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Fermion-number susceptibility in lattice gauge theory

Steven Got tlieb
Department of Physics, Indiana University, Bloomington, Indiana 47405

W. Liu
Department ofPhysics, University of Caltfornia, La Jolla, California 92093

R. L. Renken and R. L. Sugar
Department of Physics, University of California, Santa Barbara, California 93016

D. Toussaint
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, I/linois 60510

and Department ofPhysics, University of California, La Jolla, California 92093
(Received 9 June 1988)

We study the response of the quark number density to infinitesimal chemical potentials in quan-
tum chromodynamics with two flavors of light quarks. We find that both the singlet and nonsinglet
susceptibilities give clear signals for the chiral-symmetry-restoration phase transition. They are
large and approximately equal in the high-temperature phase, which is consistent with a plasma of
light-mass quarks. The quark-number susceptibility is consistent with zero in the low-temperature
phase as expected from confinement. For U(1) lattice gauge theory with four flavors of fermions we
find that the singlet susceptibility is zero in both the chiral-symmetric and broken phases as expect-
ed on theoretical grounds, while the nonsinglet susceptibility jumps at the phase transition.

I. INTRODUCTION

Recently, considerable effort has gone into the study of
the chiral-symmetry-restoration phase transition in lat-
tice QCD with dynamical quarks. This transition is im-
portant for understanding the structure of the theory and
may also have implications for the study of heavy-ion col-
lisions and the early Universe. Simulations by a number
of groups' have shown that for sufficiently light quark
masses there is a first-order transition between a low-
temperature phase of ordinary hadronic matter in which
chiral symmetry is spontaneously broken, and a high-
temperature phase in which chiral symmetry is restored.
The temperature of this transition has been estimated to
be 130+30MeV for two flavors of zero-mass quarks.

The primary evidence for the restoration of chiral sym-
metry in the high-temperature phase is the vanishing of
pg as the quark mass tends toward zero. Additional evi-
dence comes from measurements of the hadronic screen-
ing lengths. ' Here one measures the correlation func-
tions associated with color-singlet quark-antiquark or
three-quark sources for large spatial separations. On
symmetric (zero-temperature) lattices the exponential
falloff of these correlation functions determines the had-
ron masses. On asymmetric (high-temperature) lattices it
determines the hadronic screening lengths. These screen-
ing lengths exhibit the parity doubling expected in a
chirally symmetric state. In particular, the screening
length of the correlation function whose source has the
quantum numbers of the nucleon is equal to that of its
opposite-parity partner. The inverse screening lengths
are comparable in magnitude to the zero-temperature

masses. Similarly the m and p screening lengths are pari-
ty doubled with the 0 and a, screening lengths, respec-
tively. Explicit chiral symmetry requires a number of re-
lations among the correlation functions themselves,
which are found to be well satisfied in the high-
temperature phase in the limit of zero quark mass.

It is important to explore the high-temperature phase
in greater detail. This phase is often referred to as a
quark-gluon plasma. However, at the energy scale of the
phase transition the gauge coupling is not small, so the
plasma would have to be strongly interacting immediate-
ly above the transition temperature. Indeed, the energy
density, which jumps at the phase transition, is large in
the high-temperature phase and is even larger than the
Stefan-Boltzmann law on the lattice. On the other hand,
the pressure, which on general grounds must be continu-
ous across the transition, is small in both phases. As a re-
sult, thp energy and pressure do not satisfy the P =—,'E re-
lationship characteristic of a free relativistic gas. It has
been suggested that the long-distance behavior of the
high-temperature phase is characterized by the propaga-
tion of color-singlet objects, just as in the low-
temperature phase.

Additional information concerning the high-
temperature phase can be obtained by studying the
response of the quark number density to changes in the
chemical potential. ' " We pre at present performing
simulations of QCD with two flavors of light dynamical
quarks: the u and d. The expectation values of the num-
ber density of u and d quarks, n„and nd, are given by

n„= lnZ,a

V, t)p„
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a
nd = lnZ

V, Bpd
(2)

where V, is the spatial volume, P the inverse temperature,
p„and pd the chemical potentials of the u and d quarks,
and Z the partition function. The response of the quark
number density to infinitesimal changes in the chemical
potential is measured by the singlet susceptibility

T

a + (n„ +nd),
Bp„ Bpd

(3)

while the response of the third component of isospin den-
sity is measured by the nonsinglet susceptibility

a
+NS

ap„ ap,
(n„ —nd) . (4)

where P is an isospin doublet of the u and d quarks and v
are the isospin generators. A nonzero pNs causes
different densities of u and d quarks, and so to completely
simulate an environment such as the interior of a neutron
star we would need both )us and pNs nonzero. (Even
heavy-ion collisions would have a small pNs. )

It is notoriously difficult to perform QCD simulations
at finite singlet chemical potential; however, these suscep-
tibilities can be measured at zero chemical potential in a
standard QCD simulation, just as the magnetic suscepti-
bility of a ferromagnet can be measured from the fluctua-
tions in the magnetization at zero external field. The
measurement procedure will be discussed in detail in Sec.
II.

In order to understand the type of information that can
be obtained from the susceptibilities, consider a gas of
free quarks. If the quark mass is small, then we expect
both Xs and XNs to be large since it is relatively easy to
create a quark or antiquark. For example, if the quark
mass m is much smaller than the temperature T then in
the continuum limit Xs~Nf T, where Nf is the number
of quark flavors. On the other hand, if the quarks are
massive then it will be difticult to create a quark or anti-
quark, and the susceptibilities will be suppressed by a fac-
tor of exp( —m/'r). As we have already indicated, the
high-temperature phase of QCD is unlikely to be de-
scribed in terms of a gas of free quirks in the vicinity of
the transition temperature. nevertheless, if the funda-
mental excitations of the system are low-mass objects
with the quantum numbers of quarks, then we expect
both Xs and XNs to be large. On the other hand, in the
low-temperature phase we expect 7& to be small since

I

In the continuum theory, the flavor singlet and nonsing-
let susceptibilities appear in the Lagrangian as

L=Lo+60(PS+PNs +)4

quarks are confined and the only states with nonzero
quark number have large masses. However, XNs can be
large in the low-temperature phase since the isospin-one
pion is the lowest-mass state in this phase.

The baryon-number susceptibility may be important in
understanding the history of the early Universe. In par-
ticular, if the two phases of QCD have very different sus-
ceptibilities and if the transition is first order with large
supercooling, the chiral-symmetry-breaking phase transi-
tion could cause inhomogeneities in the baryon density
which might survive to affect nucleosynthesis. '

The organization of the paper is as follows. In Sec. II
we describe in detail our procedure for evaluating the
fermion-number susceptibilities. In Sec. III we present
numerical data for both SU(3) and U(1) lattice gauge
theory with dynamical fermions, and briefly discuss our
results. Finally in an appendix we discuss the susceptibil-
ity of a free fermion gas on the lattice. As is well known,
care must be taken in introducing a chemical potential
into lattice theories in order to obtain a finite result in the
continuum limit. ' ' We show that the prescription ob-
tained by Gavai' for the finiteness of the energy density
for nonzero p is sufficient to ensure the finiteness of the
quark-number susceptibility.

II. FERMION-NUMBER SUSCEPTIBILITY
ON THE LATTICE

Let us begin by discussing the fermion-number suscep-
tibilities in the continuum theory for two flavors of fer-
mions. After integrating out the fermion degrees of free-
dom the partition function can be written as

Z = U e ' detM„U p„detMd U pd

eff ' u' d

Here Sg is the action for the pure gauge theory, U is the
gauge field, and M„d and p„d are, respectively, the fer-
mion matrices (inverse propagators) and chemical poten-
tials of the two flavors of fermions, which we have denot-
ed by u and d. [5U] denotes an integration over all
configurations of the gauge field. Equations (1) and (2)
can be rewritten in the form

—s, , 1 ~M
n =Z ' J [5U]e '

( V,P) 'Tr
M Bp

with a=u, d. The singlet and nonsinglet susceptibilities
are then given by

a'M.
Xs,ws= Tr

S a=ud a ~pa

aM. 1 aM.
M Bp M c3p

2aM„& aM„
+ Tl +Tr

V,p M„Bp„Md dpd

BM„& BMd
Tl +Tr

VP M„a) „M, a~,
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where the plus signs are for Xz and the minus signs for XNs. Since the continuum fermion matrices are linear in the
chemical potential the first term on the right-hand side of Eq. (8) naively vanishes. We have included it here because on
the lattice the fermion matrices are nonlinear in p, and such terms play an essential role.

In perturbation theory for equal-mass quarks the contributions to the susceptibilities are represented by the Feynman
diagrams in Fig. 1. In these diagrams the dots represent insertions of the baryon number of isospin current. The cir-
cled dot in Fig. 1(b) represents the 8 M/Bp term in Eq. (8). Only the quark parts of the diagrams are drawn —gluons
should be added in all possible ways. Since the nonsinglet susceptibility includes an isospin matrix at every dot, it is
clear that the diagram in Fig. 1(c) will not contribute to the nonsinglet susceptibility, and that Figs. 1(a) and 1(b) will
contribute equally to the singlet and nonsinglet susceptibilities.

The susceptibility has dimensions of mass squared, and therefore should go as T . However, if care is not taken in
regularization we are likely to find a term proportional to 1/a, where a is the lattice spacing. In the continuum theory
this is handled by simply subtracting the result at zero temperature. In the lattice theory the second derivative term,
Fig. 1(b), which arises when both derivatives with respect to p act on the same link, cancels this divergence. This can
be seen by computing the zero-temperature susceptibility of a free fermion theory, as will be discussed further in the
Appendix.

For the lattice theory we use staggered fermions, and write the fermion matrix in the form

(9)
v=x, y, z

Here i and j specify lattice sites, U, , is the SU(3) or U(1) matrix associated with the lattice link between sites i and i +v,
a is the lattice spacing, and g the standard staggered fermion phases. The prescription for introducing the chemical po-
tential has been discussed by a number of authors. ' ' In the Appendix we show that the choice made in Eq. (9) is just
one of a class that will lead to a finite continuum limit for both the energy density and fermion-number susceptibilities
for the free theory.

The staggered fermion matrix given in Eq. (9) describes four flavors of fermions each coupled to an identical chemical
potential p. In order to simulate Nf flavors of light fermions, we can use the effective action

Nf
S,a =S~+ Tr lnM( U, p) . (10)

The factor of Nf /4 ensures that the fermion loops are weighted correctly. In our present work we take Nf ——2, but we
will present formulas for the general case. The functional integral of Eq. (6) is, of course, now an integral over all link
matrices U, , with the Haar measure.

We can read off expressions for Xs and XNs from Eqs. (8) and (10):

1 +f
T

1 8 M 1 BM 1 BM
V,P 4 M Qpz U M Bp M Bp

1

V,P

2
Nf
4

1 BM 1 BM) (~
1 i3M)~

and

1 Nf 1 O'M

VI3 4 M gpz

(a)

(12)

Again ( ) U denotes an average over gauge
configurations weighted as exp( —S,fr). It is, of course,
extremely difficult to generate such configurations for
p&0, since the fermion determinant, and therefore the
effective action, are not real. However, we can determine
Xz and XNs at p=0 by means of a standard simulation,
and thereby determine the response of the system to
infinitesimal changes in the chemical potentials.

In order to gain some insight into the structure of the
susceptibilities, let us imagine making a loop expansion of
the fermion determinant. On a finite lattice there are a
finite number of terms in such an expansion. Ordinary
closed loops will be independent of the chemical potential

(b)

(c)

FIG. 1. Feynman diagrams contributing to the susceptibili-
ties for equal-mass quarks. The dots represent insertions of the
baryon number or isospin current. The circled dot in (b)
represents the 0 I/0p term in Eq. (8). Only the quark parts of
the diagrams are shown.
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since they will have as many links directed in the forward
as backward time direction —that is as many factors of
exp(a p) as of exp( —a p). The p dependence of the parti-
tion function will come from loops that wind one or more
times around the lattice in the Euclidean time direction.
At p=0 the contribution to 8 lnZ/Bp arising from a sin-
gle gauge configuration will have the form

Tr = g C~ ( U, U )Tr( Ur —Ur ) .
1 aM

M Bp
(13)

Uz is a product of U matrices along a path L that winds
one or more times around the lattice in the Euclidean
time direction. The sum in Eq. (13) is over all such paths.
The terms proportional to Uz and Uz correspond to the
two possible ways of traversing these paths. The fact that
they enter with opposite signs follows from the way the
chemical potential enters into Eq. (9). The coefficients
Cz(U, Ut) arise from products of loops that are not
differentiated. Taking into account that there are two
ways of traversing such loops, one sees that for p=0 the
Cq are real and symmetric under interchange of U and
Ut. Thus, it is clear that for any particular gauge
configuration Tr(1/M)(aM /ap ) is pure imaginary,
which reflects the fact that the effective action becomes
complex for nonzero values of the chemical potential.
The average of Tr( 1/M)( aM /ap ) over all gauge
configurations vanishes since it changes sign under the
transformation U~U, while the Wilson action and the
measure are invariant. Notice that the third term on the
right-hand side of Eq. (11) does not vanish. It makes a
negative contribution to Xz. This gives the inequality

XNs) Xs. In the low-temperature phase, this inequality
reflects the existence of mesons which have isospin but no
baryon number and so contribute to XNs but not to 7&.

In a quenched approximation calculation there is no
mechanism for the density of one flavor of quark to affect
the density of another, so Bn„/Bpd ——0. Therefore, from
Eqs. (3) and (4), in the quenched approximation Xs ——XNs.
This is related to the fact that in quenched approximation

calculations with finite chemical potential at zero temper-
ature the condensate appears to form at p= —,'m rather
than at p= —,'m~ (Ref. 15).

The simulation is carried out at zero chemical potential
with the effective action of Eq. (10). Independent
configurations of the gauge fields are generated using the
hybrid molecular-dynamics algorithm that we have previ-
ously described in detail. ' ' The measurement of the
susceptibilities poses a major dimculty. The exact evalua-
tion of the traces in Eqs. (11) and (12) would be prohibi-
tively expensive since it would require a computation of
all of the matrix elements of M '. By contrast in gen-
erating new field configurations and in most measure-
ments it is only necessary to calculate M ' applied to a
particular vector, and this can be done relatively
effectively by the conjugate-gradient method. To remedy
this situation we make use of unbiased estimators for Xz
and XNs. We introduce L vectors of complex Gaussian
random numbers R, a=1, . . . , L, of dimension equal to
the lattice volume. The individual components of R,
R;, are distributed as exp( —

~
R;

~

). We then have
the identities

(14)

and

1 aM t 1 aM 1 aM
ap ~ ~M ap ~ ~ M ap

1 M+5 pTr
M p

'2

(15)

where ( )„ indicates an average over the Gaussian ran-
dom vectors. The susceptibilities can now be obtained by
averaging over both the gauge configurations U and the
random vectors R:

+f 1 ~t 1 aM 1 aM~

1

V,P

'2
~ 1 aM & 1 aM

(16)

and

Rt 1 BMR — 1 ~~ 1 ~MR
V,p 4 'M ap~

'
Ug 'M ap M ap '

U~

The third term in Eq. (16), which gives rise to the two-trace term in Eq. (11), has a significantly larger variance than
the terms quadratic in R . It is advantageous to use a number of random vectors at each measurement of this term
even though this introduces extra conjugate-gradient calculations. With L random vectors we obtain L estimates of
the two-trace term. The variance of this term for a single gauge configuration is given by
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2 2

2

—4 T 1 BM T 1 BM
Tl TI

L M Bp M Bp

'2
2 1 BM

M RIM

2

8T 1BMT 1BM+ Tl Tr
M RIM M BP

4

+ Tr . (18)
6 iBM

For large values of L the variance will of course fall as
1/L. However, [Tr(1/M)(BMIBp)], which appears in
the 1/L term in Eq. (18), is generally small compared to
Tr[(1/M)(BMIBIu)] . Therefore, for intermediate values
of L such that

1 BML «Tr
M Bp

'2
1 BM

'M ap,

'2

(19)

the variance will fall like 1/L with increasing L. Since
each additional random vector requires an additional
conjugate-gradient calculation, the size of the error bars
will be inversely proportional to the computer time in
such a regime. We have typically used L =10, and found
that in the neighborhood of this value the variance of the
two-trace term is proportional to 1/L .

III. NUMERICAL RESULTS

We first discuss results for SU(3) lattice gauge theory
with two flavors of dynamical quarks. We have previous-
ly reported calculations of the quark-number susceptibili-
ties on 8 &&4 lattices with am =0.05. Here we present re-
sults for am =0.025 on 8 0&4 and 10 && 6 lattices.

In Figs. 1 and 2 we plot Xz and XNs as a function of
6/g for the 8 X4 lattice. We have measured the critical
coupling for the transition between the chiral-symmetric
and broken-symmetry phases to be 6/g, =5.28+0.01 for
this lattice and quark mass. ' This point is marked by
the arrow labeled T, in the figures. We have found the
critical coupling for the 10' X 6 lattice to be 6/g,
=5.43+0.03. This value corresponds to a temperature
of 1.5T, on the present lattice and has been so marked in
the figures. We see that X~ is consistent with zero in the
low-temperature phase, as is expected from confinement.
In this phase all states with nonzero quark number have
large masses. In addition, XNs is small in the low-
temperature phase. In this case the lowest excitation is
expected to be the pion. We have measured the pion
mass on an 8 )&24 lattice at 6/g =5.28, and found
am =0.4184+0.0009 (Ref. 18). Since T, =1/4a =130
MeV (Ref. 6) we have m„=218 MeV. As XNs will be
proportional to exp( m IT) at low te—mperatures, it is
hardly surprising to see a suppression for T & T, . Both
7& and XNs rise sharply as the temperature is increased
through its critical value indicating that the fundamental
excitations in the high-temperature phase have small free
energy. The fact that the two susceptibilities approach
approximately the same limit is consistent with these ex-
citations being light-mass quarks. Using the same argu-
ment as for the pion, the bare-quark mass is approxirnate-
ly 13 MeV, which is small on the scale of T, .

The increase in XNs across the transition can in part be

0.3 —
8 „4

I I I I I I I

0.2—

N ~ continuum
0.1—

0.0—

—0.1 I I I I I I I

T. 1.5xT,

5. 1 5 2 5.3 5.4

6/g, m=0. 025
5.5

FIG. 2. 7z as a function of 1/g' for quark mass of 0.025 on
an 8'&(4 lattice. The horizontal arrows label the values of gz
for two flavors of free quarks of this mass on an 8 )&4 lattice
and in the continuum. The vertical arrows indicate our earlier
estimates of the values of 1/g at which the high-temperature
crossover occurs for N& ——4 and 6. This may be interpreted as
the crossover temperature and 1.5 times the crossover tempera-

I

explained by the difference in weight of the quark and
pion states. For zero chemical potential XNs

——(I, ),
where I, is the z component of isotopic spin. (The scaling
of 7 as the square of the isospin or baryon number of the
particle is easily understood. For example, since the
baryon number of a nucleon is 3 times that of a quark, 3
times as much energy is gained by adding a baryon to the
system, and each baryon added contributes 3 times as
much to the charge as a quark. ) There are three pion
states, two with I, =1, and one with I, =0. Taking into
account the color, spin, isospin, and particle-antiparticle
degrees of freedom, we have 24 quark states each with
I, = —,', so the quark states have 3 times the weight of the
one-pion states. Similarly, at zero chemical potential Xz
measures the square of the quark number. Single nucleon
states will contribute to Xz with 3 times the weight of
single-quark states. It has been pointed out that because
of the large statistical weight of the baryon states, the ex-
citation of many such states at high temperatures would
give rise to an increase in the susceptibilities. However,
this effect is not expected to give as sharp a transition as
we have found. ' In addition, comparing the present re-
sults with our previous ones at am =0.05, one finds a
significant sharpening of the crossover as the quark mass
is lowered. It is difficult to explain such behavior in
terms of color-singlet baryon states, whose masses are rel-
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atively insensitive to the quark mass in this parameter re-
gion. ' Furthermore the apparent equality of 7& and XNs
is most easily explained if the fundamental excitations in

the high-temperature phase are quarks.
The cancellation between the two one-trace diagrams

[Figs. 1(a) and 1(b)] is essential to our results. For
am =0.025 on the 8 X4 lattice at 6/g =5.36, in the
high-temperature phase the two diagrams contribute
—0. 183(2) and 0.414(7), respectively, giving XNs
=0.231(2). In the low-temperature phase at 6/g = 5.22
the two terms are —0.351(5) and 0.378(1), for a total of
0.027(5).

We have calculated susceptibilities for a gas of free
quarks by summing modes in momentum space, and the
results are marked by arrows in Figs. 1 and 2 for both an
8 )&4 lattice and for the continuum limit. It is clear that
there are very significant finite-size effects on the lattices
we are studying. Of course, the quark interactions are
not small in the coupling range under consideration, and
we are not dealing with a gas of free quarks.

In the low-temperature phase, 7z has significantly
larger error bars than XNs because of fluctuations in the
two-trace term. In Fig. 4 we plot X& —XNs, which mea-
sures the response of n„ to a change in pd. Although this
difference is small and the error bars relatively large, it is
clearly negative. In Fig. 5 we plot (1(lg) as a function of
6/g for the same lattice and quark mass. The crossover
occurs at the same coupling as for the susceptibilities.
Indeed, Xz and XNs provide as good a signal for the phase
transition as (g1( ).

In Figs. 6 and 7 we present data for g& and XNs on a
103)&6 lattice. The critical value of 6/g is marked by
the arrow labeled T, . The critical value of 6/g for the
8 )&4 lattice corresponds to a temperature of —', T, and la-

beled accordingly. The qualitative results are the same as
those found for the 8 )&4 lattice, although the statistical
errors are larger.

I I I I I

Tc 1.5xT,

0.2—
M

0.1—

0.0—

—0.1

5. 1 5.2 5.3 5,4

6/g, m=0. 025

FIG. 4. Pz —XNs as a function of 1/g for quark mass of
0.025 on an 8 )&4 lattice. This quantity is the two-trace term in

Eq. {10).

Kogut and Dagotto have recently provided convincing
evidence that compact U(1) lattice gauge theory with four
fiavors of dynamical fermions has a first-order phase
transition between a phase in which chiral symmetry is
spontaneously broken and one in which it is realized.
We have measured Xs and XNs for two values of 6/g in
each of these phases. The results are shown in Fig. 8
with the data for Xz being plotted as squares and that for
XNs as circles. Note that XNs changes dramatically across
the phase transition, while Xz is consistent with zero in
both phases.

We can understand the vanishing of 7& in two ways.
First, if we set the chemical potentials of all fermions
equal as is appropriate for a measurement of Jz, then the
chemical potential is coupled to the total charge, which is

8'x4
I I I I I I 60

0,2—
0.4—

N ~ continuumR
0.1—

0.0—
1.5xT,

2
pt

pi

0 ] I I I I I I I

5. 1 5.2
6/g',

I I I I I I

5.3 5.4
m=0, 025

Q Q
I I I I

5. 1

I I I I I I I I I I I I

5 2 5,3 5.4

6/g, m=0. 025

FIG. 3. +Ns as a function of 1/g for quark mass of 0.025 on
an 8'X4 lattice.

F1G. 5. pg as a function of 1/g for m =0.025 on an 8 X4
lattice.
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I I I I [ I f I I
'

I I I / I I I I

310 x6
.2 r0.

0.10—

+- continuum
0.05—

0.1—

0.0

0.00—
P/g x'f,

I I I I I I I I

5 3 5.4 5 5

6/g, m=0. 025

I I I I I I I I I

1.0
l/g'

FIG. 6. Xz as a function of 1/I' for quark mass of 0.025 on a
10 &(6 lattice.

FIG. 8. 7z and P» for U(1j lattice gauge theory with a quark
mass of 0.25 on a 8'X4 lattice. The squares are 7& and the cir-
cles +Ns.

the generator of the gauge symmetry. There is a long-
range field associated with this charge. So, if we try to
put a finite charge in a periodic box there is nowhere for
the Aux to go. This situation is quite different from SU(3)
lattice gauge theory, where the quark number is not a
generator of the gauge symmetry, and is therefore not as-
sociated with a long-range field. The same result can be
understood from a loop expansion of the fermion deter-
minant. As we pointed out previously, the only terms in
this expansion that depend on the chemical potential are
those arising from loops that wind around the lattice one
or more times in the Euclidean time direction. Suppose
we make a transformation for all temporal links ernanat-
ing from a single time slice of the form U~Ue' . The

I I l I I I I I I I I I I I I I

~ 10 x6

0.10—

N ~ continuum
0.05—

pure gauge action will be invariant under such a transfor-
mation, but a temporal loop that winds around the lattice
N times will pick up a factor of exp(i8N ). Clearly such a
term will average to zero when we integrate over all
gauge configurations. So, the partition function will be
independent of the chemical potential and Xs will vanish
identically. ' This argument clearly does not hold when
the chemical potentials of the individual ferrnions are not
equal, so XNs need not vanish. For SU(3) lattice gauge
theory, the argument goes through for transforrnations
generated by the center of the group, Z3. In this case, we
see that Xs need not vanish, but receives contributions
only from temporal loops with winding numbers that are
multiples of 3. The fact that the overall quark number
must be a multiple of 3 does not imply that the quarks
are confined —they might be arbitrarily far apart.

The large value of XNs in the chiral-symmetric phase is
analogous to the results found for SU(3) lattice gauge
theory. Our interpretation is that the fundamental exci-
tations in this phase are the light-mass electrons, associ-
ated with the fundamental ferrnion fields in the theory.
The small value of INs in the broken symmetry phase in-
dicates that as in the case of SU(3) the fundamental exci-
tations in this phase are massive bound states.

We believe that our results for SU(3) and U(l) gauge
theories indicate that the quark-number susceptibilities
are useful tools for locating chiral-symmetry-restoration
phase transitions and for exploring the properties of the
different phases.

0.00—
8/3x T,

I I I t I I I I

5.3 5.4 5.5

6/g, m=0. 025

FIG. 7. XNs as a function of 1/g for quark mass of 0.025 on
a 10')& 6 lattice.
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APPENDIX

Care must be taken in introducing a chemical potential
into lattice field theories. This problem has been studied
in detail for free fermions, ' ' and Gavai has obtained a
set of constraints that must be satisfied if the energy den-
sity is to have a finite continuum limit. ' In this appendix
we show that these constraints are sufficient to guarantee
that the quark number density and susceptibilities also
have finite continuum limits.

We present our discussion for the case of naive fer-
mions. The extension to staggered fermions merely re-
quires the introduction of projection operators. Follow-
ing the notation of Gavai we write the fermion matrix in
the form

4 1

&,13 „„e+R sin (poa+i8)

ao .
iR sin(po+i 8) cos(po+i 8)

Bp

sin (poa+i8)
BR

Bp
(A7)

space and time directions, respectively, and n,-, n 0
=0,+1,+2, . . . . Let us begin by considering the expecta-
tion value of the number density:

( )
1 1 BM(p)"=V,P '

M(p) ai

M;,/ =ma&;, i+ —,
'

1'=X,J,Z

+-,'ro[f(as@, , ;—g(ay)&. i.;], (Al)

with e = [P + (am ) ]'i .
We go to the zero temperature by taking L ~~ for

fixed a. The sum over no becomes an integral, and we
have

where y„are the standard Euclidean Dirac matrices.
Gavai has found that one can obtain the correct continu-
um limit for the energy density at finite chemical poten-
tial provided f(ap)g(ap)=1 and lim, of(ap)
—g(ap)-2ap. It is convenient to write

—,'(f+g)=R cosh8, —,'(f —g)=R sinh8. (A2)

M(p) =i r P+i yoR sin(poa+i 8),
with

(A3)

and

P=(sinp, a, sinp a, sinp, a),
p;a =2m n; /N,

(A4)

(A5)

poa =2~(n +o,')/L . — (A6)

Here N and L are the number of lattice points in the

Gavai's finiteness conditions then become R =1 and
I9 lim, Oa p.

For free fermions the fermion matrix can be diagonal-
ized in momentum space:

( )
4 ~ ~ dPo 1

e +R sin (poa+i8)

ae .
iR sin(po+i 8) cos(po+i8)

Bp

+ sin (poa+i8) . (A8)
BR

Bp

To evaluate the integral over po it is convenient to make
the change of variable z = exp(ipo). We then have a con-
tour integral around the unit circle in the complex z
plane. The integrand has poles at z =0 and at z =+z+,
where

z+ ——e I[(e/R ) +1]' +e/R ) . (A9)

For definiteness we take 0)0. Then the poles at z =+z
are inside the unit circle for e) R sinh0, while those at
z =+z+ are never inside the unit circle. The contour in-

tegral can be done straightforwardly. For e) R sinh8 the
residue of the pole at z =0 exactly cancels those of the
poles at z =+z . We find

(n ) = g — 8(R sinh8 —e)+ 1—,6(e Rsinh8)—4 1 ae . 1 aR
V, „Reap R' &(ap) (e'+ R')'" (A10)

8 is the standard step function. If we now approach the
continuum limit by letting a~0 and V, ~ ~, then the
term in Eq. (A10) proportional to BR /B(ay) will give rise
to ultraviolet divergences. We must therefore take R to
be independent of ap. On the other hand, in order to ob-
tain the correct continuum limit we must have

d p(n ) =4f 6(p —(p +m')' ) .
(2~)

(A11)

lim, 0R =1 and lim, 00-aIM, as is true for the calcula-
tion of the energy density. With these restrictions we ob-
tain in the continuum limit



2896 GOTTLIEB, LIU, RENKEN, SUGAR, AND TOUSSAINT 38

The factor of 4, of course, indicates that the naive fer-
mion matrix describes four species of fermions.

For free fermions X~ =XNs. The susceptibilities can be
obtained by simply differentiating the above formulas
with respect to p.

Alternatively, the Tr[(1/M)(BM/Bp)(1/Ml(BM/Bp)]

term [Fig. 1(a)] and the Tr[(1/M)(B M/Bp )] term [Fig.
1(b)] in the susceptibility can be evaluated separately by
similar means. If this is done it can be seen that each dia-
gram is nonzero at T=O and hence divergent, but the
divergences cancel between the two diagrams. [Figure
1(c) does not contribute for free fermions. ]
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