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Changing coupling "constants" and violation of the equivalence principle
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It is shown that a cosmological evolution of coupling "constants" due to a change in some dilaton
field (such as the size of the extra dimensions in Kaluza-Klein theories or superstring theories), if
observably large, would imply a long-range force of gravitational strength that would violate the
equivalence principle. Our analysis is in the context of superstring theories but should be more gen-
eral. We also clarify various obscurities and correct mistakes in the recent literature.

I. INTRODUCTION

In recent years there has been much interest in theories
with extra "compactified" space dimensions. ' Several
papers ' have explored the possibility of a time variation
in the size of these dimensions which would be refiected
in a time variation of the fundamental "constants. " In
the last year or so this idea has been carried over to the
superstring context. Our main point in this paper is
that there is a prob1em with this idea: namely, if the
relevant dilaton field associated with the expansion and
contraction of the extra dimensions is sufficiently light to
allow observable cosmological variation of couplings then
it will mediate a long-range gravity strength force that
violates the equivalence principle. We discuss this prob-
lern in the superstring context because that is of most
current interest, but we suspect similar conclusions

would apply in general higher-dimensional theories such
as Kaluza-Klein theories, and indeed even more general-
ly. A second purpose of our paper, carried out mostly in
Appendixes, is to clear up some confusion surrounding
recent discussions in the literature. These have to do
with differences among various papers in choices of
metric (through relative conformal rescalings) that affect
the dependence of various couplings on the fields of
theory, difFerences in notation, and differences in physical
assumptions. There are also a few errors and oversights
that we correct.

II. SUPERSTRING THEORIES

The starting point of our discussion, as of most discus-
sions of this subject, is the bosonic action in the ten-
dimensional field-theory limit of superstrings. We as-
sume such a limit makes sense. This action has been
written down by many authors:

S= d x&—g
10 (10) 3 2 —3/2 2 9 —1 2x'io ((' Hsettt — i (y air(() )

2/C10 16 tt, oi

[—TrFstN —( Rst~pti —4R se~ +R )]

F~~ is the gauge-field-strength tensor HgNp is the field

strength of the two-index antisymmetric tensor field, and

P is a dilaton field. tc,o is the ten-dimensional Planck
constant. A feature of superstring theories that makes
the discussion more complicated than in the Kaluza-
Klein case is that there are two dilaton fields whose
values affect the "fundamental" couplings: P and the size
of the extra dimensions. If there is to be a significant
time variation of constants some linear combination of
these two dilatons must remain nearly massless. But
which linear combination of them is most plausibly as-
sumed to be light is a matter of conjecture upon which
papers have differed.

A convenient and conventional choice of metric in

compactifying to four extended space-time dimensions is

g =diag(e ~g, e~g ) (2)

As is discussed in Appendix A it is possible to choose
definitions of the four-metric g„„that differ by conformal
rescalings from that chosen here —indeed Refs. 5 and 6
choose definitions that differ from Eq. (2) and from each
other. This is equivalent to choosing definitions of Gz
(the four-dimensional Newton's "constant") which, in
fact, have different functional dependences on the fields
of the theory. These issues are straightened out in Ap-
pendix A. For our discussion we will adhere to Eq. (2).
With this choice the four-dimensional action takes the
form
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R fd xg g( )t )R(4) 3P—3/2 6 I 2 9 (() (()/(())2 3(g )2
2

e [ ,', T—rF„(—R terms)]+other I . (3)

Here we only write those terms that interest us.
E—:Jd y'1/g( ' and we normalize giI( ' so that this is
one (y are the six extra dimensions). Also we have set
x)0=1. From the coefficient of the F term (the factor —,',

is due to the trace being in the adjoint representation) we
see that 1/go„T ——(t) e . This combination of param-
eters is usually called s:—ReS. The orthogonal combina-
tion (note the form of the kinetic terms} is P

I e and is
usually called t =ReT. The variables (()s

—= ( I/&2) lns
and PT ——V3/2 lnt are also commonly used. In terms of
these the kinetic terms for P and 0 in Eq. (3) can be
rewritten as ——,'(8 ((s ) ——,'(B„PT) . Now, it is likely that
both Ps and (t)T develop vacuum expectation values
(VEV's) at the Planck scale (or at least at some su-
perheavy masses); however, until superstring dynamics
are fully understood one cannot be sure. In the scenario
where there is an Es hidden sector in which gaugino con-
densation occurs to break supersymmetry, it has been ar-
gued that indeed Ps develops a superheavy mass and ex-
pectation value. Certainly, that the gauge couplings are
not very different from one constitutes experimental evi-
dence that (s) -Mp). The story about the field (()T, or t,

I

is much less clear. At the tree level and even after gaugi-
no condensation breaks supersymmetry its potential
remains flat. One-loop calculations in the four-
dimensional effective theory have given a nonflat poten-
tial for this field. It has been argued also that at the actu-
al potential minimum the theory must be strongly in-
teracting' so that a perturbative calculation of the shape
of the potential cannot be trusted.

Since the potential for Pr seems less well understood,
and since it remains flat even after hidden sector gaugino
condensation gives mass to Ps, it is perhaps likely that if
any combination of (() and cr has a flat (or nearly flat) po-
tential it is Pr. That is the assumption we will make for
specificity (see Appendix B where the varying assump-
tions in the literature on this point are compared). In any
event it will be seen that our main point does not depend
qualitatively on this assumption.

Now, as Maeda has noted, in the four-dimensional ac-
tion displayed in Eq. (3) the field (I)T is a free field which
does not couple to light matter. This is seen by rewriting
Eq. (3) as

S=fd x+—g' '[ —,
'R' ' ——,'e H„„—r((B„(c)T) ——,'(B„P s) ,'e ——'[—,', TrF„„—(R terms)]+other] . (4)

Indeed it is the coupling of Ps to light (i.e., subcompactification-scale mass) matter, in particular gauginos, that can nat-
urally provide a mechanism for giving (I)s a potential. If we assume that PT is the (nearly} massless dilaton then presum-
ably it is the field whose expectation value can vary significantly over cosmological time scales. At first sight Eq. (4)
suggests that this variation will have no effect on the values of the couplings. (This is the conclusion actually drawn in
Ref. 6 and is the reason the analysis there proceeded to consider only the effects of time variations in Ps.) However,
this conclusion is too hasty. The unification scale does depend on PT. Consider the gauge fields, denote them A„,
which become heavy through compactification (through the flux-line breaking mechanism). The kinetic energy term
and mass terms both come from the 10-dimensional kinetic term

fd' x+—g" '[ ——'(t» '
(B))IA )(Bsr A )g™g""+ ]4 M p M' p'

=Kf d x+—g' 'e [——'(t) (8 3 ()"Al"e +()IA 8 3"e )+ . ]4 V P I p

=f d x+—g( 's[ ——,((B„A„B'3"+e A, A„A")+ ] . (5)

—+2ps +2/3~r 2s
MP1 . (6)

This will affect low-energy physics in various ways. Sup-
pose aoUT(MoUT ) is assumed to be fixed by the expecta-
tion value of s and is independent of PT. Then to first ap-

Here we have used the facts that +—g" '

(4)Q (6) —3a (10)pp' 3n (4)pp" (10)II'

=e og' 'I, and X is an eigenvalue of the Laplacian
on the compact space. So the unification scale which is
just the mass of these gauge bosons is given by

M&UT -e Mp) ——(s I )Mpi2 —4o 2 —1 —1 2

proximation the effect of shifting lidlfGUT by a certain
amount will be to shift the renormalization-group trajec-
tory of a, versus lnp by the same amount. Then we
would find roughly that mp AQcD and MGUT all depend
on s and t as (s 'I t 'I ). Things are more complicated
since other effects also will depend on (()T, in particular
the masses of various particles which will affect the run-
ning of the gauge couplings.

In addition to MGUT one expects also that the
supersymmetry-breaking scale will depend on PT. If
we consult calculations of the supersymmetry-breaking
scale in papers" which assume a hidden sector gau-
gino condensation mechanism we find that m 3/2
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=s '~ t ~ ( W(s}) where W(s) is the part of the super-
potential that depends on s. m3/2 is the gravitino mass.
In any event m3/2 will certainly depend on t as well as s.
At present there is no reliable standard picture of how
the breaking of SU(2))&U(1) occurs in superstring mod-
els, though it is probably closely connected to the break-
ing of supersymmetry. Thus, it is probable that GF de-
pends on t (through m 3/p) but we cannot assert at present
any precise form of this dependence even if we know how
m 3/2 depends on t. Finally, the masses of the quarks and
leptons depend on Gz since they are proportional to
SU(2) X U(1}breaking. However, again, we do not have a
reliable theory of these fermion masses. If, say, e, u, and
d get mass through radiative effects they could have a
much different dependence on t than if they arise at the
tree level.

For the purposes of this paper we will parametrize the
dependence of the low-energy physics "constants" on t as
follows:

GF -t b

C-m;-t ', s=e, u, d, . . . ,

6m=m —m -t d
n p

[These "constants" need not depend on t exactly as a
power; but as we will be dealing with small variations of t
from its present value, t0, we can simply linearize with

5m~/mz ' a5——t/to+0(5t ), etc. , and then the forms in

Eq. (7) involve no assumption as long as O(5t ) can be
neglected. ] From the simplistic discussion which gave us
mp-t and m3/2 t we may reasonably guess

—1/2 —3/2

that a, b, c;, and d are likely to be numbers of order uni-

ty.
At low energy we then expect to have terms in the La-

grangian such as

L „,=m,"'(t/t, )'(pp)+m„'"(t/t, )'(nn)

Gz-t =const,0

m -t a
p

C

+m,' '(t/to) '(ee)+

Or expressing this in terms of Pr and linearizing:

(8)

L,»-m' '[1+a&2/3(gr Pr )]pp—
m[0]

+m„' ' 1+ a+, o~
(d —a) &2/3(gr Pr ) nn+—m,' '[1+c,&2/3(gr —Pr )]ee,

mn

where we have used the dependence on t of m and b, m to get that of m„. This equation will be important later when

we discuss violations of the equivalence principle.
From Eqs. (4) and (9) we have the following equation for (Pr —Pz, ):

0

Ogr+p (Pr Pz. )=&2/3—ap + a+ (d —a) p„+c,p,
2 5m

(10)

where p; is the energy density in the species i We ca. n ignore the CIP term at the present epoch compared to the p P
term. Suppose we can also neglect the C3$ term at the time of helium synthesis (this would be the case, for example, if
Pr sits at its potential minimum then; we shall return to this point below). Then, comparing Pr at an early time r with

Pr now we have roughly

Pr(~) Pr =&2/3 —
asap + a+ (d —a) bp„+c,bp,

l hm

p)P

But since bp; =p, (r)—p, (now) =p;(r) for r an early time,
and since m, /m and b,m/m are small, we have

Pr(~) —Pr =(—,
')' ', , ap„„„„„(7.) .

Mp]p
(12)

We have replaced the factors of Mp] which earlier we set
to unity. We may now use Eqs. (8), (9), and (12) to place
limits on p from nucleosynthesis, and other astrophysical
arguments.

Let us look first at the primordial He abundance. [We
give a somewhat oversimplified account of the effects of
changing coupling on He abundance. To do a better job

one must include a variety of effects whose importance
was first emphasized by Barrow but which we do not
consider here, notably the effects from changes in the
strengths of the nuclear forces, such as on the
p+n ~ H+y rate, and the effect of a change in the n
lifetime. To estimate the change in the nuclear forces is
somewhat tricky since the shape (depth and radius) of the
nucleon-nucleon potential well, say, depends indirectly
and in a complicated way on the QCD gauge coupling a,
and the u- and d-quark masses. Since tracing this depen-
dence is complicated and our main results will in any case
depend only on quite qualitative and crude features of the
calculation we content ourselves with the level of the
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analysis of Ref. 3. We emphasize again, however, that to
do a more realistic calculation requires combining the
analysis of Ref. 4 with a computation of the dependence
of nucleon-nucleon forces on a„m„, and md. ] The pri-
mordial He abundance is known to be (d+ 'b-) '

p
—'& (4X10 "GeV) '

a
(21)

In order, then, to get a 5t/to large enough to be "seen"
through its effect on He abundance one would need to
have according to Eqs. (19}and (20):

Y=0.24+0.01
and is given by

2 + +Am lrf
I+(pin)f '

n

(13)

(14)
(5X10 km) . (22)

This corresponds to a range for the interaction mediated
by the (PT —Pro) field [see Eqs. (9) and (10)]of

(d+ —', b)

GFTf -(G~Tf } (15)

Linearizing around the current values of GF, GN, and

, and denoting by Yo the value of Y that would be ob-
tained if these parameters did not evolve in time we have

5Y =5(ln Y)o
Yo

5(p /n )f

1+(pin�)f

(P ln)I
1+(p/n)f

Am

Tf

5b, m

Am

5Tf

Tf
(16)

5Y 2 —Yo=(1—Yo/2)ln
Yo Yo

Now using Eq. (15) we have

5GF 5Tf 1 56N
2 +3

GF Tf 2 G~

5TI

Tf

(17)

But we have found that 56~ is zero (that is, G,v is
independent of t) while 5GF IGF b5t lto, ——and
5b, m /hm =d (5t /to ). So

5Y 2 —Y= (1—Yo/2)ln
Y 0 Y

2 5td+ —b
3 to

(18)

Thus, if we assume that 5Y/Yo (0.04 we find

where (p ln)f is the proton to neutron ratio at freeze-out.
The freeze-out temperature Tf is found by equating the
cosmic expansion rate and the weak-interaction rate

The consequences of much smaller variations 5tlto than
10 [see Eq. (19)]could be seen in stellar nucleosynthesis
of ' C and ' 0, and in the Okla natural reactor. ' How-
ever these probe the behavior of the couplings at times
much later than nucleosynthesis when t is changing much
more slowly anyway [see Eqs. (12) and (20)]. Thus for
our purposes He abundance may be the most sensitive
test. Let us however be wildly optimistic and assume
that in the foreseeable future a 5t/to variation since nu-

cleosynthesis times of even 10 will be observable. To
get a variation even of that size would require

—2) (2X10 25 G V) 21
(23)

a

r&a 10 (24)

F& /F„,„-a 1+ ™N
Matom

m c —ae Z e+
Matom

Any p larger than about 10 GeV will, then, lead to
unobservably small variations in the couplings even un-
der very optimistic assumptions. [And we note here that
for p, ) 10 GeV it will be true that we can ignore Ogr
in Eq. (10) for any initial condition; so that our analysis
will be valid. ] So, an observable variation of couplings
implies a p less than 10 GeV corresponding to a force
of range much larger than the radius of the Earth. If we
now look back at Eq. (9) we see that such a force would
violate the equivalence principle. In Eq. (9}we set Mpl to
unity. Restoring the factor of M p,

' we see that PT medi-

ates a force whose strength is comparable to that of grav-
itation if a and c, are of order one. But clearly PT cou-
ples differently to p, n, and e, in general. In fact the ra-
tio for the ((}r force between the Earth and an atom of
proton and neutron number (Z, N) and the gravitational
force is

(5t /t, ) (0(024)(d+. ', b )— (19) (25)

2 1
2a3 Mpip n

2g(3)
mP 2 Tf

=ay (4X10 '
) GeV (20)

Now, (5tlto)=( —', )'i (PT —PT ); so from Eq. (12) we
0

have the variation 5t /to from the helium synthesis era to
now has been

2 15tltp
2 2ap„„,&, „(T/)

Mp]p

We expect in the superstring case that a, b, c;, and d will
be of order unity. Equation (25) then tells us that there
will be a new long-range scalar force as strong as gravity.
This is obviously unacceptable. But even if we assume
that a, b, c;, and d are small compared to unity, which
corresponds [Eq. (7)] to a rather weak dependence of
low-energy couplings on the value of the dilaton, there
will be significant violations of the equivalence principle
according to Eq. (25).

The main assumption that has gone into our argument
is that for small variations 5t/t one may ignore the
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higher-order terms such as (5t/t) in the equations of
motion. That is, we have kept only the mass term of Pr
and not higher-order derivatives of the potential at its
minimum. However Pz would have to have a strange
shape indeed for this assumption to be invalid.

It would seem that our argument applies to Kaluza-
Klein theories as well, and indeed to any theory where
the cosmological evolution of constants occurs because of
a variation in the value of a scalar field which is caused
by the changing matter density in the Universe.

Whether or not one can find appealing theories to
which our argument does not apply, it is interesting that
long-range feeble forces that violate the equivalence prin-
ciple, ' which have aroused so much recent interest, are
intimately connected to the evolution of coupling con-
stants. Clearly our argument can be reversed. If a long-
range scalar force that couples to matter exists it corre-
sponds to a very soft potential, and changes in the cosmo-
logical matter density will probably lead to shifts in the
value of the masses of the particles to which this force
couples. Searches for changing couplings and for new
feeble forces should be viewed as complementary aspects
of the same investigation.

(Gz/Gz)=(R/R0) in Kaluza-Klein theories . Such
statements are strictly speaking wrong, or at least only
right in a certain definition of the metric. The purpose of
this appendix is to clarify this problem and show how
certain recent papers' usages are related.

What can be given an absolute sense is the value of cer-
tain dimensionless physical combinations' of parameters
at a definite space-time point. For example, suppose
there are particles of a certain mass m. One can imagine
that a pair of such particles is gravitationally bound in a
certain orbit which has definite quantum numbers. The
gravitational binding energy as a fraction of m is expres-
sible in terms of (G~m ). This is an observable quantity
which is invariant under any rescaling of the metric, i.e.,
conformal change of variables. Thus it is physically
unambiguous to ask about the difference between Gttm
at two definite space-time points. (To ask how it depends
on the time coordinate "t" is ambiguous because one can
rescale the coordinate t )La.ter in this appendix we shall
show the consistency of various authors' choice of vari-
ables by checking that G&MoU~ has the same depen-
dence on the fields of the theory for each choice.

(2) Let us start with a particular form of the ten-
dimensional action
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g= fdiaxVGe ' —'~P~,

where

P~ = ,'R ( G)+ 2( V—„4)' 2V„'4 ,' t—rF„'+——

(A 1)

APPENDIX A

(1) One of the confusing aspects of the whole subject of
changing "constants" is that how these constants depend
on the fields of the theory depends on how they are
defined, and in particular how the metric is defined. Let
us suppose that with a metric g in a (d +1)-dimensional
theory one has an action

We are using the notation of Ref. 6. This differs from the
form in Eq. (1) of the text in that the coefficients here of
—,'R and ——,'trF&„are both e while there the corre-
sponding coefficients are 1 and P

~ . To get the form in
Eq. (1) from Eq. (Al) one has to do a rescaling of the
metric GMtt= e git~ ——P g~~. Thus 4= —,in/. gott

1/24 (10) 3/4 (10) (10)

is then the metric appearing implicitly in Eq. (1) [that is,
it is used to make the contractions in Eq. (1}].The usual
choice of metric, given in Eq. (2), when compactifying
down to four dimensions is

S= d +x&—g R+
2K io d (

cr «—
) (A2}

Here the Newton "constant" is 6=a./8n. One can re-
scale the metric by a conformal transformation
g„„=ei '"'g„'„where A(x) is some scalar field. Then one
finds

Thus, to get from Eq. (Al) to the usual four-dimensional
form requires that

G~z ——diag(P e g„'„',P e g' ')

2K

e(d —1)A(x)
S=fd'+'x& g— ~ ~ ~

(4)=—diag —g„„,tglJ
S

(A3)

so that the Newton "constant" for this metric is given by
Gz ——e ' " '"'G~. One has to be careful therefore
about speaking in absolute terms about how Gz or the
other couplings of the theory depend on the fields of the
theory or on time. In particular various papers in the
literature make general statements such as

where s and t are the commonly used variables discussed
in the text. We can check this explicitly. Let us take
G~~+"'=diag(e '"'g„'„',e "'"'gz'I" ) where we are general-
izing to an (m +n)-dimensional space-time. Let A,(x) and
p(x) depend only on x",@=1,. . . , m. Then
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R ( G) =e ~[R ( '(g ™)—2( m —1)A,. —(m —2)(m —1 )A, .)(.'(' —2n p, (.
' —n (n + 1)(u ~'t' —2n ( m —2)A, ~'t']+..

(A4)

Combining Eqs. (A4), (A3), and (Al) we find

S= d x —g' 's t st

X( —,'s+'R(g' ') ——,'s[6( ——,'lns). (' —6[( ——,'lns) ] —12(—,'lnt). (' —42[( —,'lnt) ]

—24( ——,'lns) ((lnt)'t'I+2s[V„(ln(s 't )] —2sV„[—,'ln(s 't )]——,'s trF„„)+
(A5)

or

Id4 Q (4(, ( R ( (4() -5 Vps 11 Vps Vpt 21 Vpt
2

'2
2 2

+6 ——,'s trF + (A6)

V sS= d4x —g(4) -'R g(4) —— P
2 4 s

V„t
4 t

——,'s trF „2

We have used C =—21np= —,'ln[(1/s)t ] and &G =s t (/g( ''(/g(6' Now i.ntegrating by parts we find
'2 '2

(A7)

(A8)

which is to be compared with Eq. (4) of the text.
(3) Now, the authors of Refs. 5 and 6 do not in fact use

the same definition of the four-dimensional metric as in

Eq. (A3) and that we have used in the text. Maeda [see
Eq. (3) of Ref. 6] uses 6M~=diag(g„'„', R gt(~'}. Thus his

R is given by

R =t'" .

Gz(Maeda)-s ', (g4) (Maeda)-s' . (A13)

[This is to be compared with Eqs. (4) and (5) of Ref. 6. It
should be noted that Maeda uses the symbol ()(( for what
we call s. Also his Eq. (5) has a mistake as g4+ should go
as 1/s or in his notation I/P not I/P .] From Eq. (A10)
we have

And Maeda s metric in four dimensions is related to ours,
which we will denote simply as g„' ', by

Gz(Wu and Wang}-s / t

(g~) (Wu and Wang)-s .
(A14)

g„','(Maeda) =—g„'„' . (A9)

If we look at Eq. (10) of Ref. 5 we see that Wu and Wang
use gM(v

——(g„„,R6g „). So we have

g„'„'(Wu and Wang)=e g„'„'

( t )
—3/4g (4)

and their variable R6 is given by

M GUT s2 —1 —1

While

(A15)

MoUr(Maeda)-R -t
(A16)

To calculate MG„T in the various metrics we must look
at the coefficients of the terms (Bt /I„) . In particular we
have from the text M GUT in our metric given by

(/~~ —
( t)(/s (Al 1) MoUT(Wu and Wang)-R6 -e -s ' t

Now let us see how Gz and (g4) depend on s and t in
our variables, in those of Maeda, and in Wu and Wang's.
In our variables

G~-s t -const, (g4) -s0 0 —2 1 (A12)

as can be seen from Eq. (3) of the test, or Eq. (A6). To
get to the other definitions requires just a conformal re-
scaling of g„'„'. From Eq. (A9) we have

We can combine all these results in a table.
Note that G~MGUT which should be invariant under

rescalings of the metric indeed comes out to be propor-
tional to s 't ' in all metrics. [We can check that we
agree with Wu and Wang. They say that GN-R6 . But
R 6 =e =s t which agrees with Table I.
And, according to their Eq. (23), (g4) -P R6. But

/ R6 ——(1
/ e =s which again agrees with Table I.]
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TABLE I. A comparison of notation, conventions, and definitions of various papers on this subject.
Maeda refers to Ref. 6; Wu and Wang to Ref. 5.

This paper Maeda Wu and Wang

Variables
used

or

y
—3/4 3n

y3/4e a

1

"p"(=s)

R (=t) Z', ( =e )

Four-metric

GN

(g4 )

M GUT
2

( G&MGUT )

( 3 )1/2)niT 2

{4}
gpv

-const

-s- 't- '

—1t —1

g y,v t )
—3/4 (4)

—3/4t —3/4

, -1/4, -1
—1t —1

APPENDIX B Maeda assumes Ps is light and examines

IT+3+i'T+I (yT PT ) (v I )e

Not only do the choice of metric and the notations
vary among papers but they make different assumptions
about which fields remain fixed and which evolve cosmo-
logically. Maeda, noting that GN and (g4 ) depend only
on s (in his metric ) decided that interesting evolution of
"constants" would only result if s were allowed to evolve
(or equivalently Ps). (In his notation he denotes s by P.)

In the text we argue that the low energy "constants" do
depend on t as well as s, and that (s ) is likely to be fixed
by the supersymmetry-breaking mechanism in such as
gaugino condensation while t is not. Thus we regard t (or
equivalently PT) as being the most likely to have a (near-
ly) flat potential and hence to evolve. Wu and Wang fix P
and assume that what they call R6 has a (nearly} flat po-
tential and evolves. This is equivalent to saying
( V'3 PT —Ps ) is fixed (massive) while the orthogonal com-
bination (fr+ &3 Ps ) has a (nearly) flat potential and
evolves. So the three papers we are comparing make
three different assumptions about what the flat direction
is in the (Ps, PT ) plane.

From the point of view of the main qualitative con-
clusion of the text which linear combination of Ps and Pr
evolves is not very significant. We assume Pr is light and
examine the equation [see Eq. (10) of the text]

—+2/3 p( pT —QT )

P

1
+s3H({' +sf (Ps $s, ) =—

v/
e P .

An intermediate choice (such as Wu and Wang's) would

give a very similar equation.

APPENDIX C

If the dilaton responsible for the evolving couplings is
exactly massless then there are two problems: an infinite
range force and the instability of the classical solutions
for the dilaton. To take a concrete example of the later
problem one can consider the solutions found in Ref. 5.
In that paper (see Appendix B) it was assumed that P
developed a mass and remained constant while R 6 had a
flat potential. The full equations of motion in d = 10 are
just the Einstein equations. (Many papers derive the
four-dimensional equations of motion from a four-
dimensional action derived by substituting an ansatz for
the metric into the ten-dimensional action. One thereby
gets the same equations for the dilaton, to the order in
M z& that one cares about, as one would if one deduced
the four-dimensional equations of motion from the full
ten-dimensional ones. ) For a matter-dominated Universe
the equations are [see Eqs. (14}—(16}of Ref. 5]

2
~ ~ ~ ~ 7 ~io Po 3R 3 /R 3 +2R 6 /R 6

——— [R 3 ( tp ) /R 3 ( t ) ]24 R6
2

R
+R 3 /R i +2R i /R 3 +6(R 3 /R 3 )(R 6 /R 6 ) =— [ R3( r)p/R3( )r]

+5R &6 /R 26 +.3(R 3 /R 3 )(R 6 /R 6 )=— [R 3 ( &p ) /R 3 ( r )]
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R, (t) =R,(t)[1+a(t)],

R,(t)=R,(t)[1+b(t)],
(C2)

and assume that Ri(t) and R6(t) are also exact solutions.
We can subtract the equations with IR&,Rs] from those
with IR~,R6I to get equations for the perturbations a
and b. If we assume that the fields are changing on a
time scale 7 much shorter than the age of the Universe tp,
then we can drop all terms nonleading in 7/tp On. e finds,
from Eq. (Cl),

Let us assume that IR6(t),Ri(t) J is an exact solution of
these equations. Let us perturb them as a= 1+—

c

' —1/3
7—1, b= 1+—
c

+1/3

tp
R,(t)=R, (t) 1—

c

—1/3

R,(t) =R,(t) 1—
+ 1/3

tO

where we have imposed a(tp) =b(to) =0.
Substituting back into Eq. (C2) one has

(C10)

(Cl 1)

a /(1+a)+2b l(1+b) =0,
a'+2a /( I+a)+6db l(1+b)=0,
b+5b l(l+b)+3ba/(1+a)=0 .

(C3)

The right-hand sides of Eqs. (C3) are simply nonleading
in (alto) and thus set to zero. Now, let us define

y =b l(1+b) and to:—a/(1+a). In tertns ofy and io Eqs.
(C3) become y= ——w1

S (C12)

These solutions start out equal to R3, R6 at t =tp, but at
time t =to+

~

c
~

we find Rs has collapsed to zero and
R3 has blown up to infinity. c is a constant of integration
that is arbitrary but which we have taken negative, and of
order F.

The second solution in Eq. (C7) is Pp ————,'ao. This
yields the solution

2y+2y2+ w+ W2=0,

w+3W +6yw=O,

y +6y + 3yw =0 .

Let us expand in powers of ~=t —tp.

(C4)

and this in turn gives, with a(tp) =b(tp) =0,

a =(1+rlc) ~ —1,
b=(1+v/c) ' —1 .

Substituting back into Eq. (2),

(C13)

w= — an
1

& n=O

y= —g p„(rlr)" .
1

(C5)
R,(t)=R, (t) 1-

5/9
t —tp

' —1/9
(C14)

Setting equal powers of (sir) equal in Eq. (C4) one gets Rs(t)=Rs(t) 1—t —tp

ai+2Pi = —ao —2Po

a, = —3ao —6aA,2

Pi = —6Po —3aA

which in turn give

(ao+Pp)(ap+5Pp) =0,
. .po= —ao

or pp= —
—,ap .I

(C7)

y= —w .

This in turn gives

1w=3W, w =— = —y3(r+c )

which implies, by the definitions of w and y,

(C8)

(C9)

Taking the first case one can proceed to solve for all the
other coefficients a„,P„. One finds

Again we see an instability, except here R6 blo~s up after
some finite time and R 3 collapses to zero.

We emphasize that these solutions are exact up to
corrections of order r/to.

According to Refs. 5 and 15 (which follow the usual
stability analysis of Ref. 16) there are solutions for
k= —1 that are stable under perturbations. %hy the
different result here? The key point is that the usual sta-
bility analysis linearizes with respect to perturbations a
and b. This is all right if a and b remain small. If one
follows the linear stability analysis in this case one finds
restoring forces for a of order a /t and a It, and similarly
for b. [See Eq. (18) of Ref. 15.] Now, suppose as we have
done that perturbations a and b grow rapidly compared
to the expansion rate of the Universe. That is, let a and b
be of order 1/r, where r« t. Then the time it takes a
and b to grow to be of order one is of order F. But the re-
storing forces have a negligible effect in a time that short.
Thus long before the restoring forces have had a chance
to act significantly the linear analysis already has broken
down. The correct thing to do for perturbations where
r « t is to drop higher powers in 7/t but not to linearize
with respect to a and b. That is what we have done.
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%hat we have found is that the nonlinearities in fact ac-
celerate the growth of the perturbations so that a(t)
blows up after a time c -K The restoring forces revealed
by the linear analysis are irrelevant for F&&t; it is the
nonlinearities that play the dominant role.

Why does k not appear in Eq. (C3)? Simply because

those terms are higher order in 'Piro.
The upshot is that there is stability with respect to

slowly growing perturbations (a —b —v
' (t '), as

shown in Ref. 15. But rapid enough perturbations are
unstable. It is a valid question whether such modes
would in fact get excited.
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