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The general second-order gravity theory, whose Lagrangian includes higher powers of the curva-
ture, is considered in arbitrary dimensions. It is shown that spherically symmetric solutions are
static, except in certain, special, unphysical cases. Spherically symmetric solutions are found and
classified. Each theory’s solutions fall into a number of distinct branches, which may represent
finite space with two singular boundaries, or an asymptotically either flat or (anti-)de Sitter space
with one singular boundary. A theory may contain at most one branch of solutions in which all
singularities are hidden by event horizons. Such horizons generally emit Hawking radiation,
though in certain cases the horizon may have zero temperature. Black holes do not necessarily ra-
diate away all their mass: they may terminate in a zero-temperature black hole, a naked singularity,
or a hot black hole in equilibrium with a “cosmological” event horizon. The thermodynamics of
black-hole solutions is discussed; entropy is found to be an increasing function of horizon area, and

the first law is shown to hold.

I. INTRODUCTION

In Einstein’s original paper on general relativity' he
was able to deduce the simple Ricci scalar Lagrangian
only by making certain simplifying assumptions. The
gravity Lagrangian could, in fact, contain an arbitrary
number of terms, consisting of the invariants which can
be constructed from powers of the Riemann curvature
tensor. And, because the curvature in all normal physical
situations is so small, it is hard to argue on experimental
grounds that such additional terms should not be present.
However, terms of order n in the curvature lead, in gen-
eral, to 2nth-order field equations, which are difficult to
analyze classically, and in most cases appear to lead to
ghost problems in quantizing the theory. A fair amount
of work has nevertheless been done on the R +R*?
theories, which contain the Einstein term together with
curvature-squared terms.

When gravity is considered in a higher-dimensional
space, a new situation arises. There are then certain com-
binations of the Riemann invariants which yield second-
order field equations. These are the dimensionally con-
tinued Euler densities.>> In lower dimensions such com-
binations correspond to topological invariants—and so
do not contribute to field equations there.

Interest in theories of gravity whose Lagrangian con-
tains such higher powers of the curvature, but which are
nevertheless second-order theories, has increased in re-
cent years, largely due to the interest in string theories,
whose low-energy limit seems to contain such terms.*?
Such theories are also of particular interest because they
admit the possibility of spontaneous compactfication. &’

A detailed analysis of spherically symmetric solutions
has been carried out for gravity theories which include
terms no more than quadratic in the curvature (together
with various matter fields).®~ ! Black holes for the
theories up to quartic in the curvature (the maximum
relevant to ten dimensions) have been considered,'*
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though the results published are inaccurate in several
respects.

Wheeler!® has considered, in arbitrary dimensions, the
general theory whose Lagrangian is composed of dimen-
sionally continued Euler densities—that is, the most gen-
eral second-order gravity theory. He analyzed their
asymptotically flat spherically symmetric static solutions,
and cosmological solutions.

In this paper we shall consider the same general
second-order theory, and in Secs. II and III we shall fol-
low procedures similar to those of Wheeler. In Sec. IT we
shall present the theory, and then calculate and solve its
field equations for a general spherically symmetric space.
We extend Wheeler’s work to nonstatic spacetimes, and
thus prove Birkhoff’s theorem for the general second-
order gravity theory. In Sec. III we shall characterize
these solutions, analyzing their behavior near spatial
infinity, their singularities, and horizons. This analysis
represents an extension of Wheeler’'s work to include
asymptotically nonflat solutions, and presents a correct
analysis of the horizon structure of the solutions.
(Wheeler’s claim that asymptotically flat spherically sym-
metric static solutions have at most one horizon is shown
to be false.) Finally, in Sec. IV we shall consider Hawk-
ing radiation and the thermodynamics of the black-hole
solutions. We shall derive expressions for the tempera-
tures and entropy, and a generalized first law.

II. THE GENERAL SECOND-ORDER THEORY

We shall consider in this paper the general second-
order gravity theory in d dimensions, represented by the
Lagrangian
L=S Ly
B ,20 (d —2n)(d —2)!
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where the R 45 are the curvature two-forms, correspond-
ing to the vielbein one-forms, e ,, with the indices living
in a d-dimensional Minkowski space with signature
(—+ -+ +). The divisor of the series coefficients, L,,
has been introduced for simplicity of the field equations.
The maximum value of z in the sum is given by

1d—1, deven,
N= 2.
1d—1, dodd. @2

2?

The field equations are obtained from the variation of
(2.1) with respect to the vielbein,

< n g

L= n§0 -2 Riji, ey, Bey,»  2.3)
where we have suppressed the wedge product symbols.
(For simplicity, we shall suppress these, as well as the
summation limits, in all future equations.) The variation
assumes this simple form because the 8R ,p terms are
found to be total derivatives, as a consequence of the Bi-
anchi identities. ®

We are interested in spherically symmetric solutions of
the theory (2.1), so we shall choose the basis

eP=eddt, ¢=¢(1,r), (2.4a)

el=erdr, A=At,r), (2.4b)
i—1 .

=r | [] sin6* |d¢', i=2,....,d, (2.4c)
k=2

and so we may calculate the curvature two-forms by the
Cartan procedure, to get

-2 3

+2n¢n—l

o222
|

and hence the field equations may be written

—d—A

Znan"’l] [e - ;’A (2.92)
. e—ZA a

SnL, ¥ — L (A+9) | = (2.9b)

+3(d —2n — 1)L, "=

[zont || 2

(2.9¢)

where the three equations are obtained, respectively,
from the 8e}, variation, the 8e) —8e! variation, and the
8el variation. [It should be noted that these equations
supersede those published by Wurmser'* for the d =10

8ed— e 9 1
[ r atklﬁeo
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‘ a ]ae} + [e 9,
r at

’Be?

= |e—*- 49 o 40
Roi 2’
_a—6 0 _ d
—e~* ¢are he — 5.9 [eofer (2.5a)
e~ 2 e—¢—*
d d
Ry=|— " —¢ egNe;+ gt—?» e, Ne;
(2.5b)
e 9 e %% 9
Rli—— ’ 57)\. el/\ei a’}\, eo/\el )
(2.5¢)
where
Y=rAl—e"2). (2.6)

To write the field equations in explicit form, we need to
insert these expressions for the vielbein and curvature
forms into (2.3), and set the result equal to zero for arbi-
trary perturbations of the vielbein. We need consider, in
fact, only perturbations of the form

860=[838]e0+[8e6]e1 , (2.7a)
8e, =[8e1eo+[8elle, , (2.7b)
Se; =0 2.7¢)

to obtain the three independent field equations since the
fourth equation, obtained by considering perturbations of
Se;, is related to these three by the Bianchi identities. We
find

+(d —2n —1)y"8e?

+(d —2n —1)¢"8el 1V —gd , (2.8)

|
case, in which some of the permutation coefficients ap-
pear to be incorrect. His analysis of the character of the
type-(i) solutions below is also flawed.]

We find two classes of solutions to these field equa-
tions.

(i) Suppose that

SnL,y" " '=0; (2.10)

then both (2.9a) and (2.9b) are identically satisfied, while
(2.9¢) yields

SLyY"=

To solve both (2.10) and (2.11) simultaneously we need
Y =1), where ), is a repeated root of 3 L,15=0. There-
fore, such solutions will exist only in the theories with

(2.11)
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special sets of values of the Lagrangian coefficients L, .
Moreover, these solutions are pathological since the field
equations do not constrain the g, component of the
metric. The metric

ds’=—eXdt’ +(1—¢por®) " 'dr’+r’d @’ 2.12)

will be a spherically symmetric solution for any function
¢. (These solutions are considered in some detail by
Wheeler. %)

(ii) Suppose that S nL, " ~!5£0; then the field equation
(2.9a) and (2.9b) yield, just as in the usual Einstein case,

—a—?»=0 , (2.13a)
ot
0
—(A+¢)=0, (2.13b)
or
which together imply
A=Alr), (2.14a)
o=—Ar)+g(t), (2.14b)

and, since the arbitrary function g(¢) can be absorbed
into a redefinition of ¢, we have thus extended Birkhoff’s
theorem to apply to the general second-order gravity
theory: all spherically symmetric solutions [of theories
which do not admit type-(i) solutions] are static.

The third field equation (2.9c) may be written in the
form

r‘d+22L,,‘aa7(rd_1¢")=O : (2.15)

Thus, by integration, the general spherically symmetric
solution of the theory (2.1) may be written as

ds’=—Vdi>’+ V- ldri+r%dQ?, (2.16a)
where

V=1—1yr? (2.16b)
and

SL,ri WYr=p, (2.16¢)

and the constant of integration p is the mass parameter
of our solutions.

III. CHARACTERIZATION OF SPHERICALLY
SYMMETRIC SOLUTIONS

Following Wheeler, 15 let us consider the exterior solu-
tions (2.16) by rewriting (2.16c¢) in the following form:

f(l/1)=—*d%1 , (3.1a)
r
where
fW=3L, " . (3.1b)

Since each theory is completely determined by its La-
grangian coefficients L, there is a one-to-one correspon-
dence between the set of second-order gravity theories
and the set of polynomial functions (3.1b).
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When p =0, Eq. (3.1a) gives the vacua of a theory f, as
=1}y, where 9, is a zero of f. (If f has no zeros, the
theory will have no vacuum solutions.) In general, there-
fore, there will be as many distinct vacuum solutions as
there are zeros of f. And these vacuum solutions will be
anti—de Sitter space, flat space, or de Sitter space, ac-
cording to whether the corresponding zero of f, v, is
negative, zero, or positive. However, if any of the zeros
of f is not a simple zero, then the corresponding vacuum
solution is instead given by (2.12). Such vacua are patho-
logical, and may be ruled out from further consideration.

When p5£0, Eq. (3.1a) represents, for any given theory
f,> a many-to-one map from ¢ to r. This will map the ¢
region where y¥— 1, from below, and the i region where
Y—1), from above, to two distinct asymptotic spatial
infinities of the solutions of the theory. (If f has no zeros,
then any solutions of the theory contain no spatial
infinity.) The asymptotic behavior of the solutions may
be determined, in general, by examining the behavior of f
close to ¢,. This depends, by Taylor’s expansion, only on
the value of the derivative f with respect to ¥ at ¥,
f'(¢y), which is nonzero in the cases of interest. We
have, near spatial infinity,

Vin=l—ggio-—E—
(r) Yor f’(z/zo)rd‘3

The form of (3.2) shows that the solutions are asymp-
totic to the vacuum which corresponds to ¥=1, And
from (3.1a) we see that g must have the same sign as f.
So this represents a positive gravitational mass solution
when y¥— 1, from above [ f has the same sign as f’, and
so the last term of (3.2) is positive], and negative gravita-
tional mass, otherwise. We may define an effective gravi-
tational constant [1/f'(1,)] which, when negative, indi-
cates an effective antigravity force—positive mass will
repel and negative mass attract.

Turning now to the question of singularities, we see
from the scalar curvature calculated from the curvature
two-forms (2.5) that wherever r ~'d2V /dr?, r—'dV /dr,
or ¢ are singular there must be a curvature singularity.
The field equation (2.9c), moreover, implies that
r~'dV /dr and r ~'d*V /dr? are singular when and only
when both f'=0 and f£0. So every solution contains a
curvature singularity: for, as ¥ moves away from a zero
of f (corresponding to moving radially inwards from spa-
tial infinity), eventually either a stationary point of f is
reached or else || must reach infinity (and so we have
hit a curvature singularity).

To represent a particular branch of solutions, we select
a particular zero ¥,, and then choose a point ¥, lying on
one or the other side of ¥y, which is the nearest such cur-
vature singularity on that side. (Strictly speaking, ¥, is
taken as the nearest stationary part of f on a particular
side of 9, and if none exists, then ¢, is taken as infinity.)
The interval [, ¥,] then represents the outer part of one
of the spherically symmetric solutions and since, from the
definition of f,

(3.2)

1/td—1)

£ ) (3.3

f)
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so r will decrease monotonically from infinity at i to its
lowest value at the curvature singularity ¥,.

So far we have considered only solutions containing a
spatial infinity. An interval [¢,,9,], where ¥, and 1, are
neighboring curvature singularities which are not
separated by a zero of f, also represents a solution
branch, but one which is not asymptotic to a vacuum
solution, and which terminates in a singularity for both
large .and small ». We shall return only briefly to such
solutions later in this section. The total number of solu-
tion branches, with or without spatial infinity, will always
be one more than the sum of the number of zeros and the
number of stationary points of f, which is at most 2N.

The existence of a singularity at some small value of r
raises the question: When will this singularity be sur-
rounded by an event horizon? An event horizon is
characterized by the vanishing (and change of sign) of the
800 component of the metric (2.16a), and hence we have
from (2.16b) ¢, =r;” 2, where the subscript 4 will denote

J
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values at the horizon. So at a horizon

fW)=pgi =12, 4, >0 (3.4)
or defining

__fW)

f)= ‘1/}(7_‘%% , (3.5)
we have at a horizon

FW)=p, ¢, €I=[v¥,¢,1N[0, ], (3.6a)
and, hence,

r=0F w17, (3.6b)
Clearly, there will be a horizon only for
min,(f) <p <max,(f), where the maximum and

minimum functions are defined on the interval I. From
the expansion of f ,

Lyg_nn+Ly_np¥™ '+ +Lep"“"Y2, d odd ,

(P)= _ _ —d—
]((/} L(d—Z)/2¢ 1/2+L(d—4)/2¢ 3/2+ C . +LO¢ (d l)/2, d even ,

we can see that | f(¢)| will be bounded above on the in-
terval I, unless the interval includes 0. Therefore, there
will, in general, be an upper limit for | u |, above which
solutions will have marked singularities. Similarly, there
will be a lower bound on | u |, below which there may be
naked singularities, if  does not have a zero on the inter-
val I. The definition of f, (3.5), indicates that f(1,)=0,
except that ¥,=0, so if Y5> 0 then f will have a zero on
I. The expansion (3.7) also indicates that f will have a
zero at infinity, provided that if d is odd then L ,;_,),,
vanishes. So if ;= c (and this proviso is met) there will
be a zero of f on I, for any .

Of course, there may be more than one event horizon
in a solution, for f ~! may be multivalued if f has any
maximum or minimum on the interior of I. It is interest-
ing to note that Eq. (2.9c) may be written as

1dv

1 Frld+1)/2
el ERT RS

(3.8)

and, hence, the stationary points of f on (¢,,¥,) corre-
spond to the stationary points of the gy, component of
the metric V. Thus, solution branches with a monotonic
f will consist of solutions for which V¥ is monotonic and
which have at most one event horizon. This also implies
that we may transform the metric (2.16a) to Kruskal-type
coordinates near a horizon, except if f'(y,)=0, which
can be the case only at the limiting value of |u| above
or below which the horizon does not exist.

In the asymptotically de Sitter cases (when ;> 0), it
is, in fact, essential that both the “‘cosmological” and the
“black-hole” horizons exist, since in de Sitter space the
metric at spatial infinity has the wrong signature and
must be hidden from the physical part of the solution,
just as the singularity must be. The precise number of

(3.7

horizons in a particular branch will depend on the details
of the Lagrangian coefficients, but we can rule out the ex-
istence of more than one horizon in two significant cases.
First, if ¥, <, then | f | decreases monotonically from
¥, to ¥, and, from (3.5), then so must | f |, so there must
be at most one horizon. Second, when f has only single
zero on I, there will be only a single solution of (3.6b),
and hence only one horizon, for small enough |pu|.

We may now write down a procedure for characteriz-
ing the solutions of any second-order gravity theory.
First, write down the function f for the theory, and cal-
culate its zeros and singular points as described above.
Then, for each solution branch [y,1,] the following is
true.

(1) If f'(4y)=0, the branch is ruled out, as it has a
pathological vacuum.

(2) It is asymptotic to anti—de Sitter, flat, or de Sitter
space according to whether v is negative, zero, or posi-
tive.

(3) It has positive or negative mass according to f(¢;)
being positive or negative.

(4) It has positive or negative gravitational mass ac-
cording to whether ¥, — ¢ is positive or negative.

(5) It has a positive or negative effective gravitational
constant according to whether f'(1,) is positive or nega-
tive.

(6) There is a curvature singularity at

1/(d—1)

>0, (3.9)

P
sing f(lyb])

which is timelike or spacelike according to whether
() is greater than or less than p?y? ~!.

(7) If Y5> 0 and ¢, <0, there is a cosmological horizon
but no black-hole horizon.
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(8) If ¢y>0 and ¢, >0, there is a cosmological horizon
except for large enough |u |, and possibly also at least
one more horizon, but not for small || unless ¥;= oo
(and if d is odd, then L ; _,,,, =0).

(9) If ¥, < 0 and 9, <0, there is no horizon.

(10) If ¥,<0 and ¥, >0, there is at least one horizon
except for small enough |u |, unless ¥;=o0 (and if d is
odd, then L, _,,,, =0), in which case there is at least one
horizon for all |pu|.

Similar considerations imply the following for each
branch [¢,¢,].

(1) There are curvature singularities at both (3.9) and
rsing’:[.u'/f(d}z)]l/(d‘”'

(2) No horizons exist for large |u |, unless 0€[¥,,v,].

(3) No horizons exist for small |p|, unless
o €[,,¥,] (and if d is odd, then L 4 _,,,,=0).

(4) There is at most one horizon if 0E€[¥;,¥,], or in
other cases where | f | is decreasing with i on I.

In the Appendix, this procedure is demonstrated for
the Einstein-Gauss-Bonnet Lagrangian previously studied
by others.®%11-13

In general, there is only one case of physical
interest—namely, having positive mass, positive gravita-
tional mass, and no naked singularities. We cannot ac-
cept an upper limiting mass above which naked singulari-
ties occur, because classically we could always add mass
to a black hole to turn it into a naked singularity; we can-
not accept a lower limiting mass because we would expect
Hawking radiation to cause higher-mass black holes to
radiate away leaving a naked singularity (though we shall
see in the next section that this is not always the case). So
a physically acceptable solution branch would seem to re-
quire that ¥,<0, ¥;=o0 (and, if d is odd, L ;_;,,,=0).
Then, the singularity is spacelike and at the origin, and
the solutions are asymptotically Schwarzschild-anti—de
Sitter (when the cosmological constant is negative) or
asymptotically Schwarzschild (when the cosmological
constant vanishes). In order for such a branch to exist,
the theory must be such that f has at least one zero, f >0
for ¥ >0, and f has no stationary points for i greater
than its greatest zero. So L, must be non-negative (and
hence the usual cosmological constant must be nonposi-
tive), L, must be strictly positive (and hence the usual
gravitational constant, the coefficient of the Einstein
term), any negative coefficients L, must be sufficiently
small, and the terminating coefficient of the series must
be positive.

IV. BLACK-HOLE THERMODYNAMICS

In this section, except where explicitly stated other-
wise, we shall consider only the physically acceptable
solutions found in the previous section (namely, the
asymptotically Schwarzschild—anti—de Sitter ones with
positive mass, positive gravitational mass and no naked
singularities). We shall derive and discuss expressions for
their mass, temperature, thermodynamic energy, and en-
tropy.

The mass of an asymptotically flat black-hole solution
may be determined from the asymptotic form of V in the
metric (2.16a). From (3.2) we have, in the asymptotically
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flat case,
V=1-— ——Ed—‘; , 4.1)
L,r°~
and, hence, following Myers and Perry, 16 we have
m =Ad#2‘u N (4.2)

where A, _, is the area of a unit (d —2)-sphere. This
mass is the generalization of the Arnowitt-Deser-Misner
(ADM) mass to higher dimensions, and represents both
the inertial and gravitational mass of the black hole as
viewed from infinity.

Turning now to the Euclidean section of the metric,
and adopting a method analogous to that originally fol-
lowed for the Schwarzschild metric, !”!® we have

ds’=Vdr+V - ldr2+r3dQ?, 4.3)

which may be written
V,R
1

where R =2V'/2/V;, and V;, is the derivative of V with
respect to r at the horizon (which is proportional to the
surface gravity of the black hole). This metric will be
regular at the horizon only if we treat 7 as an angular
coordinate, identifying it with period B=4w/V,. In gen-
eral, the reciprocal of the period of the imaginary-time
coordinate 7 can be identified with the temperature of a
solution, so the temperature of our black-hole solutions is
readily found to be

1 S(d—2n—1)L,r,"
EnLn rh_ 2n
where r,, the radial coordinate at the horizon, is given
implicitly by
p=3Lry "

Or, in the notation of the previous section, we may write
the temperature as

ds?=

dr*+

2
VI
—Vi, ’ dR2+r2%dQ2, (4.4

- : 4.5
47Trh ( a)

(4.5b)

F'@)
_ —172
- 27Tf'(¢h ) 1/’}, ’ (463.)
and we may note that
AL _ i () . (4.6b)

drh

Consider any positive-mass solution of a theory which
has ¥,<0, ¥,>0. At =0, f is infinite, and it declines
(though not necessarily monotonically) as ¥ increases.
Since the outermost horizon will be at the lowest positive
value of ¥ for which f =, it is clear that £ '(¢,) must be
negative. The outermost black-hole horizon has, there-
fore, a positive temperature T and will emit Hawking ra-
diation at that temperature. As it does so, its mass must
decline. But from (4.6b) we see that as the mass declines,
the horizon will shrink (that is, ¥, will increase). Now, it
is not necessarily the case that the temperature will in-
crease monotonically as the mass decreases, as in the usu-
al Einstein theory, but we can be sure that the tempera-
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ture will be finite and positive until either f'(¢,) or
f'(¢,) go to zero, or ¥ goes to infinity.

If the solution branch allows only a single horizon, we
have seen that f' cannot go to zero, so the temperature
does not go to zero, and as Y— ¢, the temperature will go
to infinity —a black hole will, therefore, radiate away in a
finite time, leaving a naked singularity if ¥, ©. So solu-
tion branches which contain naked singularities for small
masses should in reality lead to such naked singularities,
since any larger-mass black hole would radiate away
enough mass to lose its horizon within a finite time.
There is an exception to this, however. In odd dimen-
sions, it is easy to see from (4.5a), provided L, _,,,,#0,
that T ~r, as the horizon shrinks to zero. Soif ,=o,d
is odd, and L, _,,,,70, then a zero-temperature black
hole separates the higher-mass black holes from the
lower-mass naked singularities; a higher-mass black hole
will radiate away getting cooler and cooler but never
quite reaching the zero-temperature case, and never
becoming a naked singularity. Such solution branches,
therefore, might be physically acceptable despite contain-
ing naked-singularity solutions, since we would expect
classically formed singularities to have a mass greater
than the limiting mass, and so be surrounded by a black-
hole horizon which could not radiate away to a naked
singularity. (Apart from this feature, they are not quali-
tatively different from the other physically acceptable
branches.)

If the solution branch allows more than one horizon,
f ' must have a zero on the interior of the interval I, and
another possibility arises. If ¢, is initially smaller than
some zero of f’, then as the horizon shrinks the tempera-
ture will eventually tend towards zero. The black-hole
mass will tend towards the mass below which this partic-
ular horizon does not exist—the mass at which this hor-
izon merges with the next horizon in. After an infinite
time, we would be left with a finite-mass, zero-
temperature black hole.

In the asymptotically de Sitter cases (Where ;> 0) the
outermost (cosmological) horizon has positive f’, and so
negative temperature as seen from infinity. In other
words, it radiates Hawking radiation inwards, towards
the next horizon in. This next horizon, the outermost
black-hole horizon, has positive f' and hence positive
temperature. When the black-hole horizon temperature
is greater than the cosmological horizon temperature, the
net effect of the radiation will be for the black hole to lose
mass. And as it does so, (4.6b) tells us that the black-hole
horizon will shrink and the cosmological horizon will

L
La=~[3——5~ |2

+4n(d —2n)

r ’
¢+5¢

L
= _ﬁf [2 p —n2n (riymy r2—d

2
¢+2r¢'+’7¢" I¢"“+2n(2n —2)

Y '4(d —2n)d —2n —1)yY"

— L
‘/g dd_lx=—BAd_2 [2 n
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grow. Provided the black-hole temperature does not fall
to equal the cosmological horizon temperature, the black
hole will radiate away until there is nothing, or a naked
singularity. (The zero-temperature black hole is not a
possible end point unless the cosmological horizon tem-
perature simultaneously goes to zero, or else the black-
hole temperature would first have to fall below the
cosmological horizon temperature.) If the black-hole
temperature does ever become equal to the cosmological
horizon temperature, the system will be in equilibrium at
that mass, and the black hole will no longer shrink. So,
in the asymptotically de Sitter case, it is possible to end
up with a finite-mass hot black hole. Moreover, if the
black-hole temperature is lower than the cosmological
temperature for some masses, then black holes of those
masses will increase in mass because there will be net ab-
sorption of radiation. The black-hole horizon will grow,
and the cosmological horizon shrink. Such black holes
will continue to gain mass either until an equilibrium
mass is reached, when the cosmological temperature
equals the black-hole temperature, or until the black-hole
horizon and cosmological horizon tend towards the same
size, at which point the temperatures of both tend to-
wards zero (since f'=0).

In order to calculate thermodynamic quantities for the
asymptotically flat metrics, we may use the partition
function approach of Gibbons and Hawking.!® We first
find an expression for the Euclidean action, which has
two parts: the volume integral of the Lagrangian over
the Euclidean section of the metric (with 7 identified with
period B, and with r, <r < «); and a surface integral
over the boundary of the manifold. The curvature two-
forms are given by

2
Ry = ¢+2r¢'+%¢” Ieo Ney, (4.7a)
Ry = ¢+%¢' eoNe; (4.7b)
R,;= ¢+%¢I e Ne; , (4.7¢)
R,‘jz(ll’)ei/\ej , (4.7d)

and hence, from the Euclidean Lagrangian, the volume
part of the action is

2
r ,, n—
¢+5¢ P2

Vg d%

r=o

dny
() ] 4.8)

r=rh
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To calculate the correct action for the path-integral ap-
proach we need to add surface terms to our original ac-
tion (2.1), so that it becomes first order in the metric;
these surface terms, by definition, exactly cancel the con-
tribution to the above integral from the surface at
infinity, so we are left with the contribution from the sur-
face at the horizon:

L,
I=BA4,_,3 2 (réy"y \r=r, . 4.9)
This may be simplified, using (4.5), to
nL" d—2n
I=Bm—41rAd_22d_2n rf . (4.10)
The thermodynamic energy may now be calculated:
dI dm Con_1 | 9Tn
(E)= d—B =m + B“}a‘ —47rAd_22nLnr,‘,i n—1 —dg
=m , (4.11)
and so the entropy
nL
S=B(E)—I=477Ad_22d~;n pd = (4.12)

The thermodynamic energy, therefore, does equal the
usual mass-energy (4.2), which is the conserved quantity
associated with the timelike Killing vector, but the entro-
py is no longer simply related to the horizon area. Since
the Lagrangian coefficients L, need not all be positive, it
is not obvious from (4.12) that the entropy need be posi-
tive. However, the differential of the entropy is given by

dS =4mAy_, |SnL,ri=" " dr, , (4.13)
or, in our earlier notation,
A f'(Y,)
= . 4.14
ds ) dA ( )

Since we have seen that (1, ) is positive for any solution
with both positive mass and positive gravitational mass,
the entropy is an increasing function of the area (or radial
coordinate) of the horizon. And we can see from (4.12)
that the entropy vanishes when the horizon area van-
ishes, so for any solution branch whose singularity is at
the origin the entropy must be positive for all black-hole
solutions.

For comparison, we may follow Bardeen, Carter, and
Hawking!® and derive the mass formula for our black-
hole solutions. We need to evaluate the integral

E f (n)Gab__ dl—z(n)GeeSg kadzb ,
n

(4.15)
where ("'G{ represents the terms of the field equations
arising from the nth-order terms of the Lagrangian, k° is
the timelike Killing vector, and the integral is evaluated
over a spacelike hypersurface bounded by spatial infinity
and the horizon. We shall not assume that the space out-
side the horizon is empty. This integral can be converted
to two (d —2)-surface integrals, since ("G, and ("G} are
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pure divergences and "G/ (no summation implied) may
be written as L,r ~¢+3(r?=1y")". Only the "G} terms
contribute to the integral at infinity, as the n > 1 terms
fall off too fast. At the horizon, however, the additional
terms do make a simple contribution. The mass formula
becomes

m = 5_:% T:—d—l_—zTSf,’ k°ds,
+Ag FL,ri (4.16)
The differential mass formula will be
dm= Ay _,SL,(d—2n—1)rf" " 2r,
+ matter terms . (4.17)

Thus the mass (4.2) is the real physical mass, in the
sense that this corresponds to the total mass of all the
matter which has collapsed in from the asymptotic region
to form the black hole. The first law of black-hole
mechanics is thus

dm

—=4rdy_, |SnL,rf "~ |dr,=dS ,

T (4.18)

just as in Einstein gravity. The zeroth and second laws,
however, cannot easily be proved, as the dominant energy
condition is not satisfied by the Lagrangian (2.1). It is,
therefore, not clear whether the entropy will always in-
crease, and whether the thermodynamic quantities we
have calculated have real physical significance.

V. CONCLUSION AND SUMMARY

In this paper we have seen that the most general
second-order gravity theory in d dimensions can be
solved in the spherically symmetric case, and that the
solutions in general are static. (We are excepting those
special theories which contain pathological solution
branches—solutions which are not fully determined by
the field equations, and, therefore, not necessarily static.)
Each theory’s solution set contains a finite number of
solution branches, parametrized by their mass, which
may represent either finite spaces with two singular boun-
daries, or else spaces asymptotic to anti—de Sitter, flat, or
de Sitter space, with a singular boundary in their interior.
The solution branches may represent positive or negative
mass, and positive or negative gravitational mass.

A physically acceptable solution branch should have
positive mass and positive gravitational mass, and in gen-
eral contain no naked singularities. The exception to this
last requirement is that in certain odd-dimensional
theories naked singularities exist only with masses less
than the Planck mass and higher-mass black holes are
unable to radiate away to a naked singularity; in these
solution branches an artificial limiting lower mass could
consistently exclude naked singularities. In either case,
only certain theories contain a physically acceptable solu-
tion branch, and each may contain at most one such
branch. These branches represent solutions which
behave very much like Schwarzschild—anti—de Sitter
solutions, both at a classical and semiclassical level. The
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only qualitative physical differences we have found are
the possibility of solutions with more than one horizon
and the related possible existence of zero-temperature
black holes, which would prevent some black holes from
completely radiating away their mass. Even these
differences can occur only if either the higher-degree
terms (but not the highest) in the theory represents repul-
sive rather than attractive forces and are sufficiently
strong, or else the number of dimensions is odd and the
highest-degree term is nonzero.

For asymptotically flat black-hole solutions, the first
law of black-hole mechanics still holds in the general
second-order theory. For physically acceptable solution
branches, the entropy is positive and is an increasing
function of horizon area. However, the simple
identification of entropy with horizon area is a feature of
the Einstein theory alone, and we cannot show that the
general second-order theory will not violate the zeroth or
second laws.

Note added. After completing this paper, I have re-
ceived a copy of a paper by R. C. Myers and J. Z. Simon
[Phys. Rev. D 38, 2434 (1988)], of the University of Cali-
fornia, Santa Barbara, which presents an analysis of
second-order gravity theories which is similar to the
work described above.

APPENDIX

Here we shall consider the standard Einstein-Gauss-
Bonnet Lagrangian

+a(R*'R,,,,, —4R*R,,+R?)

167G pvor
and will characterize its solution according to the scheme
outlined in Sec. III. This Lagrangian corresponds to the

function

fW=Ly+Lyy*,

where
d—-2
1= TenG’ L,=(d —-2)d —-3)d —4)a ,
where G is positive, and a is nonzero. The zeros of f are
0, —L1
¢0_ ’ Lz
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and the singular points are

_Ll
L T

We may calculate, for further use,
Pang={—4uL,/LT)"/=1 f(ho)=L,,—L,
and

—L%
0, ,too ,

4L,

f)==

where the infinities take the sign of a.

We may immediately note that f'(1,) is nonzero, and
hence there are no pathological solutions. Using the
above calculations, it is easy to apply the other steps of
the procedure to give the following characterizations.

If a <0, then there are these four branches.

[0, — 0 ] asymptotically flat, negative mass, negative
gravitational mass, positive effective gravitational con-
stant, singular at the origin, no horizon.

[0,—L,/2L,] asymptotically flat, positive mass, posi-
tive gravitational mass, positive effective gravitational
constant, singular at r,,, no horizon for low mass.

[-L,/L,,—L,/2L,] asymptotically de Sitter, posi-
tive mass, positive gravitational mass, negative effective
gravitational constant, singular at rg,,, no horizon for
large mass.

[—L,/L,, »] asymptotically de Sitter, negative mass,
positive gravitational mass, negative effective gravitation-
al constant, singular at origin, no horizon for large (nega-
tive) masses.

If a > 0, then there are these four branches.

[—L,/L,,— «] asymptotically anti—de Sitter, posi-
tive mass, negative gravitational mass, negative effective
gravitational constant, singular at origin, no horizon.

[-L,/L,,—L,/2L,] asymptotically anti—de Sitter,
negative mass, positive gravitational mass, negative
effective gravitational constant, singular at r no hor-
izon.

[0, —L,/2L,] asymptotically flat, negative mass, nega-
tive gravitational mass, positive effective gravitational
constant, singular at r;,,, no horizon.

[0, = ] asymptotically flat, positive mass, positive grav-
itational mass, positive effective gravitational constant,
singular at origin, horizon except for low masses if d =5.
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