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In the framework of finite-temperature perturbative QCD we examine the first-order corrections
to the rate of lepton pairs produced in a thermalized quark-gluon plasma. The dilepton rate is cal-
culated using the real-time formalism in two different ways by (i) applying the Feynman amplitude
approach and by {ii) analyzing the relationship to the discontinuity of the two-loop photon self-

energy at finite temperature. We mainly study the infrared and mass singular behavior and we show
that up to order a, the rate is free of these divergences in the limit of vanishing gluon and quark
masses.

I. INTRODUCTION

The existence of a new phase of matter, the quark-
gluon-plasma phase, at high temperature T or/and densi-

ty, is one of the most remarkable predictions of QCD
(Ref. 1). A number of experimental signals for the obser-
vation of the formation of this deconfined phase in ul-
trarelativistic heavy-ion collisions have been proposed
and are extensively discussed. Among these signals, lep-
ton pairs produced through a thermal Drell-Yan mecha-
nism have attracted much attention. A number of ques-
tions concerning the details of the production mechanism
have already been treated. ' In this paper we focus on
the validity of the perturbative expansion in the QCD
coupling up to O(a, ) for the dilepton production rate as-
suming the existence of a thermalized quark-gluon plas-
ma.

The real-time formalism of relativistic quantum field
theory at finite temperature is used throughout this pa-
per. In Sec. II we briefly present this formalism. We
show the main steps leading to the perturbative expan-
sion in terms of Feynman diagrams of the thermal vacu-
um expectation value of the product of electromagnetic
currents, which is the object of interest. In Sec. III we
study the O(a, ) corrections to the dilepton rate, using
this approach which follows rather closely Ref. 6. We
mainly focus on the infrared (IR} and mass singular be-
havior of the dilepton rate. The motivation is the follow-
ing.

(i) The IR region presents new features at T&0, since
the presence of the Bose-Einstein factor, which behaves
as 1/k for small gluon energies k, worsens the infrared
behavior of O(ct, ) contributions compared to the T=O
case.

(ii} The mass singularities attached to the emission or
absorption of a collinear gluon by a massless quark may
also not cancel. The Kinoshita-Lee-Nauenberg (KLN)

theorem does not apply at finite temperature. On the
other hand, the finite-T dilepton production is altogether
different from the T=O Drell-Yan process at high ener-
gies. There mass singular terms are absorbed into parton
distribution functions according to the prescriptions of
the factorization theorem, whereas at T&0 summation
over all phase space is performed. Although at finite-
temperature fermion masses get temperature-dependent
contributions, which would shield these mass singulari-
ties, the question of the presence of large terms propor-
tional to In[1/a, (T}](Ref. 9} in the rate at O(a, ) is cru-
cial.

(iii) From the phenomenological point of view it is an
important question to check the validity of the Born ap-
proximation for dilepton production in order to be able
to present safe predictions for this signal. Indeed, the
Drell-Yan process at zero temperature is considered as a
good test of perturbative QCD, because higher-order
corrections to the cross section are well under control.

In the intermediate steps of our calculation we regular-
ize these singularities by giving masses to quarks and
gluons and we show that finally the dilepton rate, at least
at O(a, ), is free of divergences in the limit of vanishing
masses. ' Our calculation is performed for the lepton
pair at rest with respect to the plasma. We also assume a
vanishing chemical potential. This helps to simplify the
algebraic expressions and the integrals without altering
the singularity structure.

Section IV is devoted to an alternative approach for
calculating lepton-pair production at finite temperature.
By analogy to the QCD analysis of the total hadronic
e+e cross section at zero temperature, we relate the
dilepton rate to the imaginary part of the electromagnetic
vacuum-polarization tensor, which is then directly evalu-
ated at the two-loop level. This procedure extends the
discussions by Weldon" and by Lobes and Semenoff' '
on the issue of rates derived from discontinuities of self-
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energy functions at finite temperature. This elegant ap-

proach reproduces the results presented in Sec. III. It al-

lows showing in general the absence of ill-defined 5 (or
pinch) singularities in the rate, calculated with real-time
methods whereas in Sec. III we have to rely on the reg-
ularization procedure. The final section, Sec. V, contains
our conclusions.
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II. THEORETICAL FRAMEWORK

Field theory at finite temperature has been studied for
a long time using different techniques. ' In order to cal-
culate production rates one should apply the real-time
formalism which, contrary to the Matsubara imaginary-
time technique, ' allows to directly calculate transition
amplitudes beyond the leading order. A recent formula-
tion of the real-time finite-temperature field theory has
been developed by Umezawa et al. as thermo field dy-
namics. This formalism allows us to derive a perturba-
tive expansion for the dilepton production rate in the
plasma at finite temperature T= I lp, in a similar way as
at zero temperature.

The main features of this approach may be briefly
summed up before we discuss the detailed calculation of
the rate.

Physical states are constructed from a temperature-
dependent vacuum

~

0(P)). The thermal average of any
operator A is equal to its temperature-dependent vacuum
expectation value

(2.1)

Doubling of degrees of freedom of all fields is required.
This is achieved through a "tilde" operation: to each
zero-temperature field 4(x) a doublet of fields

(4(x),4 (x)) is attached, the dynamics of which is con-
trolled by a thermal Lagrangian

X=X(4)—L(4)=X(4)—X'(4} . (2.2)

a(f3, k )
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The thermal doublet of fields is denoted by (4&(x),4z(x) )

in the following and one speaks of type-1 and type-2
fields, respectively.

The temperature-dependent vacuum state is annihilat-
ed by physical annihilation operators: a (p, k ) and a (p, k )

for bosons and b+(P,p) and b+(P,p) for fermions, re-
spectively, which are obtained through a Bogoliubov
transformation from the usual annihilation operators
a(k) [b+(p)] and their tilde partners. The Bogoliubov
parameter is related to the temperature once one fixes the
thermal expectation value of number operators to be a
Bose-Einstein [ns(k)] or Fermi-Dirac [nF(p)] distribu-
tion. For the boson case the transformation reads

From the usual T=0 expansion in terms of creation and
annihilation operators of the free field, e.g. , for fermions,

d4
q,(x)= f g(p, )5(p' —m')

(2n. )

X [b+(p)a(p)e '~'"+b (p)U(p)e'~'"], (2.7)

and

D,"b (k) = g""D,b(k—) (2.8)

D(k)
iD,b(k)= U(P, k)

0
D, (k) U(P, k ), (2.9)

with the matrix U given by

cosh0k sinhOI,

sinh0„cosh&„ (2.10)

and

D(k)=
k2 A2+ic

(2.11)

(assuming a mass A, for later regularization purposes). In
a more explicit form we have

iD,b(k) = D(k) 0

0 D*(k)

one obtains with the transformation Eq. (2.5) then the

corresponding expansion in terms of thermal operators
(similarly for the tilde partners}.

These properties lead to 2X2 matrix propagators, for
which one may separate a temperature-independent and a
temperature-dependent part. %'ith the notation of Refs.
12 and 16 the free vector-boson propagator (in the Feyn-
man gauge) is

where

sinh O„=nii(k) = 1

e —1
Plkp l

(2.4)

sinh Ok —,
' sinh28k

+2~5(k' —A, ')
—,
' sinh20k sinh Ok

In the case of fermions the analogous expressions are (2.12)
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S,],(p) =(pi+ m )S,],(p}, (2.13)

Separating off the Dirac operator (P +m ) the propagator
of a free fermion with mass m is represented by

S(p) 0
iS,],(p) = V(P,P ) —, V(P,P ),S*p

with the transformation matrix

(2.15}

and

S(p) = (gf +m )S(p)= i(gf+m )

p —m +is
(2.14)

cos]}}
V(P,p ) = e(p }

More explicitly we write

—e(po }sing

cosP~
(2.16)

S(p) 0 —2m5(p —m )

sin P

—T]e(po ) sin2$

—,
' e(po ) sin2]}]

sin P
(2.17)

In Sec. IV we also need the full fermion propagator,
which is assumed to satisfy the Schwinger-Dyson equa-
tion'

& W""(Q)&=f d x e '~'"&0(P)1J"(x)J'(0)10(P)& .

(2.22)

]S,q ]Sg~ + ——g ]S„( ]X,g—)]Sg], ,
c,d =1,2

which may be put into the matrix form
r

$(p) 0
i $,],(p) = V(P,P},V(P,P ),

with

(2.18)

(2.19)

In Eq. (2.21) we sum over the different quark ffavors with
charge e, and assume that the mass of the lepton pair is

large compared to the masses of the individual leptons.
The main object of interest is therefore the tensor of

Eq. (2.22). Since only its trace is required in Eq. (2.21}we
introduce the shorthand notation

(2.23)

P —m —X(p}+is
(2.20)

A complex self-energy function X(p) is introduced, which
can be expressed in terms of the elements of the matrix
X,], (Ref. 12).

There are two types of vertices, types 1 and 2, dis-
tinguished by a relative minus sign. Physical external
fields are only of type 1.

Within this framework we calculate the production
rate of lepton pairs of momentum Q" in a plasma of
quarks and gluons in equilibrium at temperature T. First
we note that the differential rate per unit space-time
volume,

& 0(P)
1

J"(x )
1 q/Y(p] yp2) &, (2.25)

with the electromagnetic current in terms of quark fields
(color indices are suppressed),

Because we are not interested in the plasma history we
call this quantity R "the rate. "

In order to evaluate R one has to insert a complete set
of thermal states constructed by successive applications
of creation operators b+(P,p), b z(P,P), a (P, k),
5 (P, k) on the thermal vacuum 10(P}&. A basic exam-
ple for describing the process qq —+y' is the "Drell-Yan
state" defined by

I 4DY(pl &P2) & b '+(~ P 1 )b —(~ P2) 10(» & .

Let us therefore calculate the matrix element

d(R/V)
d4Q

(2.21} J"(x)= P(x)y"P(x) (2.26)

is expressed in terms of the Fourier transform of the
thermal expectation value of the electromagnetic
current-current correlation function

The generalized reduction formula gives for any Heisen-
berg operator an expansion in terms of normal products
of free fields. As a first step we single out products of two
free fields and write

J"( ) =fd', d, :g (, )&(&„,) &0(P)
1
T[J"( )f(, )g(, )]10(P)&&( —5„,)g (,):+.. .

where A.(B„)is defined as the inverse fermion propagator:

A(B„)S,],(x y)=i 5 (x —y)5—,], .

(2.27)

(2.28)
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As for zero-temperature perturbation theory, fields appearing in the time-ordered product are expressed in terms of
free asymptotic fields, those in thermal equilibrium, with the help of a generalized evolution operator U(t, , t2 ), which is
constructed from the thermal interaction Hamiltonian operator BI H——I H—I. The thermal vacuum

~

0(P)) is an
eigenstate of this Hamiltonian. This allows us to write the vacuum expectation value appearing in Eq. (2.27) as a per-
turbative series of finite-temperature expectation values of time-ordered products of free fields. The generalized Wick s
theorem' then allos expressing this quantity as a product of contractions and, hence, allows us to express the matrix
element (0(P)

~

J (x)
~ QDv(p„p2) ) in terms of Feynrnan diagrams. At lowest order one derives the simple expression

for the current operator,

J"(x)=fd'x, d', :q,(x, )X(a„)&0(P)
~
r[:q,(x)y"q,(x):y,(x, )q,(x, )]

~

0(P) &X( —5„)q,(x, ):+ . , (2.29)

which sandwiched between (0(P)
~

and the "Drell-Yan
state" leads to

(0(&)
I
J"(x)

I SDv(p„p2
i(PI +P2 ) x= sing sing e V(p )2y"u(p&) . (2.30)

From this expression and integrating on p&,pz with the
usual two-particle phase space we find that R, Eq. (2.23),
is given, to lowest order for a timelike photon, by

R Born N (Q2+2~ 2)n 2(Q /2)c 2 F (2.31)

where U=(1 —4m /Q )'~ and N& is the number of
colors. Other intermediate states lead to kinematically
forbidden processes (e.g., q~qy') at this order. For
simplicity we have assumed the photon to be at rest in
the plasma rest frame, Q"=(Q,O). Equation (2.31) is the
expected rate: the T=0 Drell-Yan Born approximation
multiplied by Fermi-Dirac statistical weights.

The above-described procedure allows us to derive, in
principle, the Feynman rules for the higher-order contri-
butions to the thermal vacuum expectation value
( W"'(Q)), and thus to R. At next-to-leading order the
QCD perturbative expansion of the evolution operator
together with the insertion of intermediate states includ-
ing gluons and/or additional quarks and antiquarks leads
to the whole series of real (Figs. 2 and 3) and virtual
(Figs. 4 and 5) diagrams. The distinctive features of this
finite-temperature expansion are the appearance of the
2 X 2 matrix structure of the pro agators [Eqs. (2.12) and
(2.17)], due to the tilde fields in and thus in the general-
ized evolution operator, and of the statistical weights at-
tached to the external particles. With these rules in mind
we are now in the position to evaluate the Feynman am-
plitudes relevant for the dilepton rate up to O(a, ).

Born amplitude. For the photon at rest this leads to Eq.
(2.31) of the previous section. Corrections at O(a, ) in-

volve real and virtual diagrams shown in Figs. 2-5.
Each propagator has the structure of Eq. (2.12) for the
gluon and of Eq. (2.17) for the quark, respectively. In the
following we treat separately its temperature-dependent
part, which is represented by a slashed line in Figs. 2—5.

As discussed earlier the contribution of each class of
diagrams is given by the Feynman amplitude squared
M"M„* with appropriate statistical factors attached to
external legs. We include these factors into the phase-
space integrals.

The IR and collinear singularities are regularized by
giving masses A, and m to gluons and quarks, respectively.
The explicit calculations are performed for the special
kinematical configuration, in which the photon is at rest
with respect to the heat bath.

A. Real diagrams

In this case, since external fields are of type 1, we only
deal with propagators for "1"fields. Moreover, we only
have to consider nonslashed propagators as argued in the
following.

The contribution associated with the temperature-
dependent (slashed) part of the quark propagator involves
5 functions: e.g. , for the diagram of Fig. 3(a) and its
crossed counterpart we find terms proportional to
[5(t —m )] or [5(u —m )], typically ill-defined singu-
lar terms, and to 5(r —m )5(u —m ), where t(u)
=(p, —k ) [(p2 —k ) ]. Because of the regularization
mass A, these terms vanish in the physical region. Thus,
in accordance with the regularization procedure, they do
not contribute in the limit A. ~O.

III. LEPTON-PAIR PRODUCTION-
THE AMPLITUDE APPROACH

R ""=f nz(E, )nz(E&)M"M„d[P], (3.1)

where P is the two-particle phase space and M" is the

The above-described framework allows us to calculate
the whole series of perturbative contributions to the lep-
ton pair production rate. The Born contribution (Fig. 1)
is given by

FIG. 1. Born diagram for heavy photon (dilepton) produc-
tion. The photon is denoted by a wavy line.
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(a) (b) (c)

The phase-space integral is given by

max

P,b, =— f dco f dE, nF(E, )n~(E~)n~(co),
4 (2m) ~ E;.

(3.5)

with Ez ——Q co —E—&.

Finally, in the Compton case [Fig. 2(c)] we find

pc, „„—— f dco f dE, nF(E) )

X [1—n~(E2 ) ]n~ (co),
FIG. 2. Feynman diagrams for (a) real emission; (b) real ab-

sorption of a gluon (curly line); (c) Compton scattering. The
crossed diagrams are not shown.

It is important, however, to discuss in a more general
way the cancellation of the ill-defined 5 singularities,
when calculating rates. This is done in more detail in
Sec. IV.

with
' 1/2

Q —co Ic 4m

2 2 Q(2co —Q ) —&'

where co = —,'(Q+A. IQ) and Ez co+E&———Q. .

Let us write down the rate in the case of emission:

(3.6)

(3.7)

1. Calculation

The phase-space integral for gluon emission [Fig. 2(a)]
is written as

em 4 3
N E

1 nF E) nF E24 (277) ~ mm

X [1+n~(co)], (3.2)

where co, E, ,E2 ——Q+co E, are—the energies attached to
k,p, ,p2. The bounds of integration are

(b)

2
Em'x Q+co + a

1
4m

Q(Q+2co)+A,

1/2

(3.3)

with ~=(co —A2)'~ .
For gluon absorption [Fig. 2(b)] conservation of energy

and momentum implies that co & co,„with
co,„=—,'(Q+A, IQ —4m IQ). In this case the energy E,
runs between E;„and E,„,

(c)

2
Em ~aQ —~+~

1 — 4m
2 2 Q(Q —2co)+A,

' 1/2

(3.4)

(4)

(b) (c) (e)

FIG. 3. The same diagrams as in Fig. 2, but with
temperature-dependent quark propagators (slashed line).

FIG. 4. Feynman diagrams for the vertex corrections. The
temperature-dependent propagators are represented by a
slashed line.
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R, = —4 2%cCF der 1+n~ co dE nF E n~ +co—E
1T2 rn tn

1 1

2 2Q(E —Q /2)
g' 2m4—Q —Qco —2m
2') Q co

+
4Q (E—Q/2)

(3.8)

with CF = ,'(Nc ——1)/Nc.
The absorption rate is obtained by substituting

co~ —co in the above integrand and using the corre-
sponding phase space Eq. (3.5).

in the vicinity of the pole E =Q /2:

nF(E) =nF(Q/2)+nF(E)

and

(3.9)

2. Isolating mass singularities nF(g+6) E)—=nF(g/2+co)+ I F(E), (3.10)

In order to exhibit the mass singularities in Eq. (3.8) we
expand the statistical weights nF(E) and nF(Q+co E)—where nF(E) and n F(E) behave as O(E —Q/2) so that

nF(E)nF(Q+co E)=n—F(Q/2)nF(Q/2+co)

+O(E —Q/2) . (3.1 1)

It is easy to see by inspection of Eq. (3.8) that the term
behaving as O(E —Q/2) does not lead to any IR or mass
singular contributions. Keeping only the singular terms
we are then led to the following expression for the emis-
sion rate:

(b)

CX 00

R, = —4
z NcCF dco[1+nz(co)]nF(Q/2)

m'

X nF(Q/2+co)6"), (3.12)

where 6'& is given by

Q+co+ ~(Q —4m ) I)1 1

2 2coQ

(c)

m+ ~(Q +2m )I2 . (3.13)

The quantities If(co) and Iz(co) are the singular parts of
the following integrals:

I&(co}= J
mm E —Q/2

FIG. 5. Feynman diagrams for the temperature-dependent
self-energy corrections.

= ln

4m
co+K 1—

Q(Q+2co)+ k

4m
67 —K 1—

Q( Q+ 2'�)+A,

1/2

' 1/2 (3.14)
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and

max dE
Iq(cv) =

E ~ (E—Q /2)'

so that

If(cv)= ln
CO —KV

(3.16)

2

4
4m

Q (Q+2co)+A. '
1/2

(3.15)

and

4KU
~2

QP —K U

(3.17)

2 2 4m 2

CO —K 1—
Q (Q+2cv)+A.

with v =(1—4m IQ )'
Similarly we find, for the case of absorption,

R,b, = —4 NcCF f dco ns(cv)nF(Q/2)nF(Q /2 co—)6'2, (3.18)

with

62(cv)=6', ( —cv) . (3.19)

3. Detailed-balance relationships

In order to simplify Eqs. (3.12) and (3.18), namely, to keep only one statistical factor depending on cv, we use the fol-
lowing relationships

and

[1+ns(co)]nF(Q/2+co) =nF(Q/2)[ns(cv)+n~(Q/2+co)] (3.20)

ns(cv)nF(Q /2 —cv) =nF(Q/2)[1+ ns(cv) —nF(Q/2 —cv) ], (3.21)

with Q/2 —cv & 0. These relations can be verified identically. They may be also obtained by applying detailed balance
for the statistical factors on a given quark line with emission or absorption of a gluon. This leads then to

R, = —4 NcCFnF(Q/2) f dco[nz(cv)+nF(Q/2+co)]8,
A,

(3.22)

and

4
2 NcCFnF( Q/2) f dcv[ 1 + ns (co) Fn(Q/2+ )c]v@ .27T'

We rewrite the sum of these two terms as

(3.23)

GP

R, +R,» ———4
'

NcCFnF(Q/2) f dcv n~(co)(6, +6&)—f dcv ns(cv)82+ f dco8z
7T' max

+ f dcv nF(Q/2+co)N, —f dco nF(Q/2 co)6'q—
0 0

(3.24)

Because of Eq. (3.19) the sum of the two terms in the last line of the above expression is not IR divergent. Keeping
there only mass singular terms we may replace 6, and 8z by

m' Q Q' 2' ' ' m' Q

co 1

Q 2' (3.25)

respectively, since I, (cv)= lng /m in the limit A, ~O, m ~0. This substitution is also allowed in the second term of
Eq. (3.24); in addition we can replace everywhere ar, „by Q/2.

4. Compton contribution

Performing similar steps which lead to Eq. (3.8) and keeping only the singular terms, only mass singularities, the
Compton contribution [Fig. 2(c)] is found to be

Rc, ~„„——4 NcCF f dcv ns(cv) f dE nF(E)[1 nF(E+cv Q)]- —
gzz F. 2Q(E —Q/2)

—Q +Qcv+ 2' (3.26)
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where scatterings off a quark and an antiquark are summed. Since the integration with respect to E extends now to
infinity we safely isolate the mass singularity by expanding

nF(E)[1—nF(E+tv —Q)]=e ~' ~ 'nF(Q/2)[1 —nF(cv —Q/2)]+O(E —Q/2) . (3.27)

The first term keeps the integral defined and the second one does not contain mass singular logarithms. In the limit
m ~0 we use the approximation

f e
—P( E —Q/2) PdE = —ln

E E—Q/2 2
—1 .= ln —ln

Q' IB~Q

m 2tv —Q

4m1+
2~Q —Q'

Since nF(to Q—/2) is finite at tv =Q/2 the contribution of the second term in Eq. (3.28) is integrable and leads to a non-

singular result; therefore it may be dropped. We then obtain

00

Rco p~o
= —4 2NcCFnF(g/2) dcontt(tv)[l n—F(tv Q—/2)]62 . (3.29)

Using the relationship, similar to Eqs. (3.20}and (3.21),

ntt(tv)[1 nF—(to Q/—2)]=nF(Q/2)[ntt(tv)+nF(tv Q/—2)], (3.30)

for tv —Q/2) 0, we find that the complete singular contribution of the real diagrams (Figs. 2 and 3) may be written as

S S S S
real em +~ abs + Compton

= —4
2 NcCFnF(g/2) f dtv 8&+ f dco ntt(tv)(6&+62)+ f dcv nF(Q/2+tv)Ã&

7T' A

—f dtv nz(g/2 tv)Kz+—f dcv nF(tv Q/—2)Ã2
0 Q/2

with 6 „62given by Eqs. (3.13) and (3.19), and 8&, 82 by Eq. (3.25), respectively.

(3.31)

B. Virtual diagrams

Virtual O(a, ) contributions to the dilepton rate come from the vertex corrections (Fig. 4) and from the self-energy in-
sertions on external quark lines (Fig. 5).

A number of specific finite-T contributions, involving slashed propagators, turn out to be zero in the present regulari-
zation scheme. The triple slashed diagram of Fig. 4(e) yields a contribution of the type 5(t)5(u), which vanishes when
the gluon has a nonzero mass A, as discussed in Sec. III A. The same is true for the diagrams of Fig. 4(d), which yield
similar terms, since they only contribute through their imaginary part. The triple slashed self-energy diagrams of Fig.
5(d), which contain either a type-1 or a type-2 vertex, vanish for a nonzero gluon mass. The double slashed diagrams of
Fig. 5(c) contributing only through their imaginary part also vanish. In other words the double slashed self-energy
parts X» and X&2 are zero for on-shell quarks, when the gluon has a nonzero mass.

We now treat the nonvanishing virtual diagrams. The ultraviolet (UV) divergences are dealt with in the same way as
at zero temperature. Because of the suppression role of the Fermi-Dirac and Bose-Einstein factors at large momenta,
there are no additional UV divergences at finite temperature. Using on-shell renormalization one may ignore the T =0
fermion self-energy insertions, thus keeping only the finite contribution of the vertex correction known from QED
(Refs. 19 and 20).

1. QED-like vertex correction

The UV finite contribution to the rate from the diagram of Fig. 4(a) is

R,"'"""=—NcC~nF(g/2)v[(g +2m ) ReF, (g)+3mg ReFz(g)],1 (3.32)

where

ReF, (Q) = 1+v 1+v 1+2v
1

1+vln- 1n —1 —1+ ln
m 2v 1 —v 4v 1 —v f dP P cothP +O(k}

v 0

and

(3.33}

a,
ReF2(g) = — —ln

2m Q2 v 1 —v
(3.34)
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The infrared and mass singular part of Eq. (3.32) comes only frotn ReF &, which is

ReF, ( Q) = ln — ln —1 ——ln ln —3
1+v 1+v 1 Q Q~

m 2U 1 —U 4 gpss

(3.35)

Here and in the following terms of O(m lnQ /m ) are consistently neglected, whereas terms of O(m ink. /m ) are kept
in order to check the IR cancellation at finite values of m (Ref. 21).

2. Finite-temperature vertex corrections

The finite-temperature vertex correction associated with the thermal gluon propagator [Fig. 4(b)] takes the form

a,Rq"""=—
3 NcCFnF(Q/2)v(Q 4m—)fd k ntt(k)5(k2 A—2)

7r' (2k p, +A, )(2k p2 —A, 2)
(3.36)

neglecting terms in the trace which do not lead to singular terms. The integral in Eq. (3.36) is IR and mass singular. It
is worked out in Appendix A and yields, keeping the singular part,

CX

Rt","""-—
2 NcCFnF(Q/2)(Q +2m )(1+v )Is (3.37)

The contribution coming from diagrams with one slashed quark propagator [Fig. 4(c)] is written as

R,""""=—2
3 NCCFnF(Q/2)Q Ref d I nF(l)5(l m—)

(p, —1) [(Q 1) m— +i—e]
(3.38)

again keeping only mass singular parts; there are no IR divergences. This then leads to R,""""in terms of a principal-
value integral:

a, 2

R,"'"'"=—2
2 NCCFnz(Q/2)Q ln

2
Pf nF(l) . (3.39)

3. Finite-temperature self energy co-rrections

We first consider the diagram of Fig. 5(a) and calculate the corresponding self-energy insertion

X ( )= f d k ntt(k)5(k A)—,
m' (p k}' m—'+i—s

(3.40)

Only the real part contributes to the rate. Following Ref. 6 we expand the integrand around It =rn. With the expansion
of the denominator

1 1 1 —ko/po
2 2

—(p —m )
(p —k) —m —2pk+A, 2 2 ( —2pk+A ) 2 2

(3.41)

we obtain

ReXT(p)= [(If—m )I„+I
~ &

+(p m)g
~ &

+ ], — (3.42)

where m denotes the T=0 renormalized mass. The integrals I„,I",and L" are given in Appendix A. Here we only re-

mark that the temperature-dependent integral I„,as Is in Eq. (3.37), is IR as well as mass singular (Appendix A), and

we note the relation

IoL.p =—
2E

(3.43)

with E =+p +m . Furthermore the quark momentum p is identified either with p, or with p2 (Fig. 1), so that

E~ =Q/2 in the special kinematical configuration we are considering.
We now turn to the diagrams of Fig. 5(b) with one slashed quark line. The corresponding self-energy is

XP(p)= f d I nF(1)5(l m)— (3.44)

putting k =p+1 Performing an e.xpansion similar to Eq. (3.41) we derive
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ReX$(p)= [2mJ„+J i& +(p —m )g i& ], (3.45)

with the integrals J„,J",and K"of Appendix A. A useful relation similar to Eq. (3.43) holds in the limit m ~0:
Jo

K p=—
2E

(3.46)

We adopt in this section the procedure of Donoghue and co-workers to handle the finite mass and wave-function re-
normalization associated with Xr ——XT+X$. Counterterms proportional to I, Eq. (3.42), and to J, Eq. (3.45), are intro-
duced to carry out the inass renormalization, so that in the following the mass m denotes the quark mass at T&0. The
temperature-dependent renormalization constant Z2 is found to be

a, Io Jo
Z, '=1+,CF —I„+ +

m'
P P

(3.47)

when only IR and mass singular terms are taken into account.
With the properly defined counterterm added we find the sum of the amplitudes of the self-energy diagrams [Figs.

5(a) and 5(b)], including the crossed ones, given by

a, Io JOMcT M sE C 2I —2 —2 M~"
P P 2 F A E E P

7T P P

(3.48)

After dividing this amplitude by QZz for each external quark line we find the following contribution to the rate:

R' =,NcCFnF'(Q/2)v(Q'+2m') I„—
7T'

P

which we may cast into

Jo

EP
(3.49)

Il =
z NcCFnF(Q/2) v(Q +2m ) —41n

&
(Is+IF)

7r' 7r
(3.50)

performing consistently the limits m, A, ~O (cf. Appendix A).

C. Cancellstions

We are now in the position to see explicitly how the cancellations take place among the various singular pieces.
In order to make the cancellation of singularities more transparent we rewrite the contributions of real diagrams R „,&

of Eq. (3.31) in terms of the integrals defined in Appendix A. We note that the first integral does not depend on the
temperature and it may be performed explicitly in the limit m, A, ~O (Ref. 22). Following the order of the integrals in
Eq. (3.31) we obtain '

R„,l —— zN&CFn, F(Q/2) u(Q +2m ) 1 — ln ln —+—Q ln
z

ln
z

—3z i 1+u 1+v A, 1 q Q Q
1T' 2U 1 —U m 4 m2 m

2

(Q~+2m~)(1+v~)Is v(Q +2m )— +41n

2Q ln
&

P f nF(l)+41n IFQ I dl Q~

m I —Q/4 m
(3.51)

(3.52)

The principal-value integral [cf. Eq. (3.39)] is equal to

&f z z
nF(I)—= —f [nF(cu+Q/2) nF(Q/2 —co)]+f — [nF(co+Q/2)+nF(co Q/2)]-1dl Q/2 dco dco

I —Q~/4 2 0 co Q/2 CO
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which may be verified with an obvious change of vari-
ables. The terms in the last two square brackets in R „,&
cancel exactly against the sum of the two vertex contribu-
tions Rb'"'", Eq. (3.37), and R,"'"'",Eq. (3.39), and of the
self-energy term R, Eq. (3.50), respectively. This can-
cellation may be considered as the genuine finite-

temperature cancellation of IR and mass singularities up
to O(a, }, including the temperature-dependent IR singu-
larities in the integrals I„and I& which are not present at
T =0. The remaining cancellation of the first term in Eq.
(3.51) against the vertex term R,"'"'", Eqs. (3.32)-(3.35),
is, apart from the factor nz(Q/2), familiar from the
O(a, ) QCD calculation for the cross section
o (e+e ~hadrons), which is known to be free of IR and
mass singularities. Here it can be viewed as a consistency
check of our calculation.

In summary the dilepton production rate up to O(a, )

is infrared safe and free of mass singularities in the limit
of m, A, ~O (Refs. 23—25).

IV. DILEPTON RATE AND THE THERMAL
VACUUM-POLARIZATION TENSOR

energy matrix H, & plays the role of X,b. Suppressing
Lorentz indices it is

2)(Q) 0
il), t,

= U(P, Q ) ~„U(P,Q), (4.3)

with the U matrix of Eq. (2.10) and where

&(Q)=
g [1+11(g))+&'s

(4.4)

in analogy to the fermion case in Eq. (2.20). The complex
photon self-energy function 11(Q) is related to the trace
of (11&b(Q)), which we denote by II,&, interpreting the
indices (g, b) as the ones corresponding to the type of the
photon field or equivalently to the type of the photon-
quark coupling. According to Refs. 12 and 13 the
relevant quantity connected to rates is ImII, which we
calculate from the photon self-energy matrix II,b, using
the relations

In perturbative field theory at zero temperature, cross
sections and rates of physical processes may be related to
discontinuities of self-energy functions. A well-known
example, relevant for our further discussion, is the total
hadronic e+e annihilation cross section at high ener-
gies, which is proportional to the absorptive part of the
vacuum-polarization tensor,

II&'(Q)=i f d x e ' "(0
~

TJ"(x)J"(0)
~

0) . (4.1)

In this section we conjecture similar relations to hold at
finite temperature. Especially we explore the connection
between the dilepton production rate at finite tempera-
ture and the vacuum-polarization tensor for T&0, having
in mind to exploit the relation between ( W""(Q)), Eq.
(2.22), and the thermal vacuum-polarization tensor

(II""(Q))=t' f d & e '~'"(0(P)
~

TJ"(x)J'(0)
~

0(P))

(4.2)

In this way we try to generalize the suggestions and
(one-loop) results of Weldon" and Kobes and
Semenoff' ' to the case of external electromagnetic
currents. At the same time we extend this type of calcu-
lations to the two-loop level.

In order to perform the perturbative QCD calculation
of (IP (Q)) up to O(o., ), we first introduce the formal
notion of type-1 and -2 photon fields and the correspond-
ing type-1 and -2 vertices for their couplings to quarks,
although the heavy photon in the dilepton production
process is not thermalized. Apart from the color struc-
ture, these vertices are treated on the same level as the
QCD type-1 and -2 quark-gluon vertices. Treating for
the moment photons as thermalized, together with the
quarks and gluons, one may introduce the finite tempera-
ture 2X2 full photon Green's function X),b in analogy to
the full quark propagator. It satisfies a Schwinger-Dyson
equation similar to Eq. (2.18}, in which the photon self-

ReH = ReII)), (4.5)

ImII = tanh —,'PQo ImII 1 1 i sinh———,'Pgo II tz, (4.6)

FIG. 6. One-loop vacuum-polarization graph for the calcula-
tion of II,z at T&0. The quark propagators [Eq. (2.17)] include
the temperature dependence.

valid for a timelike photon, Qo &0. These relations are a
consequence of the Schwinger-Dyson equation for the full
photon propagator and its representation given by Eqs.
(4.3) and (4.4). The diagrams for II,2 in the one- and
two-loop approximation with respect to QCD interac-
tions are shown in Figs. 6—8. They are topologically the
same as for the T=O calculation of II"'(Q), Eq. (4.1),
however, at O(a, ) the number of graphs increases be-
cause of the two types of quark-gluon vertices present at
T~O.

Instead of giving a general proof we proceed by first
evaluating the one-loop approximation, which we then
compare with the result already obtained for R "" in
Sec. II; this provides the detailed identification of the rate
R with ImII. Next we generalize to the two-loop calcula-
tion and we finally find the same results as already de-
rived in Sec. III. A posteriori this then justifies the ap-
proach of calculating the dilepton rate at finite tempera-
ture from the absorptive part of the thermal vacuum-
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FIG. 7. Two-loop photon polarization graph for the calcula-
tion of II I, . The labels a, b =1,2 denote the type of the quark-
gluon vertex.

polarization tensor. Before entering the detailed calcula-
tion we add the obvious remark that in this approach
only thermal Green's functions are involved in contrast
with the amplitude approach, which in addition requires
knowledge of thermal spinors.

A. One-loop approximation

It is straightforward to derive the one-loop expression
for H, 2. With the momentum labels indicated in Fig. 6
this quark-loop, with the temperature-dependent fermion
propagators of Eq. (2.17), reads

(c) (d)

d p
4

iII,2=Nc 4 iS,2(p)iS2, (p')
(2n. )

y, Tr[y"(P +m )y„(gf'+ m )], (4.7)

with p'=p —Q. Substituting the expressions for S,2 and

Sz, , respectively, we obtain

FIG. 8. Two-loop photon polarization graphs for the calcula-

tiOn Of H» and III2'.

4

ill~2 —— Nc — —,
' sin2$ —,

' sin2$ e(po)e(po)5(p —m )5(p' m)T—r[y"(P+m )y (P'+m )] .)42 P& 0 p

Working out the 5-function constraints for positive photon energy Qo it follows, from Eq. (4.6), that

d3
Imil= — (Q +2m )[1—exp(PQ&)] f 2 5(QO E, E2)nF—(E~—)nF(Ez),

2 (2') E)E2

where

E, =&p'+m',

E,=&(p—Q)'+m' .

Applying the identity for the nF distribution

e~ nF(E)=1 —nF(E),

ImH may be decomposed into two terms:

d3
ImII= (Q +2m ) f 5(QO E, E2)I [1 —nF(E—

~ )][I —nF(E2)] n—F(E& )n+(E—2)] .
(2n) E)E2

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

2 ImH =RD —R .

The two rates are related by

RD ——e R,PQo

(4.14)

(4.15)

which follows from Eq. (4.12). For the photon at rest R
indeed coincides with R "'", Eq. (2.31). Although the an-

The same result is derived when taking the discontinuity
of II» in Eq. (4.6). This way of performing the calcula-
tion is, however, more cumbersome.

We identify" the two terms in Eq. (4.13) as the produc-
tion rate R, Eq. (2.23), and the annihilation (decay) rate
RD of the heavy photon, respectively:

RD — NcQ 1+ CF +O(a, )—1 3 ~s 2

2~ 4
(4.16)

for Q »4m and P~~. From this and with Eq. (4.15),
we have some indications for small QCD corrections of

nihilation process, y'~qq, is not easy to realize experi-
mentally at T&0, it is instructive to investigate the zero-
temperature limit of ImH and R~, respectively. For
P~ ~, nF vanishes and from Eq. (4.13) we recover that
ImII becomes proportional to the Born approximation of
the cross section for e+e ~hadrons, when Q"=(Q,O).
For this process the O(a, ) QCD corrections ' are
known, and therefore we expect
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the production rate R for large values of P as long as a,
behaves smoothly with respect to T.

In the following we assume that the relations, Eqs.
(4.14) and (4.15), remain valid at the two-loop level,
which then allows us to calculate R from ImII or II,2, re-
spectively:

2 ImII
R = = exp( ——,'Pgo)iII&z .

e
(4.17)

However, it is most convenient to use II&2 for the explicit
calculation at the two-loop level.

B. Two-loop approximation

At order a, the calculation of II,2 involves the two to-
pologically different two-loop diagrams: namely, the self-
energy (Fig. 7) and vertex-type (Fig. 8) graphs, respective-
ly.

We start to discuss the former ones, where one first cal-
culates the 0(a, ) correction 5S,b to the free quark prop-
agators S,2(p) and S2, (p'). This is done with the help of
the Schwinger-Dyson equation, Eq. (2.18):

i5S,2(p) = g iS„(p)[—iX,b(p)]iSbp(p) . (4.18)
a, b =1,2

One has to remark that the four terms in Eq. (4.18) are ill
defined separately, because each of them contains a prod-
uct of 5 functions with the same argument: namely,
[5(p —m }]. However, after summation 5S,2(p) be-
comes well defined, since all these singular terms cancel.
The result is

i 5S&2(p) = e(po—) sin2$ Re[S(p)[—iX(p)]S(p)],
(4.19)

where the fermion self-energy function X(p) for T&0
satisfies the conditions'

ReX(p) = ReX»(p),

ImX(p) =e(po) coth( —,'Ppo) ImX&& —— i E(po)—cosh( —,'Ppo)X|2,

(4.20)

(4.21)

which follow from Eqs. (2.18)—(2.20). The result in Eq. (4.19) is rederived in Appendix B, because it is the most elegant
way to prove, independently of the regularization method (cf. the discussion in Sec. III), that the rate R is free of pinch
singularities. Thus it represents one of the main advantages in favor of the discontinuity approach.

Inserting Eq. (4.19}into II&2 we obtain the self-energy contribution (Fig. 7)

4

iII,z
———2N&C+ —,

' sin2 —,
' sin2 .e po e po p' —m Tr y" Re S p —iX p S p y '+m

)3 2 P (4.22)

An analogous expression has to be added in order to include the self-energy correction of the quark propagator with
momentum p' =p —Q.

Concerning the vertex-type corrections, it turns out that it is convenient to attach different momentum labels on the
internal quark lines, and to sum the four contributions (Fig. 8) in pairs. We first consider the diagrams of Figs. 8(a) and
8(b). Using the cyclic property of the trace we find

~ VI d pd k.—4 4
t III2 ——4@a,N&CF

(2n )
iSi~(p)iS21(p') [iDi, (k)iSi i(p k)iS i i

(p' —k)+ iD2q(k—)iS22(p —k )iS (p' —k ) ]22 22

XTr[y"(P —1+m )y"(P+m )y„(P'+rn )y (p' k'+m )], — (4.23)

choosing the Feynman gauge for the gluon propagator given in Eqs. (2.8}—(2.12). Because of the relations
iD22 ——(iD» ) and iS22 ——(iS» ) the expression in the curly brackets is identical to

[ ] =2 Re[iD„(k)iS»(p k)iS» (p'——k )] .

In a similar way we sum the terms corresponding to Figs. 8(c) and 8(d):

(4.24)

VII dpd k.4 4

iII,2
= —4+a, N&CF iD, z(k}iS,2(p —k}iS21(p')2 Re[iS»(p)iS2z(p' —k )]

(2~}

XTr[y"(P+m )y"(p' —k+m )y„(P' —k'+m )y„(p'+m )] . (4.25)
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The total O(a, ) correction to the dilepton production
rate R is the sum of the above terms: namely,

R = exp( ——,'PQ )(2iII,2+ill, '+iII i"2), (4.26)

which has to be evaluated for Qo & 0 above the threshold

Q &4m.

C. Explicit two-loop calculation

As in the previous section also here our main emphasis
is the IR and mass singularities. Again R, Eq. (4.26), is
explicitly calculated for the heavy photon at rest. First
we briefly discuss the UV renormalization, because the
terms H, &

and II,z are UV divergent.

1. UV divergencies and mass renormalization

Since the UV divergences are the same as at zero tem-
perature we perform the renormalization at T =0 ("To"
renormalization' ). Contrary to the treatment in Sec. III
no temperature-dependent renormalization constants and
mass counterterms are introduced. Therefore in this
scheme one can follow the standard on-shell renormaliza-
tion procedure. ' '

Keeping only the temperature-independent terms in
the propagators, the UV-divergent parts of H ~z, Eq.
(4.22), and of lli2, Eq. (4.23}, exactly cancel, because of
the T=O Ward identity. ' Therefore ImH and conse-
quently R are UV finite, which is a consequence of the
fact that the photon self-energy tensor is renormalized by

subtraction as it is known from the QCD calculation for
e+e ~hadrons. The remaining QED-like finite part
becomes, after the limit m, A. ~O is taken,

2iII,2+iII, 2 2NCCF ReF, (Q)

d p
4

ES )2 p /Sp) p
(2ir }

XTr[y"(Ii+m )}p(P'+m )],
(4.27)

and the corresponding correction to R agrees with R,""""
as given by Eqs. (3.32) —(3.35), when the photon is at rest.

2. Contribution from ReXr.' thermal self ene-rgy insertions

We continue in the T =0 renormalization scheme and
evaluate the T&0 part of IIsizE now considering the
temperature-dependent terms of X(p). Here we calculate
the contribution due to ReXT, which is given by adding
Eqs. (3.40) and (3.44):

ReXr(p)= Re[Xr(p)+X((p)] . (4.28)

We recall that ReXT appears in the expression
Re [ S(p )[ i Re—

X T (p) ]S(p ) I . Therefore we expand

(P+m)ReXr(p)(P+m) in powers of (p —m ). With
the same expansions [cf. Eq. (3.41)] as used in the previ-
ous section, and collecting the nonvanishing terms we
find

Re[S(p)[—i ReXr(p)]S(p)I = '5( '—m') f d k ns(k)5(k' —A.')
(2p k —A, ) 2p k —A,

2m (gf+m )(1+la/po)
d I nF(l)5(l —m )

(2p i+2m )
+ P+j m-

2p i+2m~

—mmmm(T)(P+m) 5(p —m ),p'
(4.29)

noting that ReS(p)=ir5(p —m ) and Re[iS(p)S(p)]=irB/Bp 5(p —m ). The temperature-dependent mass shift
b m ( T), already given in Refs. 6 and 28, is

b m( T)=a, CF +2a, CF nF(Ei ) l+ ln (4.30)

with Ei ——+1 +m . In the limit of vanishing quark mass m the thermal mass becomes momentum independent:

m ( T}= tra, CF T (4.31)

Next we insert Eq. (4.29) into Eq. (4.22) and with the integrals of Appendix A we derive, for the photon at rest, the
same contribution to the rate as given by R in Eq. (3.50), when only the IR and mass singular terms are kept. The
thermal mass term proportional to i)/Bp 5(p —m ) in Eq. (4.29) does not give rise to any singularities.

3. Contribution from II qz.
' the thermal uertex

Starting from the definition of the vertex correction II &z, Eqs. (4.23) and (4.24), we obtain, besides the T =0 vertex
term already discussed above, a thermal contribution to the rate. We first observe that the product of propagators in
Eq. (4.24), when the temperature-dependent terms are considered, becomes
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2 Re[iD»(k)iS»(p —k)iS»(p' —k )]~4mnz(k)5(k —A, ) Re[S(p —k)S(p' —k )]

—4mnF(p —k)5((p —k) —m ) Re[D(k)S(p' —k)]
—4mnF(p' —k)5((p' —k ) —m ) Re[D(k)S(p —k)],

since terms proportional to

5(k —A, )5((p —k) —m )5((p' —k ) —m )

(4.32)

(4.33)

are omitted for kinematical reasons. They give a vanishing contribution to II l2 for on-shell quarks, p =p' =m, and
for A,&0.

When the photon is at rest we work out the integrations with the help of Appendix A and we finally find the sum of
the vertex contributions Rb'"'"+R,"'"'"with the IR and mass singular behavior as given in Eqs. (3.37) and (3.39) of the
previous section.

4. Contributions from Im X and II irJ: real gluon processes

With the relation between the imaginary part of X and X|2, Eq. (4.21},we obtain, at O(a, ),

e(po) d'k .—ImX(p)= —8tra, . f ~iS„(p —k)iD„(k)(2m It+—k) .'
sin2$~ (2~)~

Inserting this expression into II &z, Eq. (4.22), we find the contribution

4 4

i II, 2=8na NcCF —sin2$ .—sin2$ k
— insh28 k(pe)0E(p 0 kp')p d k ] I ] ~ ] ~ I

$ (2~)5 2 p 2 p — 2

(4.34)

X5(p' —m )5(k —A. )5((p k) rn —}-
(p2 m 2)2

X Tr [y"(P +m )(2m —P +k' )(gf +m )y„(p'+ m ) ] . (4.35)

We encounter the same thermal phase-space integral as in the vertex correction II ",z", Eq. (4.25). Therefore it is con-
venient to add these two contributions, keeping in mind the additional self-energy correction, which we denote by II l'2

and which is due to the insertion ImX(p') on the quark line with momentum p'. In order to evaluate the sum, actually
corresponding to the real gluon processes

~ real ~ t ~ « ~ VIIerr „'=err „+in „+in„, (4.36}

we note that the phase-space integral of II",z may be transformed into the one of II ',
2 by substituting, p'~ —(p' —k)

and p ~ —(p —k). In II,z' we replace Re[iS&i(p)iS22(p' k}]b—y Re[iS(p)iS(p' —k )], because terms similar to those
of Eq. (4.33) are dropped for the same kinematical reason. Furthermore we decompose this propagator product into

Re[S(p)S(p' —k )]=— 1 1

2Q'k p —m (p' —k ) —m
(4.37)

taking into account the phase-space constraints in Eq. (4.35). Carrying through the necessary algebra we obtain

2 2 2 2 2'll"'i=64, N C f [d 'dk] m (Q +2m ) Q +2m —Q k

(p —m) p —m

Q —4m 1+-
2Q k(p —m )

+[(p —m )~[(p' —k) —m ]I (4.38)

with the phase-space integral given by
4 s 4

[dp'dk]= f —,
' sin2$& —,

' sin2$ k —,
' sinh2eke(po)e(po —ko)5(p' m)5(k ——A, )5((p —k) —m ), (4.39)

using as integration variable p =p —Q. Now we evaluate this integral for the photon at rest, Q"=(Q,O), by first writ-
ing the product of the three 6 functions as

4coE', [5(ko co}+5(ko—+co)][5(po—E')+5(po+E*)]5(Q +A. +2poQ —2koQ —2poko+2+E' rn +co Acos8), — —,

(4.40)
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[dp dk]- .«—"P,. (4.41)

(ii) po= E',—ko=co, and po —ko=g —co E )0. It
corresponds to gluon absorption q(E}q(E'}G(co)
~y'(Q), with the corresponding phase space [Eq. (3.5),
E —E']

[dp'dk ] e~&~2—P (4.42)

(iii) pa= E', —ko=co, but po —ko=g co —E (0.
This is Compton scattering q(E')G(co)~q(E)y'(Q),
with [cf. Eq. (3.6)]

with E'=&p' +m', a)=+k +A,', and ~cos8~ &l.
Four different kinematical configurations, illustrated in

Fig. 9, are acceptable.
(i) po —— E'—, ko ———a), and po —ko ——Q+co E—')0.

It corresponds to gluon emission q(E)q(E')
~G(co)y'(Q), and the phase space [cf. Eq. (3.2) with
E, =E'] becomes

V. CONCLUSIONS

Using the framework of real-time perturbative QCD at
finite temperature we have shown that the O(a, ) contri-
bution to the lepton pair production rate is finite when
the gluon and quark masses, used as regulators, are put to
zero.

The thermo field formalism has proven to be quite
efficient in this analysis of the production rate and of the
related imaginary part of the thermal vacuum-
polarization tensor. The last approach is reminiscent of
the T =0 calculation for the total hadronic e+e cross
section. In this respect, one should emphasize that the
T =0 limit of dilepton production in the plasma, is use-
fully related to the T =0 annihilation cross section and
not to the hadronic Drell- Yan pair production process.

Actually as a result of this study we find that the dilep-
ton rate up to O(a, ) may be written in the massless limit
as

[dp'dk]~e~2~ Pc, (4.43)
R = E Q'n'(QI2) 1+—C + f(13Q)

(iv) po E', ko ————co, and po ko=g —co+E'&0. This
is also Compton scattering q (E)G(co ) ~ q (E')y*(Q).
Transforming E'~E =Q co+E' it—is the same as (iii).

From this together with Eq. (4.38) we find indeed that
H &z" contains all the real gluon processes in the same
form as discussed in Sec. IIIA. Therefore the corre-
sponding contribution to the dilepton rate is the same as
R „,i in Eq. (3.51), when the limit m, A, ~O is considered.

To summarize this section we find that the two-loop
calculation of H&2 leads to the same result as the alterna-
tive amplitude approach.

(5.1)

where the function f does not contain large logarithms
and vanishes in the limit PQ ~ ~.

Although we have no insight yet on higher orders, we
believe that the cancellations of IR and mass singularities
at O(a, ), may hopefully be generalized. On the other
hand, the perturbative calculation of the thermodynamic
potential in finite-temperature non-Abelian gauge theo-
ries shows specific infrared problems. These problems
are linked in QCD to singularities of the gluon propaga-
tor at higher orders, not yet included in the present cal-
culation. It is an open question whether this "plasmon"
puzzle' sho~s up in the specific case of lepton pair pro-
duction at finite temperature.

Leaving this question aside, the cancellation of diver-
gences at O(a, ) is a positive feature. It gives a sounder
basis to the phenomenological studies of lepton pair pro-
duction as a signal for the formation of the quark-gluon
plasma.

0

ACKNOWLEDGMENTS

Useful discussions with T. Altherr, P. Aurenche, T.
Becherrawy, M. Fontannaz, and M. Le Bellac are grate-
fully appreciated. Partial support of this work by Projets
de Cooperation et d'Echange (PROCOPE) is kindly ac-
knowledged. The Centre de Physique Theorique is La-
boratoire propre du CNRS. The Laboratoire de Phy-
sique Theorique et Hautes Energies is Laboratoire associe
du CNRS.

APPENDIX A: INTEGRALS

FIG. 9. Kinematically allowed regions in the (po kp) plane
for the phase-space integral of Eq. (4.39). The boundaries are
simplified by taking the limiting case of vanishing quark and
gluon masses.

In this appendix we summarize the various integrals
encountered in the main text. %'e systematically keep
only IR and mass singular terms by considering the limit
m, k~0. The calculations are performed in the photon
rest frame.
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First we consider two integrals, independent of temper-

ature, which appear in the calculation of real diagrams.
We note that

where I2(co) is given by Eq. (3.17).
Next we turn to temperature-dependent integrals, and

define

I, = lim lim
g/~ d~ ~ 1+vI, (co)—ln

m~0k, ~O A, CO 1 —U
(Al) Q/'2 dm S

I& —— n&(co)Ii (co), (A5)

Ii (co)= ln
(c0+Kv) Q+ ln

4+~ g
m

(A2)

where ~=(co —A, )'~ . Then we obtain, in the limit
m, A, ~O,

Q/2 dt's
1

(c0+a )

4 2+g2 K
m

dx (x ++x —1)
ln

4(x —1)+Q /m

Q2 Q2= ——ln 2+ ln21n (A3)

letting co=Ax. The last integral is derived in Ref. 22. In
a similar way we treat

Iz ——lim lim f dcoIz(co)
m~0 A, ~O A,

is finite for A, ~O, where I i (co) is given by Eq. (3.16) and

v =(1—4m /Q )'~ . Let us write I, as
2

I„=2m. des ns(co)I2 (co),
g~' s

vg2

2m 1+U
Io —— ln ~dc' n, (~)

vg 1 —v o

2m
1

g I

with

2

I~ —— T
6

and, similarly,

Jo = ln f &E mdE n—F(E)
vg 1 —v m

ln IF,2nQ.
m

with

(A7)

(A8)

(A9)

Q'
m

&x' —1

2x'-1+ g
4m

+ ln—1 Q
x I~- T

12
(A10)

vQ A,
ln —,

m2 m
(A4) in the massless limit. In the calculation of virtual dia-

grams one encounters [cf. Eq. (3.36)]

I= d k ng(k)5(k —A ) 2
= —,

' d k "a k
5(ko+co)+5(ko —co

(2k.p, +A, )(2k p2 —I, ) 2' (coEp k p)(c0Ep+k'p)

which becomes, for E~ =Q/2 and v =p/E~,
2~I= Iq .

U
2

From Eq. (3.38) we find the principal-value integral for m ~0:
2I'= Ref d 1 nF(l)5(l' —m'), , =, ln, Pf, , np(l) .

(p —l)2(Q2 —2Q i+is) Q m l —Q /4

(Al 1)

(A12)

(A13)

The integrals, which enter in the calculation of the self-

energy diagrams after the expansion around p'=m [cf.
Eq. (3.41}jis performed, are, in turn with p =m,

I„=2m fd k n~(k)5(k A)—, , (A14)
(2p.k —k }

which when worked out are identical to Eq. (A6),

I"=f d k n~(k)5(k —A, )
2p k —A,

d k (co,k)
nz c02' BE&—k p

with Io identical to Eq. (A7) and

(A15)
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kok"
f d k ns(k)5(k —A. )E (2pk —A, }

d k ntt(ro)4' (ruE —k p)
(A16)

from which the relation in Eq. (3.43) follows. Further in-

tegrals evaluated on shell, p =m [cf. Eq. (3.45)], are

J"=f d I n~(l)5(I —m )
(p + I)'

d'I (Et, I )
nF(1)

2Et E EI —p 1+m

with Et —(I +m }' and Jo explicitly given in Eq. (A9),

(A17)

(Io+E )I"
K"=— f d I nF(l)5(1 m)—

Ep (p+ I )

Since

m (lo+Ep )fd I nb(1)5(l m)—
(p +I)

(A18)

(A19)

(A20)

(A21}

is finite for m ~0, Eq. (3.46) follows. Other integrals ap-
pearing in Secs. III and IV do not have IR and mass
singular behavior, e.g.,

f d k ns(k)5(k A, )=4'—Itt,

f d I nF(1)5(! m) =—4rrI„,

and [cf. Eq. (3.45)]

APPENDIX B: CANCELLATION OF 5 SINGULARITIES

Following Refs. 12 and 17 we show that the
[5(p —m ) ] singularities present in each of the four
terms for 5Si2(p) in Eq. (4.18) cancel at O(a, ). A
straightforward derivation starts by expressing the self-
energy matrix X,b in terms of the complex function X [cf.
Eqs. (4.20) —(4.21)]:

X» ———X22 ——cos P X+ sin P X', (Bl)

X,2= —X2, =e(po) sing cosg (X—X") . (B2)

With the representation for S,b of Eq. (2.17) 5S,z may be
written as

J~ =2m d I n„16 l —m 2, A22
(p+I )'

for p &m . Finally, we note that in the massless limit
the singular integrals Iz and I~ have been incorrectly
calculated in Ref. 6: e.g., I~ is not equal to
1nl+u/1 —u f (dru/tu)nit(ru) in the limit m, A~O as

written in Ref. 6. In order to calculate these integrals
one should use the same techniques as for the calculation
of Ii in Eqs. (Al) —(A3). Since, however, we are only in-

terested in the cancellation of singular contributions, we
do not need integrated expressions of Iz and I~.

i5S,2(p)=if(po) —,
' si 2'~( II+m)X(p)(II+ )mI [2~5(p2 —mz)]~sin~/ cos p

+2~5(p' m')(—c os'P iS„—sin'P iS„}—S„IS22I+cc.(B3)

Since

iS» ——(ISA&)'=S —sin $~2m5(p —m ), (B4)

the result given in Eq. (4.19) follows immediately. In
principle, all these manipulations go through with the
regularized form'

the cancellation of the ill-defined 5 singularities is found.
Taking into account that

5(p —m )~—
n (p —m )+ri~

(B6)

S(p)+S'(p)=2~5(p —m ), (B5)
with the limit g~0 taken after the sum of the four terms
for 5S&2 is performed.
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