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Quantum kinematics of spacetime. II. A model quantum cosmology with real clocks

J. B.Hartle
Department ofPhysics, University of California, Santa Barbara, California 93106

(Received 31 May 1988)

Nonrelativistic model quantum cosmologies are studied in which the basic time variable is the po-
sition of a clock indicator and the time parameter of the Schrodinger equation is an unobservable la-

bel. Familiar Schrodinger-Heisenberg quantum mechanics emerges if the clock is ideal —arbitrarily
accurate for arbitrarily long times. More realistically, however, the usual formulation emerges only
as an approximation appropriate to states of this model universe in which part of the system func-

tions approximately as an ideal clock. It is suggested that the quantum kinematics of spacetime
theories such as general relativity may be analogous to those of this model. In particular it is sug-

gested that our familiar notion of time in quantum mechanics is not an inevitable property of a gen-

eral quantum framework but an approximate feature of specific initial conditions.

I. INTRODUCTION

The time parameter of the Schrodinger equation is one
of the basic observables of familiar quantum theory. It is
not an observable, of course, in the sense of being
represented as an operator in Hilbert space for it is dis-
tinguished in the theoretical framework from other ob-
servables by not being so represented. Rather it enters
the theory as a parameter describing the evolution of the
state vector in the Schrodinger picture or the ordering of
operators in the Heisenberg picture. But the time param-
eter is assumed to be an observable in the sense that
differences in its value are determinable to arbitrary pre-
cision by suitable measurements. Indeed, so central is
this assumption that all probabilities predicted directly
by familiar, Schrodinger-Heisenberg quantum mechanics
are for observations at a single instant of the time param-
eter. We may, through poor apparatus or neglect of data,
be ignorant of the precise time difference between any
two observations, but we assume that a precise difference
could have been determined. Observations which do oth-
erwise are incomplete.

What are the grounds for so strong an assumption?
Empirically they arise from the fact that, as observed on
all accessible scales, over the whole of the accessible
universe, spacetime has a classical geometry. Classical
distances between spacetime points are fixed by the
metric. Within any quantum theory of gravity, however,
this can only be an approximate fact which is a conse-
quence of the particular quantum state of the universe.
States generally will not predict observations correlated
as in classical spacetime geometries because the metric is
a quantum variable and a state generally will exhibit
dispersion in it. Particular states can exhibit approxi-
mately the correlations of classical spacetimes. If this is
the case, the special role played by time in familiar quan-
tum mechanics would seem most naturally to have its ori-
gin, not in a preferred status in the formalism, but rather
in particular properties of the quantum initial conditions
of the universe. This series of papers is concerned with
this point of view.

The discussion of the problem of time has a long histo-

ry in connection with the quantization of spacetime.
The traditional view has been that a preferred time pa-
rameter is an essential part of any predictive quantum-
mechanical framework. However, the idea that one
could move away from quantum mechanics with a pre-
ferred time by "including clocks in the system" or other-
wise adjoining a dynamical time to the theory also has a
long history (for a sampling of views see Refs. 3—8) and
has recently been extensively discussed by Page and
Wooters. Limitations on such clocks and consequently
on the precision with which time intervals could be
defined were suggested by Salecker and Wigner. ' The
idea that our notion of time might be appropriate only to
the late universe has been discussed by many but emerges
especially clearly from the work of Lapchinsky and Ru-
bakov, "Banks, ' and Halliwell and Hawking. ' In vari-
ous ways these authors showed how the familiar quantum
laws of evolution for states of matter fields can emerge
from enforcing the constraints of quantutn gravity in the
limit in which spacetime behaves classically. '

To explore with precision the idea that the standard,
Schrodinger-Heisenberg formulation of quantum
mechanics is an approximation appropriate to those parts
of the universe where spacetime behaves classically, a
quantum framework more general than the standard one
is needed. Schrodinger-Heisenberg quantum mechanics
is a definite prescription for calculating probabilities for
prediction. It is completely summarized by the funda-
mental formula' for the joint probability for "yes"
answers to a series of "yes —no" questions a, a„at
times w~ (~2 (
p(r„a„, . . . , r,a, )

=Tr[P (r„) . . P (~, )pP (r&) P (~„)] .

(1.1)

Here, p is the density matrix of the universe in the
Heisenberg picture and the P (r) are the projection
operators in Hilbert space corresponding to the ques-
tions. The projections appear time ordered in (1.1). This
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ordering is the expression of causality in quantum theory.
If a preferred ordering time is abandoned as a fundamen-
tal notion and with it any associated notion of causality,
what replaces the formula (1.1) for the precise prediction
of probabilities? This paper proposes an answer to this
question.

The idea is sometimes advanced (see, e.g. , Refs. 9 and
12) that it is sufficient for prediction to calculate proba-
bilities for observations from a single wave function "on a
spacelike surface" and that any notion of time is to be
recovered from a study of the probabilities for correla-
tions between indicators of clocks and other variables,
While it is no doubt true that many interesting probabili-
ties, especially in cosmology, ' are for observations which
are more or less on one spacelike surface, they do not ex-
haust those predicted by familiar quantum mechanics [as
(1.1) shows], nor those which are important. For exam-
ple, a physical system will behave as a good clock when
the probability is high that the position of its indicator is
strongly correlated with the location in spacetime of suc-
cessive spacelike surfaces. Another example is the con-
struction of history. ' Most honestly the predictive
consequences of history are correlations between present
records. However, to give a probability to a history re-
quires the calculation of probabilities of correlations be-
tween present information and events in the past. For
both of these examples some generalization of (1.1) is
needed.

It might be thought that a replacement for (1.1) is
needed only when spacetime behaves classically and a no-
tion of time can be established. All conceivable cosmo-
logical observations, for example, take place when the
geometry of the universe is classical. But what is meant
by classical behavior is that the probability is high that
certain observations at different times are correlated ac-
cording to classical laws. Just to define precisely what is
meant by "spacetime behaving classically" a generaliza-
tion of the formula (1.1) for multitime predictions is need-
ed.

The sum-over-histories framework, properly stated, is
a natural candidate for providing the generalization of
the Schrodinger-Heisenberg formulation that we seek.
With it, amplitudes for observation can be computed
directly without the intervention of those parts of the
standard machinery which are associated with a pre-
ferred time parameter, such as a Hilbert space of states
on a spacelike surface. Seeing the sum-over-histories for-
mulation as an alternative starting point for quantum
mechanics (rather than as merely a computational tool) is
a point of view which goes back to Feynman. ' It has
been advocated in quantum gravity by Teitelboim' who
has proposed a formalism for constructing the necessary
amplitudes. In this series of papers we develop the idea
(sketched in Ref. 16) that the sum-over-histories formula-
tion of quantum mechanics supplies an alternative to the
fundamental formula of quantum mechanics (1.1) which
coincides with it when the theory has a preferred time
but which generalizes it when there is none.

Within the sum-over-histories framework the existence
of a Schrodinger-Heisenberg formulation is an issue for
investigation. An example of such an investigation for

nonrelativistic quantum mechanics was given in paper I
of this series. There we concluded that a Schrodinger-
Heisenberg formulation could be recovered on those
spacetime hypersurfaces which the histories crossed once
and only once and only on such surfaces. These surfaces
define the preferred nonrelativistic time parameter. For
observations restricted to definite values of the time pa-
rameter the probabilities predicted by the sum-over-
histories formulation coincide exactly' with those of
standard quantum mechanics as expressed in (1.1).

In this paper we shall apply the sum-over-histories for-
mulation to two model nonrelativistic quantum cosmolo-
gies for which there are no surfaces in observable vari-
ables which the histories cross once and only once and
for which, therefore, it is unlikely that there is a preferred
time parameter. The universe of these models consists of
two nonrelativistic particles. The only observables are
their positions, and histories are curves in the
configuration space of these positions. Both positions
have the same status in the formalism which therefore
does not distinguish a preferred time parameter. Given a
theory of initial conditions, the sum-over-histories
prescription predicts probabilities which are the generali-
zations of (1.1). From these probabilities we show how a
notion of time and a Schrodinger-Heisenberg formulation
of quantum mechanics is recovered in two cases: First,
they are recovered exactly when the initial conditions are
such that one of the particles functions as an ideal clock.
This, however, requires unrealizable dynamics incon-
sistent with positive energy. Second, a Schrodinger-
Heisenberg formulation is recovered approximately for
more realistic dynamics when the initial conditions are
such that one of the particles functions approximately as
an ideal clock for an interesting length of time.

The examples discussed in this paper are not intended
to be proposals for the modification of nonrelativistic
quantum mechanics. As argued above, the existence of a
time parameter in that theory reflects a true physical fact.
It is a relic of an underlying dynamical spacetime treated
in the limit in which it behaves classically. Rather these
examples are intended as models of quantum mechanics
for systems where there is no preferred time. They will
thus serve as models for the quantum kinematics of gen-
eral relativity which we shall consider next.

II. IDEAL CLOCKS AND REAL CLOCKS

Quantum mechanics can be used to describe the opera-
tion of mechanical systems which track the Schrodinger-
Heisenberg time parameter. In this section we illustrate
the standard quantum-mechanical description of such
clocks using two simple models. In both cases we consid-
er a system of interest together with a clock with which
the dynamics of that system is studied. We denote the
configuration variables of the system of interest by X, the
clock indicator variable by T, and the Schrodinger-
Heisenberg time parameter by ~. For simplicity we shall
assume that the clock configuration space is one dimen-
sional ' and that the clock and system do not interact.
Such a system is described by the wave function

%=%(X,T, r) .
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Its evolution in ~ is determined by the total Hamiltonian

h =hc+hx (2.2)

where hz acts only on the configuration space of the sys-

tem and hc only on the configuration space of the clock.

'7, the system in such a state will represent a good clock
which keeps track of the Schrodinger time with an accu-
racy e. We call such a state a "good clock state. "

It is not difficult to realize the condition (2.7). Consid-
er as the simplest example a particle of mass M moving in
one dimension T. The Hamiltonian is

A. Ideal clocks hc = +MVc( T) .
2M

(2.10)

An ideal clock is one for which, if the clock variable T
is precisely correlated with ~ at one time, it remains pre-
cisely correlated for all times. That is, one possible solu-
tion of the Schrodinger equation for 4 is

(2.3)

where T(r) is a one-to-one calibrating relation between T
and r. For such a state, two Schrodinger times r and ~'

are distinguishable by the corresponding values of T be-
cause

f dT5(T —T(~)) 5( T—T(r'))=5(r —~')/T(r), (2.4)
R

where an overdot denotes a ~ derivative. The existence of
such solutions for a complete set of g and the Hermiticity
of hc are enough to show that, up to an additive constant
normalization,

(Here, we have written the clock's potential as MVc for
later convenience. ) Classically, if the particle is moving
on a trajectory T(r), its position T determines r over any
interval, this relation is single valued. Quantum mechan-
ically, if the particle is in a wave-packet state whose
center tracks this classical motion, the same relation can
be used to connect position and time to an approximation
set by the width of the packet. In quantum mechanics,
however, there is a limit to the amount of time a particle
can serve as a good clock. ' If the classical motion is un-
bounded, the wave packet will inevitably spread. If the
system is closed, the position will assign a unique time
only over the period to cross the potential.

Such limitations may be simply illustrated for the case
of a free particle where Vc is constant. Classically, if
moving with speed v, the particle's position measures
Newtonian time according to the calibrating relationship

hc = iT(r(T)—) = T(r( T})prBT
(2.5) 7= T/v (2.11)

(Throughout we use units where 8= 1.} The Hamiltonian
of an ideal clock is thus linear in the momentum conju-
gate to the indicator variable.

B. Real clocks

%(X,T, r) =P( T, r)Q(X, r), (2.6)

in which P( T, r } is sharply peaked about a calibrating re-
lationship T =T(r) for an interesting length of time 'T.
That is, in this period

Ideal clocks do not exist. The spectrum of the Hamil-
tonian (2.5) is unbounded below, and this is not observed
in nature. Typically, the realistic Hamiltonians of non-
relativistic quantum mechanics are quadratic in momenta
and bounded below. A real clock is a system governed by
such a realistic Hamiltonian in a particular state whose
features approximate those of an ideal clock. Specifically,
such states are solutions of the Schrodinger equation of
the form

The corresponding good clock state is one in which the
particle is initially (v=0) in a wave packet centered
about T =0 and pr ——Mv with initial widths (AT)0 and
( E'er )0 consistent with the uncertainty principle. In the
subsequent evolution, the peak of the packet follows the
classical law

(2.12)

Thus the scaled position (2.11) measures time with an er-
ror given by the current width of the packet

(clock error in tracking Schrodinger time)=(b, T),/v .

(2.13)

Initially the clock can be made as accurate as desired
by choosing (b, T)0 small. Inevitably, however, the wave

packet will spread as a consequence of the quadratic
dependence on momentum of the Hamiltonian (2.10}. At
time w,

P( T, r }=X,( T —T(r ) ), (2.7)
(b T),=(b T}o+r( [pT, b TI )0/M+[(Apr)0/M] 2 .

and

he/ = T(~( T) )p (2.8)

where X,(x) is sharply peaked about x =0 with charac-
teristic width e. It then follows that in this period

(2.14)

If a maximum tolerable error e is fixed, Eqs. (2.13) and
(2.14) determine the length of time T which the clock can
run keeping within this error.

The general wave-packet solution of the free particle
Schrodinger equation may be written

dT Tv. T~' =0, (2.9)

whenever ~ and ~' differ by much more than e. Equation
(2.8) and (2.9) are approximate versions of (2.5) and (2.4).
Thus, to the extent Eq. (2.7) is satisfied over an interval

4(»&)= f dV &(V)exp iMV(T vr) MV'— ——
—QO 2

(2.15)
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A wave packet with the properties we have been describ-

ing corresponds to an A (V) which is localized about
V=O with width (bpz. )o/M and whose Fourier trans-
form is localized about the origin with width M(b, T)o.
For times in the interval 'T determined by e and (2.14),
the second term in the exponent is approximately negligi-
ble and one will have

P( T, r) =P( T —Ur }, (2.16}

where P(x) is sharply peaked about x =0 with width
F.=(b, T)o. Such wave-packet states will therefore satisfy
Eqs. (2.7)—(2.9) over the period 5; In this way the free
particle can make a good clock.

A free particle clock can be made arbitrarily accurate
over an arbitrarily long period of time by making its ener-

gy large. Put differently, for a fixed e and 5' there is a
lower bound on the kinetic energy, E = —,'Mv, of a free

particle clock. This bound can be found by finding the

(hpT)o and (ET)o consistent with the uncertainty princi-
ple which minimize the accumulated error from (2.13)
and (2.14) over the range 'T and then deinanding that this
be less than e. The result is

E & ( I/e)('T/e) . (2.17)

C. Quantum dynamics with real clocks

This is but a special case of the general bounds on the
mass of a one-dimensional clock considered by Salecker
and Wigner. ' These bounds are not trivial. For exarn-

ple, for a free particle clock to match the performance of
the best atomic clocks (T—10 sec, e —10 ' sec) it
would need a kinetic energy in excess of 10 ergs or, at
the speed of light, a mass in excess of 10 proton masses.

The probability density/i(X
~
T, C ) then follows as

/i(X
~

T, C ) = J dr/i(X, r
~

T, C ) . (2.20)

If the clock is such that a measurement of T yields only
the information that r is in some interval b„(T) then, in
particular

and

p(r
~
T, C ) = I /6, ( T) (2.21)

/i(X
~

T, C)= f, ,
d ~rg(X, r)

~

'. (2.22)

When the clock state is good (2.22) becomes approxi-
mately

teraction is such that the observations of these variables
occur at some one value of the time parameter ~. An ex-

ample of such a directly accessible probability in the
cases we have been considering is the conditional proba-
bilityp (X

~
T, C )dX for observing X at a given value of T

at an unknown moment ~.
Probability densities such as/i(X

~
T, C } are calculated

from the basic prediction (2.18) by the standard rules of
classical probability theory. Specifically, assume clock
and system are independent and represented by a wave
function of the form (2.6). From an analysis of the clock
state (like that in Sec. II B) one can deduce the probabili-

ty/i(r
~

T, C )dr that the value of the time parameter is r,
given that the clock reads T. The probability for X and ~
given T can then be inferred from (2.18) and (2.6) as

/i(X, r
~

T, C)dXdr=L/(X
~

r, C)dX](/i(r
~

T, C)dr] .

(2.19)

The probabilities predicted directly from the state vec-
tor in standard quantum mechanics are for observations
at a known moment of the time parameter ~. That is,
they are conditional probabilities in which one of the
conditions is the value of ~. In the simple models we
have been discussing, suppose the state of the total sys-
tem arising from initial conditions C is %~(X, T, r }. Then
we write

/i(X
~
T, C ) =

~
q(x, r( T) )

~

(2.23)

where r(T) is the calibrating relation between T and r.
Equations (2.20) and its special cases (2.22) and (2.23)
display how quantum mechanics makes predictions when
there are imperfect measurements of the parameter ~.

/i(X, T
~

r, C )dX d T=
~
%@(X,T, r)

~

dX dT (2.18)

as the conditional probability for the system to be ob-
served at X and T in small intervals dX and dT given the
initial conditions C and the value of the time parameter

The important point to note is that it is probabilities
conditioned on ~ that are predicted, not joint probabili-
ties for X, T, and ~ in intervals dX, dT, and d~. Indeed,
from the point of view of probability theory, it is just in
this sense that time enters quantum mechanics as a pa-
rameter.

We have access to the value of ~ only through rneasure-
ments of the positions of clock indicators. It must, there-
fore, be sufficient for prediction in physics to include the
clock in the system discussed and to calculate probabili-
ties for correlations between clock indicators and vari-
ables of the system of interest given that the clock is in a
good clock state, and given also that the measurement in-

III. OBSERVABLES AND LABELS

The universe of the model quantum cosmologies we
shall consider consists of two nonrelativistic particles.
For simplicity we shall take them to move in one dirnen-
sion although generalization to more is straightforward.
The observable position X and T define the configuration
space of these models. The physical histories are all pos-
sible curves in this space.

There are four basic elements needed to construct the
sum-over-histories quantum mechanics of any system.
They were reviewed in paper I. They are the histories,
the action, the measure, and the basic observables. With
them one can sum exp[i(action)] to form joint probabili-
ty amplitudes for observations.

The dynamics of many physical theories of interest are
most conveniently described, not directly in terms of
physical configuration space, but rather in terms of physi-
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cal configuration space augmented by redundant vari-
ables. Examples are the use of gauge potentials to de-
scribe the electromagnetic field and the use of metric
functions in particular coordinates to describe spacetime
geometry. The use of such redundant variables is often
the only transparent way of expressing the invariances of
a theory and its locality.

To allow for analogies with such theories, in particular
general relativity, we shall consider models which possess
an extended configuration space of variables (X, T, N)
where X is a redundant variable. Histories are curves
(X(r), T(r),N(r)) in this extended configuration space
where r is a parameter running along the curve. The ac-
tion is a functional of these curves which we take to be of
the familiar local form

S [X(v),T(~),N (&),&",~']

wL Xw, T~,X v, T w, tv, 31

X(w)~X(r) =X(f(r)),

T(r)~ T(r)= T(f(r)),

(3.2a)

(3.2b)

and N may transform in some more complicated way.
The redundancy of N must also correspond to some sym-
metry of the action. For our examples we will take this
always to be reparametrization symmetry. As a conse-
quence of reparametrization invariance the models will
exhibit constraints.

For the measure we take the standard nonrelativistic
time-slicing measure (see, e.g., Ref. 24).

The remaining part of the sum-over-histories frame-
work is the specification of the basic observables. In par-
ticular, the variables of a history must be divided into ob-
servables and labels, and then restrictions on the observ-
ables which isolate a history must be imposed. The basic
observables we take to correspond to a determination of
whether or not the system's history crosses a given region
of physical (X, T) configuration space. Thus, X and T are
the observable parts of the history and the rest
N(~), ~",r' are unobservable labels. As restrictions on
observations and conditions which isolate a history we
shall take the following: At one end the histories shall
satisfy conditions which we shall call the initial condi-
tions of the model quantum cosmology. We leave these
unspecified. At the other end we require an observation
which locates the end of a history. It is only for histories
so restricted that joint probabilities are predicted directly
by sum-over-histories quantum mechanics. If, for exam-
ple, an experiment does not determine the end of a histo-
ry precisely, as most will not, the joint probabilities must
be summed (incoherently) over the unresolved range.

Unobservable labels such as occur in these models are

where an overdot denotes a ~ derivative. The two models
we shall consider will be specified by particular forms for
L.

The action (3.1) is to be a functional of curves in the
extended configuration space. It does not depend, there-
fore, on the particular way these curves are parametrized.
Put differently, the action must be invariant under
reparametrizations w +f(r). Un—der these

familiar elsewhere in quantum mechanics. Examples be-
sides the redundant dynamical variables already noted
are the use of labels for identical particles and the use of
an unobservable proper time to formulate the theories of
a relativistic particle. The distinguishing characteristic
of unobservable labels is that amplitudes are always
summed over them before being squared to yield joint
probabilities for prediction. For example, amplitudes are
symmetrized or antisymmetrized over the labels of identi-
cal particles before being squared to yield joint probabili-
ties. This sum is automatic in the sum-over-histories for-
mulation if we only compute amplitudes for observables.

The central feature of the model quantum cosmologies
under discussion here is that the variable ~, the natural
candidate for the time parameter of Schrodinger-
Heisenberg quantum mechanics, is treated as an unob-
servable label. The only access to time is through the ob-
servable positions X and T. Having thus abandoned a no-
tion of preferred ordering time and any associated notion
of causality we shall now see for what initial conditions
these familiar features of our world may be recovered ap-
proximately.

IV. QUANTUM MECHANICS
WITHOUT TIME—IDEAL CLOCKS

Consider a nonrelativistic system whose histories
(X(~),T(r)) are restricted to paths in which X moves
forward in T in the sense that each T determines a unique
X and whose dynamics is summarized by the action

(4.1)

where an overdot denotes a derivative with respect to ~.
This is a simple but instructive example of the general
class of models discussed in the preceding section. In
particular, the action (4.1) is invariant under reparametri-
zations of ~. Its simplicity arises from the restriction to
forward-moving paths. For then, the parameter ~ can be
chosen to coincide with T. With this parametrization the
action is

S[X(T),T",T']= 1 dTl, X (4.2)

which is the action for a nonrelativistic system in which
T is the Newtonian time. The process of passing from
(4.2) to (4.1) is called "parametrizing the time" by
Kuchar" who has studied the resulting model in depth
both classically and quantum mechanically. The action
(4.1) describes an ideal clock because, although T has the
same formal status as X as a dynamical variable, it is
clearly fully equivalent to the Newtonian time through
(4.2) and the restriction to forward-moving paths. In this
section we shall consider the sum-over-histories quantum
mechanics of this ideal clock.

To illustrate the quantum mechanics of this ideal clock
we calculate, according to the path integral prescription,
the joint probability amplitude 4(X, T, C ) for an observa-
tion of X and T given that the system was prepared by
some conditions C. The histories are the paths
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(X(r),T(r)) in which X moves forward in T. The action
is (4.1). We choose the standard path measure which
correctly reproduces the quantum mechanics of the sys-
tem described by (4.2). (The details of this, readily avail-

able, will not be important for us). The observables are
X and T. The parameter ~ is an unobservable label. The
amplitude C)(X, T, C ) is then the sum of exp(iS) over all

physically distinct paths which meet the conditions C

and end at (X, T)
Some care is indeed in carrying out the sum which

defines dI6(x, T, C ). The classical action (4.1) is invariant
under changes in the parametrization of the paths. That
is, the action is unchanged by the substitutions (3.2) for
arbitrary increasing f (r) as long as the end points are
also changed to r " and r ' with f ( v" ) =r ",f( r') =r '

Classically, this invariance under reparametrization of
the time gives rise to the constraint that the total Hamil-
tonian vanish:

clocks. The Schrodinger equation

HCF= i— +h» —i,X 4(X, T, C )=0,ax' (4.6)

is a consequence of the functional integral representa-
tion (4.5). In the present context, the Schrodinger equa-
tion is the operator form of the classical constraint (4.3)
that the total energy vanish

H4=0 . (4.7)

Because the paths in (4.5) move forward in time T they
intersect a surface of constant T at one and only one posi-
tion. The values X of this intersection are thus a set of
exhaustive and exclusive possibilities given T and the
conditions C. The probability of any one value is then
given, according to the rule of sum-over-history quantum
mechanics, by

H =pr+h»(p» X)=0 . (4.3)
p(X i

T, C)=
i
4(X, T, C)

i fdX
i
4(X, T, C )

i

Here, pz. and px are the momenta congugate to T and X
implied by (4.1) while h» is the Hamiltonian constructed
from the Lagrangian I in the canonical way. The con-
straint (4.3) is easily verified by constructing the Hamil-
tonian implied by the action (4.1).

Quantum mechanically, the invariance under
reparametrizations means that paths which differ by
reparametrization are not physically distinct and should
be counted only once in the sum over histories. This can
be done by summing over all paths with appropriate
"gauge-fixing" conditions. Thus, following the sum-
over-histories prescription, we write

t6(X, Td')= J 6X6T det 6[F(T)—e]
F

X exptiS[X(r), T(~)]] . (4 4)

The sum is over all forward-moving paths which satisfy
the conditions C and end at X and T. F( T) is an arbi-
trary function such that F(T)=r assigns a unique T to
each ~. This restriction an F ensures the paths are for-
ward moving. The inverse of F determines the range of
parameter integration in terms of the range of T. The
functional 5 function may be thought of as a "gauge-
fixing 5 function" enforcing the gauge condition
F( T)=r. The factor det(dF/d T) is the associated
"Faddeev-Popov" determinant.

The path integral (4.4) is most easily carried out in the
case F = T. Then the 5 function can be used to carry out
the T integration easily. Since the parameter ~ is the
Newtonian time T in this gauge we may write

@(X,T, C ) =f 5X exp [iS[X(T) ] j . (4.5)
C

The sum in (4.5) is over forward-moving paths X(T)
which satisfy the conditions C and end at X at time T.
This is the standard sum-over-histories expression for the
joint amplitude to observe X at T given that the system
was prepared with conditions C. That is, @ is the
Schrodinger wave function. In this way we recover fa-
mihar quantum mechanics from the theory of ideal

(4.8)

As (4.8) shows, the conditions C must be such that the
integral of

~
4(X, T, C )

~

over all X is finite. There is no
requirement that

~
4(X, T, C )

~

be normalizible over the
whole configuration space. The values of T at a given
value of X, for example, are not an exhaustive and ex-
clusive set of possibilities. The path may cross a given
value of X at a great many different T. A further conse-
quence of forward-moving paths is that, as described in

paper I, sums over histories can be factored about a sur-
face of constant T into a sum before that surface, a sum
after that surface, and a sum over the point of intersec-
tion with that surface. This permits the construction of a
Hilbert space of states on a surface of constant T with
4(X, T, C ) representing the state vector and an inner
product

(4,%)= fdX 4'(X, T)%(X,T) (4.9)

V. QUANTUM MECHANICS WITHOUT
A PREFERRED TIME—REAL CLOCKS

A model quantum cosmology in which the indicators
of clocks have dynamically the same status as any other
positions in the theory may be constructed in the frame-
work of Sec. III by choosing histories and action which

induced by the measure in the sum over histories.
The discussion of this section shows that familiar quan-

tum mechanics may be viewed as a theory in which time
enters, not a Schrodinger parameter, but as an indicator
variable on a certain type of ideal clock —that with the
coupling of (4.1). The variable T is singled out by the re-
quirement, implicit in the restriction to forward-moving
paths, that it serve as a good parameter along them. This
special role is reflected in the form of constraint where pz-
is the only momentum which enters linearly. However,
as discussed in Sec. II such ideal clocks do not exist in na-
ture. We, therefore, turn to a model with more realistic
clocks in the next section.
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l
dT T =—'M dT
dt

' ' dt
—MVc( T}, (5.1)

where M is the clock's mass, and we have written the po-
tential as MVc for later convenience. For the total ac-
tion of clock plus system write

S [X(~),T(r),N(~), r",r']

x —,» +c
T

where an overdot denotes a derivative with respect to ~
and E is an arbitrary constant. This action is invariant
under reparametrizations of r of the form (3.2) provided
N, ~', and ~" also transform as

N(r)~N(r) =N(f(r))/f (r), (5.3a)

(5.3b)

The possible histories are all curves in the (X,T)
configuration space with X moving both forwards and
backwards in T. Quantum mechanically, the central as-
sumption of the model is that the basic observables of the
theory are the variables X describing the system and the
position T of the clock indicator. Histories may be
parametrized by a parameter ~ in which, by construction,
the paths (X(r), T(r) ) move forward. However, neither
~ nor its total duration along the path is an observable.
They are unobservable labels. The sole information
about time comes from correlations between X and T.

This model can be said to represent a theory of real
clocks because, as shown in Sec. II, a realistic model of a
clock can be constructed from a particle whose dynamics
are summarized by (5.1). However, we cannot expect to
extract a notion of preferred time in the theory alone for
neither the dynamics of the model nor the histories prefer
a special role for T. Nor should they, because as argued
in Sec. II a particle can keep accurate track of time only
when it is in a wave packet with approximately defined
position and a momentum. A preferred time will, there-
fore, emerge in this model, not generally, but only as an
approximation appropriate to initial conditions which
define a universe which contains good clocks. It is in this
sense that we are dealing with a model quantum cosmolo-

In paper III we shall see that the quantum mechanics
of the model we are considering has certain important
features analogous to the quantum mechanics of a closed
general-relativistic cosmology. The variable T here is
analogous to the three-geometry of a spacelike surface, X
to matter fields on that surface, and the histories
(X(~),T(r)) to four-geometries with matter fields upon
them. The invariance under reparametrization of v is
analogous to the invariance under difFeomorphisms in-
volving relabeling spacelike surfaces. The energy E

give no preferred role to either T or X. The model dis-
cussed by Banks' provides a particularly instructive ex-
ample.

Let lx[dX/dt, X] be the Lagrangian for the system and
for the clock take

2

which parametrizes these models is like the cosmological
constant. Those readers for whom these brief remarks
are suggestive may wish to keep these analogies in mind.

Before exhibiting the sum-over-histories quantum
mechanics of the model we have defined, it is useful to
consider it classically. As a consequence of the
reparametrization invariance (5.3) there is a constraint.
This is easily found as the classical equation of motion
arising from varying N. A direct calculation shows that
the constraint is

H="x+bc E =0 (5.4)

S[X( )7, T(1 ))7 )=sc[T(7 ),7] +sx[ X(1 ),7 ] E7—
(5.5)

where ~ (formerly r"} is the total parameter time dura-
tion, s» is the action for the system

sx[X(~),r]=f dr'l~[X, X],
0

and s& the action for the clock

(5.6)

sc[T(r),r]=I dr'[ ,'MT —M—Vc(T)]. (5.7)

In this gauge, the equations of motion are the familiar
equations of motion of nonrelativistic physics in the
Newtonian time. The constraint (5.4) emerges as the ad-
ditional condition

aS/ar=0 . (5.8)

Thus, classically the theory specified by (5.2) is equivalent
to familiar nonrelativistic mechanics with the additional
constraint that the total energy be fixed at the value E.

In the special case where the Lagrangian l has the form

JIX,X =—'g,"(X} —V(X),
dg

' '"" dt dg
4

so that the momentum from (5.2) is

p; =N 'gj (dX'/d r)

the constraint (5.4) may be solved for N yielding

g I/2(E V) —1/2

Here, '7 is the total kinetic energy

V'=
—,'g,,X 'X'+ ,'MT—

and V the total potential energy

V(X, T)= V(X)+MVc(T) .

(5.9}

(5.10)

(5.11)

(5.12)

(5.13)

If (5.11}is used to eliminate N, the action takes the form

SJ[X(r),T(r), r]
=2 dw' X TX E — XT

0
(5.14)

that is, that the total energy of the system equals E. The
remaining equations of motion follow from varying (5.2)
with respect to X and T.

The invariance under reparametrization means that the
form of N is arbitrary. In the gauge in which N =1 and
~'=0, the action becomes
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This is the Jacobi form of the action for classical mechan-
ics. It also, because of the quadratic form of (5.12), is in-
variant under reparametrizations of the parameter v.
Variation with respect to X and T yield equations of
motion which, if the parameter ~ is chosen so that

H ='7+V E—=O (5.15)

[i.e., N =1 through (5.11)]are the same as those of famil-
iar Newtonian mechanics. The theory summarized by
(5.14) is thus again Newtonian mechanics with the con-
straint that the total energy be fixed at E.

The Jacobi action (5.14) is the form arrived at by Bar-
bour and Bertotti in their search for a classical mechan-
ics which would be "fully relational (and hence Machi-
an)" in the sense of considering only relative distances as
real and using a "relational" concept of time. This, they
say, represents Leibniz's concept of time in which "in-
stants are defined by the successive relative configurations
of the universe" that is, in present terms, by the correla-
tions between X and T. The theory of Barbour and Ber-
totti is the same as that of (5.2} in a special gauge. It is
thus fully equivalent to Bank's model at the classical lev-
el. The quantum theory of real clocks that we will now
present may therefore be regarded as a quantum cosmol-
ogy implementing the theory of Barbour and Bertotti at
least in its treatment of time.

We have presented three actions (5.2), (5.5), and (5.14)
which yield the same classical theory. Which should be
taken as the starting point for a sum-over-histories quan-
tum theory? Only the actions (5.2) and (5.5) which are
quadratic in the velocities are suitable starting points.
The situation is similar to that for the relativistic particle
where the actions

S [X'(~),N(~), r]=—f d~' N—m ~, (X'}
0

(5.16a)

(5.16b)S[X'(r),v)= —I v+ —,
' I dr'(X')

S[X (~),~]=—m f dv
0

= —m f'd~[ —(X )']'" (5.16c)

are equivalent classically but the correct relativistic quan-
tum mechanics is only found by starting from (5.16a) or
(5.16b). To proceed most directly to answers we shall use
(5.5). In this form the action is the same as familiar non-
relativistic quantum mechanics except that the duration ~
is an unobservable label which must be summed over in
constructing physical amplitudes. Thus in the following
we are always working explicitly in the gauge %=1,
v'=0.

Consider by way of an important example the joint am-
plitude @(X,T, C ) that the combined system is found at
(X, T) given that it was prepared with conditions C. In
the sum-over-histories framework this is the sum of
exp(iS) over all paths which end at X, T and which satis-
fy the conditions C. For each path the end point ~=0 la-
bels one of the conditions C and r the end of the path at
(X, T). It does not matter in what order the labeling of
the conditions is taken for they must be independent of
the unobservable label ~. This sum over paths may be

(5.18)

The sum in (5.18) includes both positive ~ and negative
ones. We are thus summing over both the amplitude for
the process and the amplitude for the ~-reversed or path-
reversed process. This is appropriate because they are
not distinguishable. It implies an explicit abandonment
of any notion of causality in the quantum theory. In
making the sum a definite choice of phase has been made
between these alternatives which is prescribed by the
defining sum over histories (5.17). This assignment,
unimportant and arbitrary in ordinary quantum mechan-
ics because the alternatives are noninterfering, enters
here in a fundamental way.

The amplitude 4(X, T, C) satisfies a constraint. One
sees this immediately because Vc(X, T, r) defined by
(5.17) is the familiar Schrodinger wave function for the
system plus clock prepared in a state characterized by the
conditions C. The amplitude 4(X, T, C ) is, by (5.5), the
projection of %&(X,T, r) onto an eigenstate of the total
Hamiltonian with energy E. Thus,

H@= (bc+ h» E)4=0, — (5.19)

where hc and hx are the Hamiltonians constructed from
the actions sc and s&, respectively, in the canonical
fashion.

The constraint H4 =0 expresses the unobservability of
the duration v. Only stationary states single out no value
of ~ over any other. The constraint (5.19) is a conse-
quence of (5.18) only where the range of r integration is
from —00 to + 00. Invariance is obtained, therefore,
only at the sacrifice of causality.

Despite the absence of any dependence on ~, the con-
straint 4=0 does not imply the absence of dynamics.
Dynamics arise from the correlations implied by 4 be-
tween X and T. Indeed, as (4.6) shows, the constraint
H4 =0 gives rise to the familiar dynamics of the
Schrodinger equation in the case of ideal clocks. The
constraint (5.19) has previously been considered as the
starting point for a quantum theory without time" al-
though typically in very different frameworks from the
one advocated here (see, e.g., Refs. 3, 6, 9, and 11—14).

The calculation of @(X,T, C ) described above illus-
trates how to calculate amplitudes in this model quantum
cosmology with real clocks. To connect amplitudes to
probabilities a set of complete and exclusive possibilities
given the condition C is needed. We can construct exam-

carried out in two steps. First construct the sum over
paths with fixed ~:

%&(X,T, r) = f 5X(v)5T(r) expIiS [X(r},T(r), v]I .
C, ~

(5.17)

Second, complete the sum over paths by integrating over
all values of the labels ~:

4(X, T, C)= f d~+p(X, Tr)

Xw Tw
—00 C, 7.

)& exp[iS[X(r), T(v), r]] .
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ples with detectors which locate the system in a given
volume 6 of configuration space. We could imagine a
row of such detectors labeled by i arrayed over all X at a
given value of T (Fig. 1). We could ask the following:
"Given the condition C and that only one of the detec-
tors registers, what is the probability that it is the detec-
tor at X;?" Since the histories move forward and back-
ward in T more than one detector may register in a gen-
eral experiment, and we shall discuss the computation of
probabilities for such outcomes in the next section. If,
however, attention is restricted to a situation in which
only a single detector is known to register, then the vari-
ous values of its location are an exhaustive and exclusive
set of possibilities. Whichever detector registers, it lo-
cates the end of the history. The joint probability that
the history ends in the detector occupying volume b, is
therefore proportional to the square of the relevant am-
plitude, in this case 4(X, T, C ), integrated over b, , The
required conditional probability is then

f, dXdT
~
+(X,T, C) ~'

P(4; C)= (5.20)
X f dXdTI+(»T, C)I'

i

If the conditions C are such that the T component of

the system is "prepared in a good clock state, " then the
probabilities (5.20) approximate those obtained from fa-
miliar Schrodinger quantum mechanics. We can illus-
trate this with the case of the free particle clock. There,
the general solution to the constraint (5.19) may by sepa-
ration of variables be written

4(X, T, C)= f de/~, (T)g, (X),

where P, and P, satisfy

h~g, (X)=ef, (X),

he/, (T)=eg, (T),

(5.21)

(5.22a)

(5.22b)

but are otherwise arbitrary. Introducing the Fourier
transforms

P(T r)= f de e "'P,(T),
277

(5.23a)

g(X, r) = f de e "'1(t,(X),
277

Eq. (5.21) can be written

@(X,T, C )=f dre' 'P(T, r)f(X, r) .

(5.23b)

(5.24)

The function P( T, r) satisfies the Schrodinger equation
with v as the time parameter. From the analysis of Sec.
II we know that there are solutions which represent
"good clock states" in the sense that P(T, r) remains
peaked in T about a calibrating relation T(r) for an in-
teresting length of time. For such states one will have ap-
proximately

I
@(»T, C )

I
'=const X

I
f(»~(T»

I
(5.25)

FIG. 1. A possible experiment whose outcomes are assigned
probabilities in the model quantum cosmology discussed. The
configuration space is the space of two positions X and T. Am-
plitudes are sums over paths which meet a set of cosmological
initial conditions C on one end and are localized at a definite
point on the other. The paths may move both forward and
backward in T. The figure shows an array of detectors which
spans all X at one T, each detector occupying a configuration-
space volume 6, . If it is known that only one of these registers,
then a complete and exclusive set of outcomes for the experi-
ment are the locations X; of the detector which does register.
When the initial conditions C are such that T makes a good
clock indicator, the probability that a detector centered at X re-
gisters is, to a good approximation, the same as the probability
of Schrodinger-Heisenberg quantum mechanics that a measure-
ment of X at time T yields the value X.

The function g(X, r) also satisfies the Schrodinger equa-
tion. If the T width of the regions b, , is chosen small
compared to the scale over which g varies significantly,
(5.25) inserted in (5.20) will reproduce the probabilities
for this experiment predicted by standard quantum
mechanics. One recovers these probabilities, not general-
ly, but only for those model quantum cosmologies where
the initial conditions C mandate that P corresponds to a
good clock state.

In this model of quantum cosmology it is not possible
for initial conditions to mandate a feature of its Universe
which tracks the Schrodinger time parameter arbitrarily
accurately for an arbitrarily long interval. The limitation
comes from the constraint (5.19) which limits the total
energy to E. For example, a free particle clock is con-
strained by (2.17). In the model E is a parameter of the
action. We are not free to vary it. Thus, when the initial
conditions are appropriate one recovers the probabilities
of familiar quantum mechanics through (5.25) but always
approximately.

The agreement expressed by (5.25) does not exhaust the
predictions of standard quantum mechanics that one
needs to recover to claim that theory is an approximation
to the quantum-mechanical framework presented here.
There are most generally the multitime predictions of
(1.1). It is to these that we now turn.
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VI. APPROXIMATE RECOVERY
OF SCHRODINGER-HEISENBERG QUANTUM

MECHANICS

One possible outcome of the experiment illustrated in
Fig. 1 is that only a single detector in the arrag at T regis-
ters. We calculated the relative probability for the possi-
ble locations of that detector in Sec. V. However, be-
cause the histories may move backward in T, there are
many other possible outcomes of this experiment. Two
or three or indeed any number of detectors may register.
More generally, we can consider detectors arranged at
several different values of T; an interesting case is illus-
trated in Fig. 2. Indeed, there is no need to consider only
arrays of detectors which exhaust all values of X at a
given T or detectors having common size volumes such
as are used in these examples. Sum-over-histories quan-
tum mechanics assigns joint probabilities to all possible
outcomes of properly conditioned experiments. In this
section we shall illustrate their calculation for some ex-
amples.

//g
2'

FIG. 2. A possible experimental arrangement corresponding
to measurements at successive times in familiar quantum
mechanics. There are initial conditions 8 defining one end of
the histories and a condition that the detector at (Xf, Tf ) regis-
ters which defines the other end. As a third condition assume
that at least one detector in the array at T registers (a measure-
ment of X at T). Probabilities for the possible outcomes, the
number and locations of the detectors which do register, can be
computed by sum-over-histories quantum mechanics. If the ini-
tial conditions C mandate that the position T is a good clock in-
dicator then, for suitably large detector volumes, there is almost
no amplitude for a path to move backward in T (as in the illus-
trated case). There is therefore a significant probability only for
a single detector at T to register and this agrees approximately
with that predicted by familiar quantum mechanics. Thus
causality and unitarity are approximately restored by the choice
of initial conditions.

Probabilities for the outcomes of experiments involving
detectors at several values of T are important, for among
them are the probabilities which must agree in the ap-
propriate limit with the multitime probabilities (1.1) of fa-
miliar quantum mechanics. In this section we shall argue
that when the initial conditions of our model quantum
cosmology with real clocks are such as to mandate a good
clock state then the formula (1.1) will be recovered ap-
proximately along with such features as a Hilbert space
of states on surfaces of constant clock time.

A. Sensible conditions

Because of the large number of possible outcomes of a
given arrangement of detectors there is a wide variety of
conditions which define a set of exhaustive and exclusive
outcomes. These sets can be determined from the detec-
tor arrangement in an elementary, essentially geometrical
way, by enumerating the possible outcomes the condi-
tions allow. However, rather greater care is needed than
in familiar quantum mechanics to specify sensible condi-
tions that lead to interesting outcomes.

First of all, the conditions must allow for some out-
comes. The question "Given initial conditions C for the
model universe, what is the probability that there are no
observations of it?" makes no sense in quantum cosmolo-
gy. Probabilities are only relevant for an observer con-
tained within the system who makes some observations. '

This is reflected in any quantum-mechanical formalism.
In Schrodinger-Heisenberg quantum mechanics there are
no conditional probabilities which can be computed from
(1.1) if it contains no P s. In the sum-over-histories
framework all amplitudes are for conditions which define
both ends of a history. The limitations of the quantum
cosmologies under discussion do not permit much of a
model of an observer to be constructed but the restriction
that there must be some outcome is the restriction that at
least one of the detectors in the arrangement must regis-
ter.

In the absence of any built-in notion of preferred time
and any associated notion of causality, the complete de-
tails of the experimental arrangement over the whole
configuration space must be specified. In standard quan-
tum mechanics the probabilities for outcomes up to time
~ are independent of any experiments done at a later time
provided their outcomes are unknown. The sum
p(r„a„, . . . , rk+„ak+„rkak, . . . , 7,Q, ) over all

ak+i . . a„ is the same as P(v' a kk. ~a. i) This
will not be the case here, although it will be approximate-
ly the case when the conditions 8 specify a good clock
state.

Some care must also be taken to ask questions which
have sensible answers. For example, in the experiment
considered in Fig. 2, were we to ask, say, for the ampli-
tude for any finite number of detectors of arbitrarily
small fiducial volume to register on the intermediate sur-
face at T, we would obtain a vanishing result. This is be-
cause the expected number of crossings of such a surface
is infinite (cf. the discussion in paper I). The formalism
gives correct answers to such questions but they are not
very interesting.
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Any quantum-mechanical framework specifies basic
observables in terms of which it is assumed that all actual
observations can be modeled. In Schrodinger-Heisenberg
quantum mechanics the basic observables are assumed to
be the Hermitian operators in Hilbert space. As dis-
cussed more fully in paper I, in the sum-over-histories
formulation the basic observables are assumed to corre-
spond to regions of configuration space. In either formu-
lation, whether measurements carried out with actual ap-
paratus can be so modeled and whether apparatus can be
constructed which will register each basic observable are
further issues of measurability. They are not treated here
and certainly a universe with two nonrelativistic particles
has far too few degrees of freedom for that purpose. The
models are therefore most honestly viewed as models of a
kinematics for quantum cosmology within which such
questions could be attacked.

B. An example

As an example of experiment with outcomes more
diverse than that shown in Fig. 1 consider the situation il-
lustrated in Fig. 2. Detectors 6; of dimensions hx and
hz. are arrayed over all X at a time T. There is a further
detector b,f at (Xf, Tf ). For conditions we take, in addi-
tion to initial conditions C, that the detector at (Xf Tf )

registers and that two of the detectors in the array regis-
ter. The interesting probability is then for a particular
pair in the array, b, and b, 2, to register given these condi-
tions. This can be constructed as follows: First consider

paths which start with C and end in b,f. For these take
the following steps: (1) Sum exp(iS) over all paths which
start with the conditions C at ~=0, proceed first to a po-
sition (X„T,) at parameter time ~& & 0, then to (Xz, T2 )

at rz & r„and finally to (Xf, Tf ) at ~f & ~2. (2) Integrate
this amplitude over (X„T,) in detector volume b, and
over (Xz, T2) in detector volume 52. (3) Add to this the
result with the volumes 5, and hz interchanged because
the system might have gone through 62 first on its path
before b, &. (4) Sum the result over the unobserved labels

rf & 7'2 & r& & 0. (5) Add to this the result with the path
traversed in the opposite order because, while each path
is ordered by the requirement that they move forward in
~, there is no observable distinction between C being first
and (Xf, Tf) last or vice versa. (6) Square the resulting
amplitude and integrate over the volume 6f. To obtain
the probability for a particular pair of detectors to regis-
ter this process must be repeated for paths which start at
C but end on b, &, again for those which end on hz, and
the results summed.

The above construction may sound more familiar when
expressed in the equivalent wave mechanical terms. The
result of steps (1) and (2) above are mathematically
equivalent to beginning with the wave function
%@(X,T, r) of the state prepared with conditions C and
carrying out incomplete measurements of (X,T) in the
volumes 6& at T, and 62 at ~2, followed by a measurement
yielding (Xf, Tf ) at rf One th.en sums this result over
the unobserved labels v&, ~2, and vf. The resulting joint
amplitude is

f d~f f d~P f dr, f dX2dT2 f dX, dT, K~(Xf Tf 7 f X2 T~, ~2)K+(X2, T~, r2', X),T„r))%P(X„T„'T)).
—00 —00 —00 1

(6.1)

Here, K+(X",T",~";X',T', ~') is the forward Schrod-
inger propagator for the system, nonzero only for ~"& v'.
The amplitude with 6

&
and h2 reversed must be added to

(6.1) and then the r reversed of the resulting sum to get
the complete joint probability amplitude for the paths
which end at 6f.

Because of the v-translation invariance the expression
(6.1) is simpler if Fourier transforms are used. Define

K+(X"T";X',T')

dw"I( + X",T",~";X',T', 0 (6.2)

(only the range r" &0 contributes) and

@(X,T, C)= f dr+a(X, T,~) . (6.3)

An expression equivalent to (6.1) is then

f dX2dT2 f dX)dT, K+(XfTfyXQT2)K+(XqT2&X, T, )

x 4(X„T„C), (6.4)

where 4 was defined by (5.18). Such expressions can be
developed into a "propagator theory" for computing am-

plitudes similar to that used in relativistic quantum
mechanics and for much the same reasons.

C. Approximate recovery
of a Schrodinger-Heisenberg formulation

The variables X and T have the same formal status in
this model quantum cosmology. They are both positions.
They enter symmetrically into the action (5.2), the con-
straint (5.19), the measure, and the histories. One cannot,
therefore, expect to recover a notion of "state" and asso-
ciated Hilbert space on a surface of constant T. The ar-
guments of paper I show why the natural route to con-
structing such a Hilbert space does not work. Briefly,
one can derive a Hilbert space on any surface for which
there is a composition law expressing amplitudes from
the past of the surface to its future as a composition of
amplitudes from the past to the surface with amplitudes
from the surface to the future. On an (X, T) lattice the
amplitude in the above example to pass from the condi-
tions C to (Xf, Tf ) may be factored into sums of products
of amplitudes to go from C to a constant T surface and
then from the constant T surface on to (Xf, Tf ). The in-
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dividual amplitudes involve a different number of inter-
sections with the surface. In the "continuum" limit,
however, the expected number of crossings of a path is
infinite, and the amplitudes for a finite number of cross-
ings relatively vanish. There is thus no composition law
and no Hilbert space which is naturally constructable on
a constant T surface. As the above example shows, this
does not alter our ability to predict the probabilities of
the outcomes of experiments which include detectors ar-
rayed along a constant T surface although rather greater
care is needed to arrange experiments which correspond
to questions with sensible answers.

Such is the general situation. However, when the ini-
tial conditions are such that T tracks the label ~ to a good
accuracy, then appropriately conditioned probabilities
are approximated by those of familiar quantum rnechan-
ics with T playing the role of time. We saw a simple ex-
ample in the preceding section. To see this for "multi-
time observations" consider again the example shown in
Fig. 2. Assume for conditions the following: initial con-
ditions C, the detection in 5f and that at least one of the
detectors in the intermediate array registers. We shall
show first that, in such a situation, the amplitude that
two or more suitable detectors register is very small and
that the probability for a single detection in the detector
at (X,T) is approximately the probability of the familiar
theory that a position measurement at T gives a result in
the range Az.

Given just conditions C and detection in b& there is
the possibility that no detectors in the array at T register.
The amplitude for this need not be small compared to the
other possiblities and will in general interfere with them.
The array of detectors is thus not perfectly efficient. This
universe does not have sufficient degrees of freedom to
make a model of an efficient detector for which the prob-
ability of no registration is small. The requirement that a
measurement was actually carried out at T is modeled
here by the condition that at least one of the detectors re-
gisters.

If the initial conditions C mandate a good clock state,
then the amplitude for the system to propagate between
one detector and another on a given constant T surface is
negligibly small provided the dimensions of the detector
h~ and AT are suitably large. To see this let us calculate
the amplitude for the propagation between two detectors
6, and a point (Xz, Tz ) inside detector b, z. b, , and b, z are
centered at the same value of T but at two different
values of X. Let us call the central values (X„T) and

(Xz, T). According to the discussion above this ampli-
tude is

drzdr& f dx, dT&K+(Xz, Tz, rz', X&, T&, ri)—00

where P( T, r) is a good clock state in the sense of Sec. II.
That is, it is sharply peaked about T = T(r) and remains
peaked for a significant period of time. For a nonin-
teracting clock and system the propagator K also factors

K+(Xz, Tz, rz, x, , T, ,~i)=kc(Tz, rz, Ti, ri)

(6.7)

so that the clock and system evolve independently. The
evolution described by (6.5} is, in familiar terms, just that
produced by an incomplete measurement of X and T at
time ~, followed by an integration over the possible
values of this time. Let us analyze what happens in this
language.

At r, the wave function 4& is projected onto the detec-
tor region 5, of dimensions hT and A~. For subsequent
~, it evolves by the Schrodinger equation. If the peaking
of the wave packet P( T, r } is small compared to b I, then
the packet after projection will be essentially unchanged
from what it was before. A good clock state will remain.
In particular, the amplitude (6.5), evaluated at a value Tz
inside a second detector 62, will be negligible at any pa-
rameter time rz which is r'(T)b, T later than r& The.
question of whether there is any amplitude at all there-
fore concerns the X evolution between ri r(T) ——and

r, = r( T+5r ).
The wave function describing the system after projec-

tion will be a localized state of width bz centered about
X, . If bz is small compared to the characteristic wave-
lengths in f(x, r, ), the associated spread in momentum
will be of order 1/hz. After projection the wave func-
tion will spread. If it is unable to spread by a distance hz
in the parameter time r'( T)b, r then there will be a negli-
gible overlap at any ~ with the volume of the second
detector b,2. Since the dispersion in momentum is of or-
der I/b, z this will be the case if b,z is sufficiently large.
Thus, if AT is larger than the accuracy of the clock so
that the system always remains in a good clock state, and
b,~ is large enough so the wave packet does not spread
from one detector to another in the time ET, there will be
a negligible amplitude for two detectors at the same T to
register.

A more quantitative idea of the restrictions on Az and

hT can be obtained if the system is a free particle of mass
M moving in one dimension. There the width of the
wave packet after projection is

(EX),=h~+br( Ip, hxj), /M+(bp), (br) /M

(6.8)

where br=r r, . If hr hrlv an-d (bp), —I—/hz we

require

X+~(X„T,, r, ) . (6.5)
b~ ) (b, T/Mv )' (6.9)

Assume that the conditions C are such that %&(X,T, r)
factors as

(6.6)

We have already seen in Sec. II that for fixed running
time T, hT can be made small by making the free clock
massive. Equation (6.9) shows that in the large-M re-
gime, bz can be taken small also.

The only possibility with a significant amplitude is that
a single detector registers in the array at T. The joint
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amplitude for C, this single detection at h„and finally

the detection at 6f is

d7fd~] dX)dT)K+ XfyTfy7f~X)T, z,—oo b, l

X +c(X,, T„r, ) (6.10)

plus a similar amplitude with the order of the ~'s re-
versed. However, this latter contribution is negligible be-
cause the good clock state enforces a correlation between
positive values of T and positive values of ~. Equation
(6.10) is therefore the only significant amplitude and
causality is restored. Taking account of (6.6) and (6.7)
the joint probability for C and registration by the detec-
tors at (X,T ) and (Xf, Tf ) is

Xf g Xf Tf', X,T X, T . 6.11f & f~ f~

This is the familiar result of standard quantum mechan-
1cs.

The preceding discussion might be summarized by say-
ing that in a good clock state the amplitude for the clock
to run backward in its indicator variable is very small for
appropriately crude measurements. Thus the only paths
which contribute significantly to relevant joint ampli-
tudes are those which move forward in T. Thus, for con-
ditions C which produce sufficiently accurate clocks and
for sufficiently large hz and hz- there are approximate
notions of unitarity and causality for the experiment de-
scribed in Fig. 2. In this situation the amplitude to excite
more than one intermediate detector is negligible. The
joint amplitude for at least one detector in the array to
register given the conditions C and registration at
(Xf Tf ) is approximately the sum for any one of the
detectors to register. Further this is approximately

JdX kx(Xf, Tf', X, T)P(X, T) . (6.12)

This is the composition law of the standard theory.

VII. THE BORN-OPPENHEIMER
APPROXIMATION

The results of Sec. II show that when the mass of a
clock is sufficiently large, it can be made to behave classi-
cally for an interesting length of time. The results of the
preceding two sections show that if the initial conditions
of our model quantum cosmologies contain such good
clocks then the probabilities for appropriate experiments
are approximated by those of Schrodinger-Heisenberg
quantum mechanics. In a theory in which it is funda-
mentally absent, we recover a notion of Schrodinger-
Heisenberg time ~ from the classical trajectories T(~)
along which the centers of wave packets representing
good clock states move. Where it is valid, one therefore
expects to recover a notion of Schrodinger-Heisenberg
time in a systematic approximation in which the clock in-
dicator variables are treated classically while the system
variables are treated quantum mechanically. That this is
indeed the case was shown in Refs. 11—14. We shall very

briefly review these arguments here.
The approximation in which part of a system is treated

classically and another part quantum mechanically is the

Born-Oppenheimer approximation of molecular physics.
There, the nuclei are a "heavy" system whose motion is
described classically. The electrons move quantum
mechanically in the potential of the nuclei. In the
present case the clock is the "heavy" system. The con-
trolling parameter is the clock's mass M. If the clock's
Lagrangian is written in the forin (5.7), the limit M~ oo

is the limit in which the clock action is much larger than
A. This is the classical limit for the clock. It is to de-
scribe this limit supply that we have written the clock's
potential in the form MVc in (5.1).

The result of this approximation for the amplitude
4(X, T, C ) is immediate from the defining sum over his-
tories (5.18). In the large-M limit the stationary phase or
semiclassical approximation may be used to evaluate the
sum over the clock paths, T(r). If the initial conditions
mandate a good clock state only a single stationary (clas-
sical) path T(r) will contribute to the sum. One then has

4(X, T, C )=[dsc(T)/dT] '~ exp[isc(T)]

X exp isx X ~,~
C, ~

(7.1)

Here, sc( T) is the action implied for the classical path by
the initial conditions as a function of the path's end
points. The classical path runs between its end points in
a definite parameter interval ~. This is the interval used
to define the remaining sum over paths, X(r} These.

paths move forward in T because T moves forward in ~
for a classical path. The sum over paths X(r) in (6.1) is
then just that which defines the familiar Schrodinger
wave function. We may therefore write

' —1/2
dsc

T
4(X, T, C)= exp[ isc( T)]pc(X,r ), (7.2)

where gc, defined by the sum in (7.1), satisfies

. ~Pc
=hx4c .

a7.
(7.3)

In this way we recover the results (5.25) of the theory of a
good clock initial condition directly as the limit in which
the clock is treated classically.

The results (7.2) and (7.3} could also be obtained from
the constraint (5.19). One looks for solutions of the form

4(X, T)= exp[is&( T)]P(X,T) (7.4)

in which the functions sc and g have systematic expan-
sions in powers of M

sc( T) =Msa( T)+s, ( T)+O(M '),

g(X, T) =$0(X, T)+0(M ') .

(7.5a)

(7.5b)

The result of enforcing the constraint H4 =0 to the
lowest two nontrivial orders in M is that Msa satisfies
the classical Hamiltonian-Jacobi equation, that i)'j0 (with
suitable choice of energy normalization) satisfies the
Schrodinger equation, and that s

&
can be calculated from

s0. One thus recovers (7.2) and (7.3) by systematically
solving the constraint. (See Refs. 12 and 16 for details. )

This equivalence between a steepest-descent approxima-
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tion to a sum over histories and a %KB analysis of the
associated constraint is, of course, not unexpected.

In view of its directness, a possible point of view might
be that one should predict all probabilities in quantum
cosmology by solving the constraint in the semiclassical
approximation, recovering thereby a Schrodinger-
Heisenberg time and then invoking familiar quantum-
mechanical rules. Such an approach leaves untouched,
however, a number of issues which can only be resolved
by having a more fundamental framework in which there
is at least in principle an exact connection between for-
malism and observation. Examples are the status of the
approximation itself (how semiclassical does 4 have to
be?), and the existence of Hilbert space (is 4 normaliz-
able?). It is to answer such questions that we have inves-
tigated the present framework.

K (X"T"X'T')= X"T" . X'T'
+ H —ic.

(8.2a)

In a similar way

K (X"T",X', T)= X"T" X'T'j . (8.2b)0 +i@.

The first of these is the propagator which is the analog of
that advocated by Teitelboim for spacetime. Using
these expressions, and the projections on a region 6,

~.=f dXdT iXT&&XT i, (8.3)

amplitudes such as (6.4) can be reexpressed in operator
form. For example, the amplitude to move both forward
and backward from initial conditions C through 6, to
(X2 T2 ) in Fig. 2 is

(8.4)

UIII. AN OPERATOR FORMALISM

Standard quantum mechanics can be expressed either
in the language of sums over histories or in the language
of operators on Hilbert space. Ig this section we show
that the model quantum cosmology with real clocks that
we have been discussing in sum-over-histories terms can
be given an equivalent operator formulation.

Consider for definiteness the problem discussed in the
preceding section and illustrated in Fig. 2. The ampli-
tude to proceed from initial conditions forward through
regions 6„to (Xz, T2) was expressed as a string of propa-
gators in Eq. (6.1). The forward propagator E+ was
defined in terms of the familiar Schrodinger propagator
by (6.2). This Schrodinger propagator is

K+(X"T"r,X'T'0)=(X"T" (e ' '~X'T') . (8.1)

Here, the Hilbert space of states % is the space of
square-integrable functions on X and T while H is the
operator H =h&+hz —E. Carrying out the integral over
r in (6.1), we have

The joint probability p (b,2, b, i, C ) is the square of this am-
plitude integrated over b,2 plus a similar expression with

b, and 52 interchanged. If
~

C ) is a good clock state,
and A2 and 6, are disjoint regions centered about
T2 & T&, of not too narrow an extent in T, then of the
four terms making up this probability only a single one
contributes. This comes from the first term in (8.4),
which, as we have argued in the preceding sections, yields
the prediction of standard quantum mechanics. Charac-
teristically, (8.4) involves a coherent superposition of an
amplitude and its ~ reversal. No quantum-mechanical ar-
row of time is therefore singled out. However for initial
conditions C such that one element of this superposition
is negligibly small we recover an approximate causality.

IX. CONCLUSION

We have presented a model quantum cosmology whose
classical dynamics does not distinguish a preferred time
from among its configuration-space variables. We have
proposed how, using sum-over-histories quantum
mechanics or an equivalent description on an extended
Hilbert space, probabilities can be assigned to the out-
comes of sensible experiments. These include experi-
ments which involve detections on several different hy-
persurfaces in the classical configuration space. We have
argued that there is no notion of state on a hypersurface,
no notion of Hilbert space inner product on a hypersur-
face, and no notion of unitary evolution between hyper-
surfaces which will give these probabilities in general ac-
cording to the familiar prescription of Schrodinger-
Heisenberg quantum mechanics. However, we have
shown that when the initial conditions of these inodel
universes are such that part of the system behaves ap-
proximately as an ideal clock then there is an approxi-
mate notion of state, Hilbert-space inner product, unitary
evolution, and a notion of causality using surfaces of con-
stant clock time. The probabilities for suitably restricted
experiments predicted by the sum-over-histories frame-
work are then given approximately by the associated
Schrodinger-Heisenberg quantum mechanics.

This model quantum cosmology is not proposed as a
candidate for a more accurate quantum mechanics of iso-
lated systems on familiar scales involving realistic clocks.
If the clock is not very accurate the predictions of this
model and the familiar quantum theory will disagree.
Roughly, in familiar quantum-mechanics amplitudes for
unresolved time differences are incoherently added (Sec.
II C) while in the model they are coherently superposed.
However, the models are incomplete. They do not con-
tain variables to describe dynamical spacetime nor the
universal gravitational coupling of all matter systems to
it. As we shall argue in the next paper, the familiar for-
mulation of quantum mechanics is the correct approxi-
mation for dealing with clocks, accurate or inaccurate,
when these spacetime variables themselves are followed
with precision much below the Planck scale in the late
universe. What these models do illustrate in an elementa-
ry way is how the notion of time and causality can arise
in a quantum theory which does not have them in general
from the properties of specific initial conditions.
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The interpretative framework of quantum mechanics
loosely subsumed under the name "Copenhagen interpre-
tation" contains two central assumptions which seem in-
compatible with a quantum cosmology built on covariant
theories of spacetime. The first is a distinguished class of
classical systems. The second is a distinguished time
variable and its associated notion of causality. The first
assumption seems incompatible with the application of
quantum mechanics to the whole universe. The second
seems incompatible with general covariance. The partic-
ular initial conditions of our universe could imply an ap-
proximate classical reality in the late universe. The dis-
tinguished time and the associated causality of familiar

scales could also arise, not as exact notions in the formal-
ism of quantum theory, but as approximate notions in the
late universe which are consequences of specific initial
conditions.
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