy )r3 where the

2 2P/+6
1J

zero-mode metric y; 0=a (e ~
};l approaches that of

three-dimensional flat space. In these regions a ~ 00 and
P,,~0, Eq. (3.15a) takes the simplified form

or

Po(a }= 1 ; ; 1 r r 1 A(0)
9a6~ 912a6 +~ 14 3X9

' 1/2
p(n)
1 9a

(3.45)

1/21;l,l 1 r r 1 A(n)
Poa =

9
6Jr P +912 6P+y+14 39a 91 a 3x9

(3.44)

12 () 1 () () 1 () i)

,2 ap,, ap.. .2 ay„ay„+ "~"~ol

a4 a'
+

2
A(n) —k pt„)(a,pr. , (t)or ) =0 . (3.41)

312 12

where we have found it convenient to define
p(n)=[A(n) Ao]a 1 —. This is because this quantity is
dimensionless and can often be taken to be independent
of a. For example, if n (k) =(e ~" ~' —1) ' then

Again if k&0 one has to expand the oscillating modes in
spherical harmonics. ' In the following we shall make the
simplifying assumptions ml ——0 and k =0. Then we set

0( )(a 13 J (t)ol }=(tr( )(a}e"p('P '13l+(Pyrtrol }

d kp(n)=a f 3
k

l
n(k)

(2m )'

d m 2m
e~ —1

(2m) 30
(3.46)

and (3.41) becomes

() 1 1

+ 2 f(„)(a p; astrol ) =0 (3.42).a A(n)
12

A distribution which is useful when the radius a is pro-
portional to the inverse temperature. '

Equation (3.43) can be solved using the WKB approxi-
mation' and one obtains

, lpo(ao}]'"
)t((„)(a ) =f(„)(ao) 3 )&2 exp +i, da3po(a3)

[p ( 3)]1/2

or
(3.47}

Q2 j'2
912 —lJ lJ I I

g(a3)2 a6P P + 6P4PA
For large values of a the cosmological constant term
dominates and we find

Now define

1 A(n) ()+ 2 3
()r( )(a» Pol)=0.

1
(3.43}

' 1/2

f(„)(a ) =f(„)(a0 )exp +i( a —a 0 )
0 3 0 3 ~ 3 3

3X91'

(3.48)
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Equation (3.47) represents our version of particle theory's

p(t)=[c'p' +(mc')') ' exp[+it )lc p'+(mc')']
(3.49)

and (3.48) the nonrelativistic version
=m '~2exp(+itmc ) S.o we have the relation

[m ~[A(0)l(3X9)]' ) (t~a ) (c ~l ) .

malize the WKB wave functions we found above. On the
subspace (a,P, , )})t) of (y', y;, ,Pt) this inner product
takes a particularly simple form

(y, y) = )—Idy, dpj
()(a ) ()(a )

(3.51)

(3 50) Applying this definition to (3.47) yields

Note that there is no real time in the WDW equation. It
is only that —() /()(a ) comes into the WDW equation
with the opposite sign from all other second derivatives
in much the same way that —a'l()t comes into the wave
equation for the free particle with the opposite sign. The
above is simply a correspondence between two equations
of the Klein-Gordon type (that is, they are both second-
order hyperbolic differential equations). Note that the
term A(0) behaves as an effective (mass) term in the
WDW equation restricted to the zero modes.

We will attempt to use DeWitt's inner product to nor-

(g(„),f(„))=2Vt)Vt)2, (3.52}

where we have cut off our integral over the spacelike
variables (((),P,"). This is conventional for equations of
this type. We hope that when one computes physical
quantities (such as the probability a given Universe will

split off into two Universes with various properties) the
dependence on this arbitrary cut off will cancel. This cer-
tainly happens when one computes the decay rate of a
particle into two others. The normalized zero-mode
wave functions are

1 ~ i' I ~ 30(.)«' 4, Not)= exp i P "P, +p (t)ot"+, da po(a )v'
[2V V~ (a 3)]1/2 v 3 (3.53)

And our final mode expansion of our WDW field is given
by (3.33) with the above zero-mode wave function. The
crucial thing to notice about the above formula is the in-
troduction of free parameters p" and p on which the
solution can depend besides the (n } which are the param-
eters which describe the oscillator modes. The creation
operators A (n) must have the ability to create universes
with these parameters. So we must write A((n), P 'J,p )
from now on. Like the wormhole parameters discussed
by Hawking, ' Coleman, and others the four-dimensional
observer is powerless to measure the parameters P 'J and
p . They are canonical momenta in superspace and have
no relation to four-dimensional stress energy, the relevant
quantity from the point of view of the four-dimensional
observer.

IV. THE INCLUSION OF INTERACTiONS
FOR THE SECOND-QUANTIZED WDW FIELD

In particle theory the Klein-Gordon equation is natu-
rally extended to include interactions. One can consider

I

interacting terms with completely different Klein-Gordon
fields describing particles with different mass, charge, etc.
We have seen that the analogue of (mass) for our prob-
lem is the vacuum energy A(0) or for an excited state of
the universe A(n). Actually in string theory one allows
for transitions between different two-dimensional quan-
tum field theories with different vacuum energies and
boundary conditions on these fields. For example, a
Neveu-Schwarz state can decay into two Ramond states.
Indeed the two-dimensional vacuum energy defines the
(mass) for the ground state. So that we expect that when
one includes interactions in our second-quantized WDW
formalism it will become possible to dynamically jump
from a Universe with one set of boundary conditions and
vacuum energy to another thus altering the physical laws
describing the Universe. It should be possible to compute
the probability of such a transition within this formalism.
To motivate such considerations we note that string
theory can be viewed as two-dimensional gravity plus
matter via the Polyakov path integral'

T

Z(0)= JDg tt(o )DX"(o )exp i Jd o& gg ~8+"dQ„— (4.1)

To include interactions in x)o space (the space of zero modes associated with the scalar field X") the above integral is
modified by considering

G(x", ,x", . . . , x„")=JDg tt(o )DX"(o )exp i Jd o& gg ~d~—"did„
n

&& g d'o, Q —g(o, }5 [X)'(o, ) —x/'] .
i=1

(4.2)

Note that this has nothing to do with interactions on the world sheet as the two-dimensional fields on the world sheet
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are indeed free. It simply means that we sum over all two-dimensional scalar fields X"(o ) which take the values xt' at
some point in two-dimensional spacetime. One can further make a Fourier transform with respect to x,I" to obtain

&(p", ,p", . . . , p„")=f g d, ' ' G( ", , ", . . . , „")

= fDg &(o )DX"(o )exp i f d ~& g—g ~a~"a@„Pd o, e ' (o, )

Dg p u —g cr; exp — p,~p". K 0;,cr. (4.3)

where K (o', o ') is the Green's function on the two-dimensional manifold satisfying

8 [&—g g ~BQ(tr, tr')]=5 (o —o'') . (4.4)

Now we shall attempt to apply this same procedure to four-dimensional gravity plus matter. In this case the interac-
tions on the world volume are not negligible; however, the effect we are interested in has nothing to do with interactions
on the world volume within a given universe, but rather the interaction only takes place when two universes interface.
So we are led to consider

Z (0)=fDg„„(x)DPt(x)exp i f d x& g(—' 'R+g""B„gtB„Pt) (4.5)

and its modifications to include interactions in the space of zero modes of $0 and go given bypv

G(g();,g02, . . . , $oi, goq, . . . )=fDg„„(x)DPt(x)exp i fd x&'g(' —'R+g""B„PB,P )

(n)

X g d x;Q —g(x;)5(g„„(x;)—g „„;)5(P(x; ) —P';) .
i=1

(4.6)

For simplicity we shall assume we have only one scalar field P(x ). Concentrating on a single scalar portion of the inser-
tions we have

n n

g d x;Q —g(x; )5(P(x; ) —P; )= g d x;Q —g(x; )f e
i=1 i=1

n

= g f e ~' ' P d, Q —g(;)V(k&;, , ),
where V(k&, x)=exp[ik&ttt(x)] the analogue of a vertex operator in string theory. Similar manipulations yield vetex
operator representations for the other insertions:

—tJ

V(k&, x")=e ~
, V(k~j, x")=e " V(k„x")=e (4.8)

(4.7)

(4.10)

Thus we write the path integral as

Z4(0)= fDa Dp~DQOtDq'~(k)Dq'(k)

xexp i f dt —,'(I I
—aa +ak[1 —V(p)]+a p,"p,"I+a3(pt —ttt~p2t))

T

xexp i f dt —,'a I f [q "(k)q "(k) Ik I
q" (k)q' (k—)]

d k

Furthermore we can express (4.6) in terms of its Fourier transform as

dky;
G(P „P,. . . , P, )= P ' 'A(k „k~, . . . , k „), (4.9)

i=—1

so that we constrain the path integral so as to integrate over the field variables which take the designated values go„;
and $0; somewhere in spacetime.

Using our mode decomposition we can give a more tractable representation of the above path integral. From Sec. III
we have obtained the decomposition

L =Loa+Lom+L

d kxexp i f dt —,'a f [q (k)q (k) —cokq (k)q (k)]"3» (2~)'
(4.11)
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where a takes the values 1 or 2 in the (1,2) representation. Although this integral is a vast simplification as it ignores in-
teractions on the world volume the effect we are looking for should still be present in this limit. The insertion of factors

d k ik-x,.g d x;(ca )exp ik& P+ f q(k)e
i=1 (2m )

(4.12)

generate the interactions in this simple model and can actually be implemented by the insertion of vertex operators in
the usual manner. Or one can simply note that the above interactions are completely analogous to the forced oscillator
problem with

3

L», ———,
' f 3 [q(k, t)q( k,—t) tok—q(k, t)q( k, —t)+q '~(k, t)q '~( —k, t) —

~

k
~

q'~(k, t)q'J( —k, t)j,

d k
Lint= 3 j k t q k t

(2n. )

where

(4.13)

(4.14)

The problem of finding the correlation function in such a model has been completely solved by Feynman and Hibbs. '

We shall use the result

d k
Goo ——exp i ,' —fdtj (k, t)D~F(t t', to—k)j( k, t')dt-'

(2n. }

min(m/, , n/, )
(4.15)

where pk
——(2 cok)

' fj (k, t)e "dt and m„ is the number of particles with momentum k. 6 „represents the

probability amplitude for the system of oscillators to evolve from a state of occupation number mk to one of nk driven

by the force term I.;„,. A Euclideanized version of the above formula has been developed by Coleman in Ref. 3. A state
of the Universe can be represented by (a )"'"'l&n (k)!

~

0). This state does not obey the X' constraint (3.25) however.
States which obey that are given in the (1,2) representation as

~
n, (k, )n, ( —k

~
) ) where

1 tn(kl )

~
n&(k, )n2(k2)) = (a, (k, ))

Qn, (k, )!
(a2(k2)) n(k2) ~0,0) .

Qn2(kz)!
(4.16)

One can ask for the probability that the Universe can make a transition from the state
~
n, (k}n, ( —k}) to

~
n2(k)n2( —k)) through the interactions introduced above. The oscillator portion of the transition amplitude is given

by

mi nl, 2

(n
&

—r)!(n 2
—r)!r!

where

Ik X —]CO/, t
/3k =(2tok ) pt, e

The above transition amplitude can be written as

{f ~
V(p&, x, t) ~i ) ={f

~

e '" "'V(p&, 0,0)e "' "'
~i ) .

(4.17)

(4.18)

As the initial and final states should be physical states they should be annihilated by P, and when one includes the
zero-mode portion of the vertex operator one finds that one can set x2 equal to zero. Also if the initial and final states
are eigenstates of H„, the t2 dependence will be in an overall phase.

If one uses the original (h;. (x),P(x) ) representation

Z~(0)= fDa(t)D/3, (t)Dpo(t)Dh, (x, t)DQ(x", t)e ' -. exp ,'i fdt d x(h, oh—, o h, kh, k)-"—"

xexp ,'i f dt d x(p—,op, o 4', kf,k)— (4.19)
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The insertions (4.12}can be written in the form

exp i fdt d x [J(x,t)$(x, t}+J'~(x, t}h,, (x, t}] (4.20)

with

J(x)= g k4„5 (x —x; ), J"'(x)= Q k,"'5 (x —x, ) . (4.21}

In this form the path integral can be evaluated by standard techniques:

Z4(J)= fDa(t)Di3; (t)DQO(t)Dh~ (x, t)DQ(x, t)e ' ' exp i—f dt d'x(h; ohio —h; kh; k)

Xexp ,'i f—dtd x[$ Ditto PkP—k+ J(x, t)P(x, t}+J'~(x, t}h, (x, t)] (4.22)

The k&, k'J dependence of the result is given by

Z4(J)=exp ,'i —f—d x d y DF(x y)J (—x)J (y) ,'i f—d —xd y Djt'"'(x —y)J'~(x)J"'(y) (4.23)

where the Feynman Green's function DF(x —y) is given by

d4k
Dji, lm( )

d k e piJ Im(k)
(2n. ) k m+—ie (2n) k —m +iE

where

2P"' (k)= g e"(k, A, )e™(kA, )

A. =1

(4.24}

1 5( kk
2 kk 5jm 5im

kk kk
k'k '

kk
k'k

5im
k'k

kk kk (4.25)

The Feynman propagator can also be expressed as

ice&(xo —yo)+ik ix y) . — d k 1 iruk(yo —xo)+'k (x —y)DF x —y =i8 xo —yo e " ' ' +i8yo —xo e
(2m) (2' )' (2n ) (2coi, )'i

ik.(x—y)3e'"'" "'D1FxO —yOCOk
(2m )

so that we obtain agreement with (4.15). When the scalar field is massless we have

1
DF(x —y)= — 5((x —y)')+t (x —y) '.

4m 4m.

For comparison we record the Feynrnan propagator for the two- and one-dimensional scalar fields given by

(4.26)

(4.27)

lim D 2(x —y)= ln(m )+ ln[(x —y) ]+ ——+ (y —ln2)
l 2 l 2 1 i

m~0 4m' 4m. 4 2m.

DF, (t t', m)= —[8(t t')e ' i' —''+8(t' —t)e' " ''],
2l m

(4.28)

and for small values of m we have

lim DF, (t —t';m) =
m 0 2/m

(4.29}

Note that for D & 3 the propagator for a massless scalar
is infrared finite, that is, it has a well-defined limit as

m ~0. It is known that energy-momentum conservation
of strings or particles is related to this infrared diver-
gence in D=2 and D=1 dimensions' ' and the conse-
quential inability to generate vacuum expectation values
for the one- and two-dimensional scalar fields, the zero
modes of which represent position operators. One may
well wonder if this infrared divergence is necessary for
the existence of energy-momentum conservation. The
formulation of a membrane theory of elementary parti-
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cles based on any object than a string or a particle is in a
somewhat more precarious position as the D & 3 Green's
functions which appear in the membranes' analogue of
the Veneziano amplitude are infrared finite. As D=4 in
the case we are considering we do not expect anything as
momentum conservation in the scattering amplitude for
our WDW field. Actually as the Lagrangian on the

world volume is interacting we would not expect canoni-
cal momenta to be conserved anyhow. This does not con-
cern us as we are only dealing with an "analogue" of a
three-dimensional membrane and not a theory of' e1emen-
tary particles. So the transition amplitude is proportional
to

g fd x, a (t, )exp gik~k~~ 5((x; —x, ) )+i (x; —xj )
4~ ' ' 4~2

(4.30)

We now consider the case of three-universe scattering, n=3 Thi. s can be represented at least in the above approxi-
mations by

P

& "3 I &P3a Pzij Pzy I
exp i pzaa+p»jf'4+pzpit]o+pz» f q'j(k)+pz& f q(k)

(2]r ) (2tr)
Ip]a~p]ij~p]p& I

n] &

We assume
I n, & =a (k, )a ( —k, )

I
0& a two-particle state which satisfies the constraint P,'

final oscillator state & n 3 I
= & 0

I
. In the (1,2) representation we really have two

q (k) = [q, (k)+iqz(k)]a and consequently two values for P in (4.13) given by

pzk i (2o]i,——) '
pz& then we obtain, from the application of (4.15),

(4.31)

I n, & =0, and take as the
separate oscillators as

P]g =(2cok ) pzp and
—1/2

ip&&t q
&
(k)+ iq2(k)]8 —1 2&1, 1 le I

o 0 & =i~]i t~zk Gm = —iG~(2~a )

So we have

(4.32)

ip2, a+iP~, y '~+ip2~& —1 2~(1»3)=&p3 &p3ij&p3$ le
' " [ iGoo—(2o]k} pzy] I pla~p]ij&pl/&

2 'p2a ~ —1

«oopzy5(p—zy Pzy P]y)5—(pzij —Pzij P]i—j)&pza—I
e (2t'ok } I p]

= —]G poo2$5(p3$
—pzp pl/)5(P3ij pzij

—p]ij )V(p3,p2~p] ) . (4.33)

Formula (4.33) gives the scattering amplitude for three-momentum eigenstates. The solutions to the WDW equation
even in asymptotic regions of superspace are not eigenstates of the canonical momenta. However, as

I
tt'&= fdp lp&&p I

4&= f dp lp&&p la&&a I t('&

we can always represent our solution as a superposition of such states. Given our solution (3.47) we obtain

I
g&= f dp lp& fda e'~'P(a)= f dp lp& f da e'~'[2V&V~jpo(a )] ' exp +i fd(a )po(a }

(4.34)

(4.35)

Defining

ip
~
a

~

—ip&a& —ip3a3
V(a, ,az, a3)= fdp]dpzdpze

' ' V(p„pz, pz

IPg8= fdp, dpzdP3&pl la] & &az I pz &&a3 IP3 &&p3 le (2~k ) Ip] &

P2 g3 e P~k g] e g3 g j g2 g j 2~k ~ (4.36)

Our amplitude should be proportional to

da]dazdat' z(t]ia)gz(az)gz(az)V(a„az, a3)= f da P](a}t('z(a}t/z(a}(2cok)
ao

So we have finally

A (1,2, 3)= i Goop&&5(p3& pz&
—p]&)5—(p3J pz—1

—p„j ) f da ]ted]—(a)tg(a)tti3(a)(2o]k )
aO

where

(4.37)

(4.38)
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$3(a)= I a +I p(n, a)+p3&p3&I a +p3'~p3'J'ao 4A(0) 4

' —1/4

&(exp +i da' I a +I p(n, a')+p3&p3&I a' +p3~p3~a'4 A(0) 4

ap 3
—1/4

lit2(a)= I a +I p(n, a)+p2&p2&I a +pzjp2;Jao 4A(o} 4

3

Q

Xexp i —da' I a'+I 'p(n, a')+pz&pz&I 'a' '+pz, ,p2,,a'
ap

—1/4

f,(a)= I a +I p(n, a)+p, &p, &I a +p„.p„. ao —4 A(0) 4 —2

' 1/2

1/2

(4.39}

)&exp i —da' I a +I p(n, a )+p,&p, &I a +p„.p&; a4 A(0) —2 & —2 & —2

ap

1/2

In Appendix B we compute this overlap integral (4.38) and discuss how one computes the probability that one
universe will decay into two others for the special case when p(n, a) =0, that is, when the universes are in the oscillator
ground state corresponding to the absence of particles. The main distinction between such a computation and standard
derivation for the decay rate of a particle into two others is that in the latter case (4.38) would be replaced by

t 2VE3 -1/2e 3 2VE1 -1/2e- 1 2VE2 1/2e- 2= 2E3V2E1 V2E2 1/2 2~ E3 —E2 —E1

where E; =Qp; +m; and Vis a spatial cutoff. Upon squaring the above, one obtains

(2E3 V2Ei V2E2 V) 'T(2m )5(E3 E2 Ei )—, —

where we have introduced a temporal cutoff T. In our case instead of (4.40) we have

00
~ Z

dx[2p»(x) V2po, (x) V2p»(x) V] ' 'exp i dx'[po3(x') —po, (x') —po, (x')]
Zp Zp

where we have defined x = l a, V = V& V&, and

A(i)
' 1/2

3x9

(4.40)

(4.41)

(4.42)

(4.43)

Equation (4.42) differs from the familiar particle case in
that x is restricted to the positive and in the interval
[xo, ao ]. The result of the integration is not a delta func-
tion and there is no analogue of energy conservation.
Consequently the square of (4.42} does not introduce any
time cutoff and one ends up computing probabilities rath-
er than transition rates. The volume cutoff introduced in
(3.52) cancels out when one calculates this probability.
This is explicitly shown in Appendix B.

Another case which is under investigation involves the
decay of universes which belong to different Hilbert
spaces. Just as one can allow the transition in string
theory between difFerent sectors specified by different
choices for the two-dimensional boundary conditions so
we should be able to make transitions in our four-
dirnensional setting between field configurations with
different boundary conditions. The universes with
different boundary conditions have different values of the
cosmological constant as well as different physical prop-
erties. There is some hope of obtaining a workable form
of the anthropic principle with such a model. The only
predictions that can be made deal with the most probable

final-state configurations. Such behavior has an analogue
in particle theory. After many subsequent decays a very
heavy particle will decay into a final-state configuration
through a cascade process. The most probable outcome
is that one is left with particles of the smallest mass
available, massless particles if they are present. We hope
to find that the final-state configurations do not contain
any universes with nonzero values of the cosmological
constant as the most probable configurations. It is pos-
sible that this is the only quantity that the final-state
universes have in common. So we would be left with
many final-state universes with a myriad of physical
properties all with cosmological constant zero. A happy
state of affairs to invoke the anthropic principle.

V. CONCLUSION AND DISCUSSION

We have argued that the WDW equation naturally
leads itself to a second quantization in analogy with parti-
cle and string theories which can be considered as one-
and two-dimensional gravities coupled to rnatter. We
have identified a conserved current, as well as DeWitt*s
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proposal for the normalization of solutions to the WDW
equation as coming from a Lagrangian which is the
analogue of a second-quantized string theory moving on
the coact manifold GL(3,R)/SO(3). Finally we have at-
tempted to construct a mode expansion of the WDW
second-quantized field and isolate the zero-mode degrees
of freedom.

For a given theory (gravity plus matter) one can con-
struct a second-quantized WDW field associated to it. In
much the same way as one can associate a second-
quantized field to each elementary particle. Just as allow-
ing interactions among particles can give rise to processes
in which one elementary particle decays into others, the
presence of an interacting term between different WDW
fields associated with the different sectors should allow
one to study the decay of a vacuum associated with a
given theory into vacuum states described by completely
different theories. This can be of great practical value to
superstring theories where each vacuum looks like a
different string theory with apparently no natural way to
pass from one vacua to another. The two-dimensional
gravity one uses in string theory naturally includes pro-
cesses in which different sectors, associated with the
choice of different boundary conditions on the two-
dimensional fields living on the world surface, can decay
into one another. The many different four-dimensional
string theories mentioned above simply arise from choos-
ing different boundary conditions on the massless ten-
dimensional fields. For example, choosing periodic
boundary conditions on some components of the gravita-
tional field gives rise to the string theory associated with
a toroidal compactification. It is clear that a large class if
not all the different string models can be constructed in

i +H—(x, —iV) %(x, t)=0 .
Bt

(5.1)

This is inconsistent with the global symmetries of special
relativity, however, so one writes a new equation: the
Klein-Gordon equation

B2

t' +V —m $(x, t)=0 . (5.2)

This equation leads to problems with negative probabili-
ties. To remedy the situation one treats the P(x) as a
dynamical variable and writes

this way. It should be possible in this formalism to com-
pute the probability for the process of one vacuum decay-
ing into another. In the two-dimensional case one can
conveniently obtain the spectra of the twisted sectors by
operating on the untwisted sector with global
diffeomorphisms (modular transformations). A higher-
dimensional version of this process might make it un-
necessary to explicitly add a different second-quantized
WDW field for each choice of vacuum, as is customarily
done in particle theory (one associates to each separate
particle a different field) as there should exist a mapping
from one sector to another.

We prefer to call the process of second quantizing the
WDW equation third quantization (this terminology is
also used in the work of Giddings and Strominger ). In
first quantization one constructs a Schrodinger wave
function of the spatial coordinates X. The Schrodinger
equation describes its evolution in time

r

~ 8 5
Bt

i +—d x — +m P(x)P(x) %(P(x),t)= i +H —P(x), i-
a~

'
Sy(x)

%(P(x), t )=0 . (5.3)

Unfortunately this form of the equation does not possess reparametrization invariance of the world volume. Also it as-
sumes that there is a global way to define time, whereas general relativity tells us the best we can hope for is a function
t (x) as clocks tick at different rates depending on the magnitude of the gravitational field at x. This is remedied by go-
ing to the WDW equation:

jd'x ,'r'"(r;—krjl+r l7 jk r'ijrkl) +( r'""'—~)

+ x
~

~-
~ ~

—y ~J ' j ~ m + ~'~ =O - 5.4-in~ ~ in i" in z

This equation also possesses global symmetries. Attempt-
ing to normalize states while respecting these symmetries
naturally leads to a problem with negative probabilities.
One way to avoid them is to treat 4(y, ,P) as a dynami-
cal variable. Define a wave function %(4(y;,P), y' )
and evolve in y' j through the equation

where
H(c'(r, y},II(r, y} r

Dy D ——,'y
' H +y '

y ky k
64 64

Vij 7ij

&y2 54 54

„,+H(c'(r;j P), II(r;j,g), y'")

X O(4(y;j, P), y' ') =0, (5.5)

+yl/2(yijg ygy +m2j2$2 (3)g)EP@

(5.6)



3046 MICHAEL McGUIGAN 38

and II= —y' '3(6/5y' )4. This would then represent

a third quantization as the wave function associated with
the second-quantized field becomes a dynamical variable.

Another aspect of this theory might help with one of
the interpretational problems of string theory. If one
takes the point of view that string theory is two-

dimensional gravity plus matter, with ten-dimensional
spacetime emerging as an effective concept, as for exam-

ple, has been emphasized by Friedan. Then what proper-
ties of the two-dimensional world become promoted to
properties of the ten-dimensional world built out of the
zero modes of the two-dimensional fields. We can re-

phrase this argument by saying that ten-dimensional
spacetime arises from second quantizing the WDW equa-
tion of two-dimensional gravity and D scalar fields as well
as their supersymmetric counterparts. Or in the above
language ten-dimensional spacetime arises from third
quantizing the two-dimensional field theory.

A prime example of a property of the two-dimensional
field theory having a dramatic effect on the ensuing
third-quantized theory is the emergence of translational
invariance in D dimensions. If the two-dimensional field
theory were interacting on the world sheet then the in-
tegral

G(x", , x~2, . . . , xg)= J Dg &(o )DX"(o )exp i f d o& g[—g'~8+"8@„+V(X)]

X g d'o;g —g(o;)5 (X"(o;)—xt'} (5.7)

would not be invariant under the translation of the zero
modes x,~ and this would lead to the loss of energy-
momentum conservation in the D-dimensional theory.
That is if we include an arbitrary interaction term V(X)
in the two-dimensional field theory only for V=const do
we obtain translation invariance in the D-dimensional
theory built out of the zero modes x~o of our two-
dimensional scalar fields.

Even more bizarre is the emergence of general coordi-
nate invariance in the third quantized (ten-dimensional
theory). This arises because one of the possible two-
dimensional universes that can be created has A(n)=0.
From the ten-dimensional point of view this is seen as a
massless particle. The WDW field associated with that
two-dimensional universe (particle) the gravitational field.
We know that only when such a two-dimensional
universe is present can the ten-dimensional world be gen-
erally coordinate invariant. But as we have seen each
two-dimensional theory leads directly upon third quanti-
zation to a Lagrangian describing the propagation and in-
teraction of a WDW field which is a function of the zero
modes of the two-dimensional fields. This Lagrangian
may not have conservation with respect to the canonical
momentum of the zero modes and even if it does would
not lead to ten-dimensional spacetime unless the two-
dimensional theory contained universes with A(n)=0.
Whether such properties are present can be determined
by inspecting the two-dimensional field theory. With
only one such theory it is diScult to see how spacetime
properties could emerge naturally, the typical two-
dimensional field theory would not give rise to anything
like Minkowski spacetime upon third quantization, nor
do they typically contain states with A(n)=0 which
could be interpreted as massless particles. Fortunately
there exists a formulation of string theory which makes
use of an infinite tower of two-dimensional field theories.

In defining Z4(0) in Eq. (2.1) we have assumed that the
path integral can be generalized to include an infinite
number of fields in such a way they can be obtained from
the mode expansion of a string field as

%(g; (x),Pz(x), . . . )~%(4(x +,x,X'(o ) ) }

~4(4(x+,p+, x', a'„)} . (5.8)

—2'(cr —cr )+i (a'/2)' g —(a"„e
n~o

~ —p, —2i(e +cr ))+EX „8 (5.10)

so that (5.8) represents the WDW field associated with

the string field. One can proceed as above to eliminate
the ultraviolet divergence inherent in the path integral.
A similar procedure has been followed by Green to elimi-

nate the only divergence occurring in the free two-
dimensional theory, the leading contribution to the two-
dimensional cosmological constant. ' ' In doing so he

passed from a two-dimensional gravity to a two-
dimensional string theory. Then the Feynman diagrams
of the two-dimensional theory become world sheets and

'P(4(x+,x,X'(o )))

~'P(@io(@i($+,Q, P (o')) } . (5.11)

The mode expansion for this two-dimensional string
theory is written

@2(cro,P„,p„)= W(o )
~

0)+X (o )p i ~
0)

+ Y (o )p,p, i
0)+ . (5.12)

where p and P oscillators are defined by

Such expressions can be given a more tangible representa-
tion by expanding in the oscillator basis. For example,
for the 26-dimensional bosonic string we have'

@z6(x+,p+, x', a'„)=P(x)
~
0)

+g,,(x)a', a J,
~

0)+ . (5.9)

The a oscillators are in turn defined by the expansion

X"(o )=x~~+po" o
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1
o '(rt) =op+�(ma'/r)2vP+nr2g'+i (a'/2)' g —PI'exp[ —2i (vP —ri')]

n&0

+i(a'/2)' g —PIexp[ —2i(vl +9')],1 —
)

In~0

p'(q' q'—)=pp+pp(q' q'—)+i(a'/2)'" g —(p'„e "'"
n~0

(5.13)

The coordinates p (rt ri') —(I = 1, 24)
moving coordinates which define the torus associated
with the Leech lattice. Green also suggested the only
way to remove the ultraviolet divergences altogether is to
repeat the process indefinitely giving rise to the wave
function

+(@(p(@2(@p(@2( ))))) . (5.14)

We have shown that it is possible to extend the process
on more levels to the left obtaining

energy-momentum conservation associated with the
canonical momentum. Superspace has a background
metric G''"'(y; ) on it so we should not expect such con-
servation. Yet the fact that there exist universes with
A4(n)=0 [take our own Universe with n=0, the cosmo-
logical constant A(0) vanishes in our Universe] suggests
that perhaps there could exist a reparametrization invari-
ance in the space of zero modes in which case there
would not be a Schrodinger equation for our second-
quantized WDW field but another WDW equation. The
second quantization of this would, in principle, yield

'Il(@(5+„&)(@]p(@2(C'p(@p( )))))), (5.15)
'p(c'~(@(5+„&)(@&p(&&2(@2(@2( ) ) ) )) )) . (5.16)

where n denotes the number of matter fields.
Of course superspace is infinite dimensional as is loop

space. We simply count the zero modes associated with
the massless fields present in each case and list that num-
ber as a subscript on the WDW field. For example, in
string theory one starts with two-dimensional gravity
plus D scalar fields, if one of the scalar fields has the
wrong sign for its kinetic energy then the WDW equation
associated with this two-dimensional gravity theory has a
metric associated with its superspace that is of indefinite
signature. Note in two-dimensional gravity this indefinite
nature does not arise from the two-dimensional metric
this is why one needs the scalars. When one tries to nor-
malize solutions to this two-dimensional WDW equation
one runs into the problem with negative probabilities in
exactly the same place as with the Klein-Gordon equa-
tion. Indeed the zero mode portion of the two-
dimensional WDW equation is the Klein-Gordon equa-
tion. Each 42 describes a different two-dimensional field
theory in its a ~0 limit with their own sets of values
A"(n ). Also, above each two-dimensional theory one
can construct another 4'„'+" by second quantizing the

WDW equation associated with the two-dimensional
theory where n; are the number of fields such that
A"'(n)=0. For n, =10 we would have ten-dimensional
theory. Unless this theory had a spin-two graviton in its
spectrum there would be no general coordinate invari-
ance and no WDW equation with which to further
second quantize. With the infinite tower of two-
dimensional theories each its own two-dimensional field
content there should come a place along the infinite chain
where the two-dimensional universes such that A(n) =0
exist and with them general coordinate invariance at the
next level.

In order to continue the process we would need the
analogue of general coordinate invariance in the minisu-
perspace constructed out of the zero modes of the four-
dimensional fields. We have not found the analogue of

Whether the process can continue depends upon whether
it is possible to find universes such that the WDW field
which creates them leads to a reparametrization invari-
ance in the configuration space of the second-quantized
WDW field theory. One way to avoid having to ever
write down a Schrodinger equation is to continue the pro-
cess indefinitely to the left, one way of never encounter-
ing ultraviolet divergences is to continue the process
indefinitely to the right. Although the above discussion is
highly speculative it seems to provide a framework for a
modern formulation of the original bootstrap hypothesis
in which the original object in a statistical ensemble is
represented as a statistical ensemble of other objects only
now we do not assume that second set of objects are iden-
tical to the first.

Note added in proof. The Klein-Gordon inner product
of the solutions to the WDW equation is also advocated
in the work of Alexander Vilenkin.
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APPENDIX A: OPERATOR ORDERING
FOR De&ITT's NORMALIZATION

In a rninisuperspace model one usually allows for an
arbitrary choice of operator ordering by writing

which can be written in the convenient form

—9, , %+Al-4% =0
B(a ) (}(a )

and the current J becomes

(A7)

1 2 (}
1 2a P aP (Ii (a) +Aa I (Ii (a)

2 Ba Ba

(A 1)
where the parameter p is included in order to take into
account possible operator ordering problems. We have
set the matter contributions and k=0 for the purpose of
illustration. A is the cosmological constant. This equa-
tion represents the zero-mode portion of

(A8)
(}(a') (}(a')

Now using our WKB solution for large a in (3.48) we
take

%(a)=(A/3) ' exp[kia (A/3)' 1 ] (A9)

and obtain J =+6. Note that J is independent of a as it
should be. For general g (a) we should choose

(-G) '
( —G)' '65

5y ' 5y
(I'(a) =a '[g (a)]' '(&/3)

Xexp[+ia (A/3)' 1 ] (A10)

( )1/2 —1 )/2V( )(pe(I(
aa aa

(A4)

The conserved current associated to the symmetry
%~e'~% is

(A5)

=( —y' ' 'R)4, (A2)

where one writes 4=%(„)(a)%(„)(q'j(k)}as discussed in

Sec. III. We express (Al} as

g' (a) [g
' (a)]g '(a) (Ii(„)(a)= V(a}(I(o(„)(a),

cia (n)

(A3)

where g =a ~ allows for the operator ordering ambigui-

ty and V(a) = —g 'Aa I . One can write a Lagrang-
ian from which (A3) follows as a field equation. It is

in order to obtain a current independent of a. Only for
the choice g (a) =a do we obtain a simple plane-wave
current.

APPENDIX B: CUBIC INTERACTION
FROM A THREE-UNIVERSE OVERLAP

In this appendix we wish to demonstrate that the su-

perspace volume cutoffs V& and Vp introduced in (3.52)
in order to obtain normalized solutions to the WDW
equation cancel out when one computes the probability
for the Universe to undergo a given process. This has a
direct analogue in particle theory where the spacetime
volume cutoffs disappear when one computes transition
rates. Rewriting (4.38) as

3 (1,2, 3)=g5(p3$ p2$ pl() )5(p3(j——
p2ij p1 ij)M—

(B1)

For the choice p = —2 so that g (a ) =a we obtain where

M =f dx [Po3(x)Po2(x)Poi(x)] ' exP i f dx'Po3(x') i f dx P—o2(x') i f dx—Poi(x )
Xp Xp Xp Xp

and we have de6ned

pN;)(x) =[m; +p; p;I /x +1 p;(n, x)x / ]'

(B2}

(B3)

as well as p=[(1 /3)p&, (l '/3)p; ], m; =A;(0)(3X9) ', and x =(1/I )a . We wish to consider the situation where
i)'i;(x) = [po;(x)] '/ exp[i f„"dx'po;(x')) defines a state representing a universe with difFerent values of the cosmological

0

constant A;. Furthermore, we shall assume they are vacuum states so that p(n, a)=0 in which case we have

po(;)(x)=(m;+p;. p;1 /x )'
If we take p3 =0 and set m 3 =m we obtain

0 —(/2 2 2 2 2 —i/4 '
( +Pil ) +i(m( 0+P(l )
2 2 221/2 . 2 2 221/2

M= xe m m, +p, /x ) e
Xp

X(
/ pi /1++m(x +p)1 } '

( [ p, /1++m, xo+p, l )
Xo

i/4 —i(m2x +P2( ) +i(m2xo+P2( )
2 2 221/2 . 2 2 221/2

X m2+p2 /x
—1

I @21

x(
/
p2(1++m2x +p21 )

'
(

/ p2/ I++m2xo+p21 )
Xo

(B4)
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Then the probability that the Universe will undergo such a transition is given by

dP, V dP2
Prob=

I
M

I
[(2v) 'i (2v) ' (2v) ' ] v5(p)+p2)v

(2n. ) (2m )

P1 ~ P2=2 'l~ I'&(P)+P2)
(2ir) (2ir)

(85)

The superspace volume which we used to normalize our states cancels out when one computes probabilities. Also in the
special case when m1 ——m2 ——0 we can explicitly evaluate M:

1/2' 1/2

M= dx 2m ' e 2 p, 2 p2
Xp

' —i Ip& II
X X X

1 xi)

(2 2
—1y2 ' "o+'i) IP) I

+)
I P2 I

)i" i o) i i IP) I
) — IP2 I

)=(2~2
I Pi I

2
I P2 I

} 1 dxx e
Xp

' —i iP2 /

I

(86)

The xo dependence is contained within a phase and the lower limit of the integral. For xo small one can use

Jo dx x'e'""=e'" "'+"k ' 'l (1+z) to evaluate the integral. With z =1 i
I

—p, I
i —

I p2 I
we obtain

—i i i i i —)/2 tm&o+i ~~o'
I p) I

+ IP2 I
)) )«i2)[2 —)&

I p) I
+ pi I )I) [—2ii(

I p, I + I P2 I
)))

e m I 2 —i
I Pi 11 —i

I P2

(87)

The norm squared of the matrix element is given by

'
I p I

'( 1(
I p I

+
I p I )I hl 1(

I p I
+

I p I )3) )
' ll ( '+ 1'(

I p I
+

I p I
}'I .

s=l

(88)

For small values ofp, and pz we obtain

'
I P2 I

(89)

Now computing the probability of the transition from (85) the integration over p2 can be done trivially because of the
momentum delta function and we are left with

d' 1Prob= —'1 m g f 4(1+51 Ip I
+41 Ip I

) .
(2ir)' Ip I' »nh(2~1 lp I

}
(810)

The above integral has a simple generalization to the case where (d —1}four-dimensional fields contribute spatially to
the WDW equation. For example, if we had five fields associated with the anisotropy and (d —6) scalar fields we would

have

Prob= l l 2—(d —3)~ —5g2Q 1 00

dn nd-2
(2)' ' 4(1+5n +4n )

i)2 sinh 2nn

i 21 —2 —(d —3) —5 2Q P ~ (d 3)I(1 2
—(d —2))+5 ~ ~ (d 1)i(1 2

—d}
(2m') ' (2n )" (2ir)"

+4 (d+1)i(1—2 "'")f d+2
(2ir)" +' (811)

where Qd ) is the volume of the (d —1)-dimensional unit sphere 2'"~ [I (d/2)] '. The coupling constant gd is dimen-

sionally of the form g&
——l' '

go where go is dimensionless. So we have finally

Prob= —,"1 'm 'g02Qd i
~ (d 3)i(1g(d —2)

(2n')" ' (2ir )

+5 (d —I )!(I—2 —d)+4 (d +1)i(1 2
—id+»)

(2ir)" ' (2ir) +' (812)
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Typically m -I ' so the probability for such an emission

is appreciable. The dimensionless coupling go can, in

principle, be computed if one knows the mechanism
which gives rise to the different values of the cosmologi-
cal constant in each of the three universes. For example,
in the absence of interactions they arise from different
choices of boundary conditions on the four-dimensional
fields. To illustrate this consider the expectation value of
a number operator a a =(]/2m')P + —,'mcoX ——,

' in

the ground state of another oscillator with different fre-

quency m'. It is straightforward to verify that
(0'

~

a a
~

0' ) =(co—co') /4coco'. This is seen to be related
to the dimensionless coupling describing the emission of
two universes with allowed frequencies ro'(k} from a
universe with allowed frequencies co(k} containing one
particle. We shall return to these matters elsewhere.

APPENDIX C: SECOND QUANTIZATION
AS THE THIRD QUANTIZATION

OF TWO-DIMENSIONAL GRAVITY

In this appendix we wish to illustrate the process of
third quantization discussed in the conclusion in the case
of two-dimensional gravity coupled to matter. In doing
so we shall adopt the point of view that the second quant-
ization of a string theory is equivalent to third quantizing
the two-dimensional gravity describing the world sheet.
First-quantized string theory can be regarded as two-
dimensional gravity coupled to matter in the form of D-
scalar fields Pr(a ). It is really already a second-

quantized theory in the form of a two-dimensional field
theory. The two-dimensional observer can compute the
quantity which we refer to as A(n) for various oscilla-
tions of these matter fields. One might even find that for
certain configurations of oscillations the quantity van-
ishes. However all the two-dimensional experiments he
performs involves the exchange of two-dimensional stress
energy of two-dimensional momenta and energy,

5 5 a
5tI}r 5$r Ba

4r 5
4(4r(rr }}=0a

a~ 5r

a
8cT

]['(Pr«}}=0
(C2)

and their solutions in the light-cone gauge (see, for exam-

ple, Ref. 13}

and

(C 1)

not the exchange of canonical momenta ~,=fr. Such
two-dimensional physical quantities will always have the
index I saturated. By studying the two-dimensional
WDW equation as well as the two-dimensional version of
the X constraint

f(p&, rtr+, p;(rr))= Jdp'(2poV&) ' e ~ ~ 5 g g n;(1) if&(!)—
i=1 l=1

(C3)

(where po=p&++p&, and the mass-shell condition is
given by

1
p& —— [pp&+M (n, i[ )]

2py

and

D —2

M (n, e)= g g [In;(l)+/it;(I)]
1=1 i =1

the analogue of our A( n &, n 2 ) } a two-dimensional ob-
server might wonder if there is. another structure built

out of the zero modes of the two-dimensional fields. The
mornenta conjugate to these zero modes would be seen to
play a crucial role in the dynamics of this higher theory.
Indeed in string theory they will be the ten-dimensional
energy and momentum. We are in a similar situation in
studying the second quantization of the WDW equation
of the hypothetical two-dimensional observer. In four di-
mensions it is difficult to find the dynamical quantities
which govern the behavior of the second-quantization
WDW field whose arguments are the four-dimensional
fields P(rtrr )I = 1,2, . . . , 4 with the timelike zero mode P4
set to zero.
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