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The formation of a naked singularity during the collapse of a finite object would pose a serious
difficulty for the theory of general relativity. The hoop conjecture suggests that this possibility will
never happen provided the object is sufficiently compact ( M) in all of its spatial dimensions. But
what about the collapse of a long, nonrotating, prolate object to a thin spindle? Such collapse leads
to a strong singularity in Newtonian gravitation. Here we construct an analytic sequence of
momentarily static, prolate, and oblate dust spheroids in full general relativity. In the limit of large
eccentricity the solutions all become singular. However, when the spheroids are sufficiently large
there are no apparent horizons, lending support to the hoop conjecture. These solutions thus sug-
gest that naked singularities with matter could possibly form in asymptotically Oat spacetimes.

I. INTRODUCTION

It is well known that general relativity admits solutions
with singularities, and that such solutions can be pro-
duced by the gravitational collapse of nonsingular,
asymptotically flat initial data. The cosmic censorship
hypothesis' states that such singularities will always be
clothed by event horizons and hence can never be visible
from the outside (no naked singularities). If cosmic cen-
sorship holds, then there is no problem with predicting
the future evolution outside the event horizon. Alterna-
tively, if it does not hold, then the formation of a naked
singularity during such collapse would be a disaster for
general-relativity theory. In this situation, one cannot
say anything precise about the future evolution of any re-
gion of space containing the singularity since new infor-
mation could emerge from it in a completely arbitrary
way.

But what guarantees are there that an event horizon
will always hide a naked singularity? There are no com-
pletely definitive theorems as yet. In the case of spherical
collapse, the solution outside the collapsing matter is the
Schwarzschild metric. In all numerical and analytic
studies, the singularity occurs inside the event horizon at
rz ——2M. Results for nonspherical collapse are less com-
plete. For this situation, Thorne has proposed the hoop
conjecture: Black holes with horizons form when and only
when a mass M gets compacted into a region whose cir-
cumference in euery direction is C ~ 4srM.

If the hoop conjecture is indeed correct, aspherical col-
lapse with one or two dimensions appreciably larger than
the others might then lead to naked singularities. For ex-
ample, consider the Lin-Mestel-Shu instability for the
collapse of a nonrotating, homogeneous spheroid of dust
in Newtonian gravity. If the spheroid is slightly oblate,
the configuration collapses to a pancake, while if the
spheroid is slightly prolate, it collapses to a spindle.
While in both cases the density becomes infinite, the for-
mation of a spindle during prolate collapse is particularly
worrisome. The gravitational potential, gravitational
force, tidal force, potential, and kinetic energies all blow

up. This behavior is far more serious than mere shell
crossing, where the density alone becomes momentarily
infinite. In the case of collisionless matter, prolate evolu-
tion is forced to terminate at the singular spindle state,
while for oblate evolution the matter simply passes
through the pancake state. In fact, having passed
through the pancake, the oblate configuration then
evolves to a spindle singularity.

Does this example have any relevance to general rela-
tivity? We already know that infinite cylinders do col-
lapse to singularities in general relativity, and, in accord
with the hoop conjecture, are not hidden by event hor-
izons. ' While it has been argued ' ' that the ultimate
singular state will be avoided by the presence of pressure
(as long as the adiabatic index I & I), we feel that this
does not address the fundamental problem. Naked singu-
larities could then still form in the case of perfectly col-
lisionless matter. Does the possibility of forming naked
singularities then depend on the details of the interac-
tions affecting matter at high densities? Does the degree
to which collapse becomes singular depend on the com-
plete zoo of coupling constants, gauge fields, supersym-
metric partners, and so on? We would be far more com-
fortable knowing that Einstein's equations automatically
prevent naked singularities with only very weak condi-
tions imposed on the matter stress-energy tensor. The
key question thus is not about pressure but is whether
singularities form during the prolate collapse of a finite
object in asymptotically flat spacetime.

Interestingly, there exists a class of static axisymmetric
solutions of the vacuum Einstein equations that corre-
spond to the exterior fields of prolate and oblate
spheroidal configurations. These configurations are
finite in extent and the spacetimes are asymptotically flat.
Yet, they have the same singularity structure that charac-
terizes the corresponding Newtonian spheroids. Because
these solutions do not contain matter, however, their
relevance to the formation of naked singularities during
gravitational collapse is not clear.

More troublesome are the simulations of axisymmetric
fluid collapse by Nakamura and co-workers. They simu-
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II. HOMOGENEOUS NEWTONIAN SPHEROIDS

In this section we summarize the key equations govern-
ing the gravitational field of homogeneous spheroids in
Newtonian gravity. They will be used below in con-
structing fully relativistic spheroids. We set 6 =c=1.

The fundamental equation is Poisson's equation for the
potential N~,

~ ~'x —4~pN

where the rest-mass density is

(2. 1)

lated the general-relativistic collapse of deformed stars
with internal pressure. The found that if the initial inter-
nal energy was appreciable, then apparent horizons al-
ways formed, no matter how large the initial deformation
was. However, if the initial internal energy was small
and the initial deformation large, the results were
different. Specifically, they describe an example of pro-
late collapse that appears to be evolving to a singular
state, despite the presence of pressure obeying a very stiff
equation of state (asyinptotically I =2}. By the time the
simulation was terminated, no apparent horizon had ap-
peared. Of course it is always possible that an event hor-
izon had already formed, but this was not studied because
it is tedious in two dimensions.

Given all this, it is clearly desirable to perform detailed
numerical simulations of the prolate collapse of realistic
initial configurations with matter and to probe the result-
ing spacetimes for the growth of singularities and the de-
velopment of event horizons. As a first step, one must
construct a suitable family of initial configurations for
such an evolution. Accordingly, in this paper we solve
the initial-value problem in general relativity for a class
of axisymmetric prolate and oblate spheroids containing
matter. The configurations are finite-size, inhomogene-
ous dust spheroids. The matter is instantaneously at rest
at t =0 (moment of time symmetry) and the dynamical
components of the gravitational field are set equal to
zero. For the cases we consider, the Hamiltonian con-
straint equation reduces to Poisson's equation. For the
adopted density profile, the solutions are analytic and are
determined from the solutions for homogeneous
Newtonian spheroids.

We analyze these solutions for apparent horizons to as-
sess the validity of the hoop conjecture. We are particu-
larly interested in extreme configurations with eccentrici-
ties approaching unity as candidates for singularities.
Should these configurations show singularities that are
not hidden by horizons, this would suggest that naked
singularities could actually arise in dynamical collapse.
We explore this possibility by considering a sequence of
momentarily static configurations of fixed rest mass but
increasing eccentricity. We find that highly eccentric
prolate and oblate spheroids are indeed singular, and in
agreement with the hoop conjecture, extended
configurations have no apparent horizons. Hence, the va-
lidity of the unqualified cosmic censorship hypothesis is
somewhat suspect. Further dynamical calculations are
urgently needed.

z2
2+ 2&'

a c

M~

P~= ' 4+a c/3
0 elsewhere . (2.2}

A. Oblate spheroids c & a

For oblate spheroids, we define the eccentricity e by

(1 c2/a2)1/2 (2.3)

The potential can be written in terms of the radial and
vertical components of the force

as

3MN
3

R (P—sinP cosP),
2(ae)

3M~
z(tanp —p),

(ae)

3M&
p ,'(RKR +—z—K,) .N 20e

(2.4)

(2.5)

(2.6)

Here P is given by

sinp=e (2.7a)

for a point inside the spheroid, while

R sin p+z tan p=a e

for a point outside the spheroid. Note that

(2.7b)

4~(0)~—3mM~

4
(finite), e~ 1 . (2.8)

The Newtonian gravitational binding energy is given by

~N T PN@N
3 (2.9a)

2
3 Mw arcsin(e)
5 a e

(2.9b)

which is also finite for all eccentricities.

B. Prolate spheroids a & c

For prolate spheroids, we define the eccentricity e by

e=(1 a /c ) (2.10)

The potential can be obtained from the oblate case by the
transformation

. ce~i e, p~ip . —
a

(2.11)

The potential can again be written in terms of the radial
and vertical components of the force

3M~
Kz —— R (P—sinhP coshP ),

2(ce)

3M~
K, = z(tanhP —P),

(ce)

(2.12)

(2.13)

Here M& is the total Newtonian rest mass, a is the equa-
torial radius, c is the polar radius, and R and z are the
usual cylindrical coordinates.
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as 2~/ p=4mpjv, (3.7)
3M~

P ,'—(R—IC„+zK,) .
2C8

Here P is given by

c
sinhP = —e

a

for a point inside the spheroid, while

R sinh p+z tanh p=c e

for a point outside the spheroid. Note that

3M~ ln(1 —e)
@N(0)~ ~—ao, e ~1 .

4c

(2.14)

(2.15a)

(2.15b)

(2.16)

(3.8)

Since at large radii N&~ —MN/r, we have, from Eqs.
(3.6) and (3.8),

M =2M~ . (3.9)

The total rest-mass energy is given by

Mo —— p dx= 2pN 1 —&dx. (3.10)

Hence, using Eq. (2.9a), we find that

where pz is defined in Eq. (2.2). Comparing Eq. (2.1)
with (3.5), we immediately conclude that

(2.17)

which also diverges as e ~1.
III. MOMENTARILY STATIC SPHEROIDS

IN GENERAL RELATIVITY

The Newtonian gravitational binding energy is given by

M~
10 ce n1 —e'

Mo =2M~+4K~,

and so

2MoM=
1+(1+aMo )'i

where

(3.11)

(3.12)

dg —g [e&(dR +dz )+R dP ] (3.1)

The most general nonrotating axisymmetric three-
metric can be written in the form' a=

12
arcsin(e) oblate,

sac
6 1+e

ln prolate .
5ce 1 —e

(3.13)

For a moment of time symmetry, the extrinsic curvature
satisfies K; =0. The only remaining dynamical com-
ponent of the field is the metric function q. We will look
for initial data that satisfy q =0. The line element then
becomes conformally flat:

(3.2)

T =pu u (3.3)

When convenient, we will utilize Cartesian coordinates
(x,y, z), cylindrical coordinates (R,z, g), or spherical po-
lar coordinates (r, 8, P) for the Euclidean metric 5;i.

The stress-energy tensor for dust is

The density profile p resulting from Eq. (3.7) is inho-
mogeneous. It is constant in these coordinates on self-
similar spheroids and increases outwards from the center.

Geometric probes

3r e
r ee+ + er

44, e +cot8

If an apparent horizon exists in the three-metric (3.2),
then by axisymmetry it is a surface of revolution r =r(8)
satisfying"

where p is the rest-mass energy density and u„is the
four-velocity,

The only Einstein equation that the initial data must
satisfy nontrivially is the Hamiltonian constraint

where

44,.—r e
—+
r

, 44, e
2r r' =—0, —(3.14)

' '8 =16'', (3.4)
r e 0at 8=0,n. l2——. (3.15)

where p*=T„n"n and n" is the normal vector to the
initial hypersurface t =0. For a configuration momen-
tarily at rest, u" =n", and so p* =p. Thus the Hamiltoni-
an constraint becomes

V f= —2m/ p

with the boundary conditions

V/=0, r =0, $~1+, r~ 00,M
2r

(3.5)

(3.6)

where M is the total mass energy of the configuration.
To obtain an analytic solution, set the density profile to

be r =ro+r20, 0((1, (3.16)

While the coefftcients in Eq. (3.14) are analytic, we have
to integrate the equation numerically. However, since it
is an ordinary differential equation (ODE), it can be
solved to essentially arbitrary accuracy. A simple
method is to start at the pole with a trial value r =ro and
integrate to the equator. Vary ro, starting at large
ro))M, and search for a sign change of r e at the equa-
tor. If there is no sign change for any ro, there is no ap-
parent horizon. If there is a sign change, one can iterate
until r e ——0 to locate ro precisely. In practice, because of
the cotangent singularity in Eq. (3.14), one actually be-
gins the integration at finite 0 using
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where r2 is obtained by series expansion of the
coeScients in the differential equation.

To aid in evaluating the hoop conjecture, we will want
to compute certain invariant measures of the apparent
horizon (AH). Its equatorial and polar circumferences
are given by

- r-~~—r ~
0.6}—
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while its surface area is

4~(2M)' 4M' (3.19)
FIG. 1. Representative cases of fully relativistic, momentari-

ly static prolate spheroids. The solid line shows the matter sur-
face. The dashed line shows the apparent horizon if it is
present. The coordinates are in units of M. Parameters for the
specific cases are given in Table I. Note that whenever any di-
mension exceeds =0.5M, no apparent horizon forms (hoop con-
jecture).

Note that the dimensionless area defined in Eq. (3.19) is
always less than or equal to one. This is because

WEH aEH

4n(2M)~ 4m(2M) 4n(2Ms„,)) 4m(2Ms„,))

(3.20)

2 2r & r g
re&

—2
' —r+2 1+
r f 2

The 6rst inequality follows because the apparent horizon
always lies inside the event horizon (EH); the second be-
cause the mass Mz„,& of the Schwarzschild black hole
inevitably left at the end of the dynamical evolution must
not exceed the initial mass; the third because the area of
the event horizon can never decrease.

A similar chain of reasoning provides an upper limit to
the amount of gravitational radiation that can be emitted
during the dynamical evolution of the spheroid:

(3.24)

We vary the initial value of r and r & on the semimajor
axis and compute the circumference using the solution of
Eq. (3.24} in Eq. (3.18). In this way we can locate the
minimum circumference that is everywhere outside the
matter.

As a diagnostic of the presence of singularities, we
evaluate the Riemann invariant outside the matter:A

4m(2M )

~Erad M fina

M M
=1— &1— (3.21)

It is illuminating to compute the equatorial and polar
circumferences of the matter surface. The equatorial cir-
cumference C',"+ is given by Eq. (3.17) with r(8) replaced
by a. The polar circumference C'"), is given by Eq. (3.18)
with

( I ) —0.6— (3)(2)0.6- 0.6—
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The rnatter circumferences can be arbitrarily large,
even for compact configurations well inside their ap-
parent horizons. To assess the hoop conjecture, we must
calculate the minimum circumferences outside the
matter. These minimum circumferences must be geo-
desics of the two-metric. The minimum equatorial cir-
cumference C, '" must be a circle, so we evaluate Eq.
(3.17) at various radii outside the matter and search for
the minimum. The geodesic equation for the minimum
polar circumference C~I", is

0
0.6 0

I

0600 0.2 0.4 0.6
0
0p.40.2

FIG. 2. Representative cases of fully relativistic, momentari-
ly static oblate spheroids. The solid line shows the rnatter sur-
face. The dashed line shows the apparent horizon if it is
present. The coordinates are in units of M. Parameters for the
specific cases are given in Table II.
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TABLE I. Properties of prolate configurations in Fig. 1.

No.
Apparent

c /M M /Mo horizon. C,""/4m. M C ","l,/4aM A /16aM C'"'/47rM
eq C '"/477M C p,'l", /4m. M

0.01 0.40
0.99 0.40
0.99 0.65
0.99 0.70
0.999 0.40
0.999 0.70

0.40
0.20
0.29
0.30
0.15
0.24

Yes
Yes
Yes
No
Yes
No

1.00
0.94
0.86

0.94

0.99
1.03
1.10

1.03

1.00
0.99
0.96

0.99

1.01
0.74
0.57
0.55
0.46
0.32

1.01
2.49
2.00
1.95
4.44
3.21

1.00
0.74
0.57
0.55
0.46
0.32

1.00
1.03
1.07
1.08
1.03
1.08

(3.25)

This is most easily evaluated in Cartesian coordinates,
where

I=96/ 12(g 1(|'i)2—96/ —
lip g, 'g, j+1(,—10$ PV

(3.26)

We point out that trivial shell-crossing singularities give
finite values of I in the matter exterior.

IV. TESTING THE HOOP CONJECTURE

We have done a large survey of the solutions described
in the previous section for different values of e and a/M
(oblate) or c/M (prolate). A representative sample of the
results for the prolate case is tabulated in Table I and
displayed in Fig. 1. The corresponding sample for the
oblate case is in Table II and Fig. 2.

Consider the implications of the solutions for the hoop
conjecture. As the figures show, all prolate spheroids
with c/M ~ 0.5 have apparent horizons, regardless of the
eccentricity. The same is true for all oblate spheroids
with a /M 5 0.5. Recall that the event and apparent hor-
izons coincide for a static metric; for a Schwarzschild
black hole they are situated at r/M =0.5 in these coordi-
nates. For these spheroids, when there is an apparent
horizon, r(8)/M=0. 5, independent of 8. An invariant
expression of this result is the statement that
Ceq /2n(2M)=1 and C g, /2n(2M)=1, independent of
e. The precise values of these quantities for the illustrat-
ed cases are given in Tables I and II. Also tabulated are
the areas, Eq. (3.19).

Table I shows that there exists a configuration (case 4)
with a minimum circumference (in units of 4n.M) of 1.08
that has no apparent horizon, while Table II shows that

there is another configuration (case 3) with a minimum
circumference of 1.09 that has an apparent horizon.
From this we conclude that it is impossible to prove the
hoop conjecture with a universal numerical coefficient, at
least for apparent horizons. Furthermore, Bonnor' has
already shown that charged spheres can exist without
collapsing to black holes even if their greatest circumfer-
ence is somewhat less than 1.

Note that even when there is no apparent horizon,
there may still be an event horizon. Only a fully dynami-
cal evolution of the given initial data locate the presence
or absence of an event horizon. Of course, the existence
of an apparent horizon implies the existence of an event
horizon.

As we see from the tables, even when there is an ap-
parent horizon the circumference of the matter surface
can be arbitrarily large. For example, a sphere with
a/M —+0 has C',"„'~ ao. Clearly, the hoop conjecture is
concerned with the minimum circumference in every
direction being & 4mM. All of the configurations we have
constructed satisfy this limit to within 10%.

What is worrisome about this confirmation of the hoop
conjecture are the extended limiting configurations with
e ~1 and no apparent horizons, such as cases 4 and 6 in
the figures and tables. In fact, we have constructed simi-
lar cases with e far closer to unity than those shown in
the figures. In this limit the spheroids become singular,
as measured, for example, by the invariant I (Fig. 3). In
the oblate case, the singularity is an equatorial ring just
outside the edge of the rnatter. This singularity is rather
innocuous: it is Newtonian in origin, and it is already
clear from the Newtonian theory that there are no prob-
lems integrating geodesics through it. In the prolate
case, by contrast, the singularity is a spindle located just
outside the matter. It too is Newtonian in origin, but as

No.

TABLE II. Properties of oblate configurations in Fig. 2.

Apparent
a /M M /Mo horizon? C,""/4m.M C",~, /4~M A /16m. M 8',""/4aM C'" l', /4aM C', '"/4m. M C,'l", /4~M

0.01 0.40
0.99 0.40
0.99 0.54
0.99 0.60
0.999 0.40
0.999 0.60

0.40
0.32
0.38
0.41
0.30
0.40

Yes
Yes
Yes
No
Yes
No

1.00
1.07
1.17

1.07

0.99
0.96
0.94

0.96

1.00
0.99
0.98

0.99

1.01
1.21
1.17
1.17
1.22
1.18

1.01
1.05
0.98
0.97
1.10
1.01

1.00
1.05
1.09
1.11
1.06
1 ~ 11

1.00
0.96
0.95
0.95
0.96
0.94
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FIG. 3. The logarithm to the base 10 of the Riemann invari-
ant I is plotted as a function of distance in units of M outside a
relativistic spheroid of eccentricity e =0.9999. The solid lines
are for a prolate spheroid with c/M = 1, the dashed lines are for
an oblate spheroid with a/M=1. In the limit e~1, the oblate
spheroid has a "mild" equatorial ring singularity, while the pro-
late spheroid has a "stronger" spindle singularity.

V. COLLAPSE SCENARIO

We can employ our momentarily static models to illus-
trate the plausible dynamical evolution of a collapsing

in the Newtonian case, it if far more serious than the ob-
late ring [cf. Eqs. (2.8) and (2.9) versus (2.16) and (2.17)].
World lines of particles approaching the spindle are likely
to terminate, by analogy with the Newtonian result.

Are the extended configurations with e ~1 naked
singularities? We certainly do not expect horizons to
form if the hoop conjecture is true: for the oblate
configuration, C,q'"/2sr(2M) =1.25, while for the prolate
configuration 8»i",/2m (2M) = 1. 15. And what about
configurations such as case 3? Here there is an apparent
horizon, but it does not enclose al1 of the matter. Does
the event horizon itself contain all the matter, or does
some matter stick out of the horizon and become a
"seminude" singularity in the limit e ~1?

prolate spheroid. Consider a sequence of momentarily
static configurations with fixed rest mass Mo and polar
extent c/Mo. This sequence is parametrized by decreas-
ing values of equatorial radius a and increasing eccentri-
city e. Such a sequence might crudely model the late
stages of collapse of a prolate spheroid to a spindle singu-
larity. In the Newtonian limit, the sequence is an accu-
rate guide to the outcome of Lin-Mestel-Shu collapse,
even though it does not contain kinetic energy. In this
case, the time scale for collapse in the equatorial direc-
tion is much shorter than the time scale for c to change.

This sequence makes plausible that nonsingular,
asymptotically Rat, prolate initial data can evolve to
singularities. Equation (3.12) shows that M~O as e~ 1

for fixed Mo and c/Mo. This has two major implications.
First, it is likely that copious gravitational radiation will
be emitted during prolate collapse —in principle, all the
mass energy is being radiated away. Second, c/M —+ oo,
so according to our earlier discussion on the hoop conjec-
ture, no horizon will form and a naked singularity will

appear.
Without a dynamical calculation, the above scenario is

speculative. The sequence does not truly model dynami-
cal collapse. In real collapse the density profile evolves,
time symmetry does not hold after t =0, gravitational
waves are present, and there is appreciable kinetic ener-

gy. Moreover, it is not obvious that the quantity c/Mo is

the axial distance measure that remains constant at late
times during relativistic collapse. Accordingly, the fina1

state may be nonsingular. It is nevertheless interesting
that the few numerical examples of prolate collapse,
which even included pressure, seem to suggest the forma-
tion of a naked singularity. The resolution of this crucial
issue is a high priority for future numerical work.
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