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Calculations are presented of certain moments of the wave function of the 6 and of the lowest-

lying negative-parity resonances. These are used to obtain model distribution amplitudes for these

resonances and to calculate the size of the high-g nucleon-resonance transition amplitude for each
case. The I =

2
resonances are less asymmetric than the I=

2
ones, and indeed are compatible with

total symmetry and even with being asymptotic; the agreement between calculation and measure-

ment is good for the S»(1535) transition amplitude although inconclusive for the h. (For the iso-

quartet negative-parity ground state, the data presently hardly exist. )

I. INTRODUCTION

Perturbative QCD applied to baryon resonance transi-
tion form factors gives helicity' and scaling ' results that
are easy to obtain. One expects that the dominant transi-
tion amplitude at high-momentum transfer Q2 is the one
that preserves the hadronic helicity. In differing nota-
tion, this amplitude is called f+, GM&z, or A &&2. Fur-
ther, the Q falloff (modulo powers of lnQ ) at high Q is
determined. One expects the dominant amplitude to fall
like 1/Q or 1/Q, depending on kinematic factors in its
definition. The helicity and scaling results are not in poor
agreement with existing data.

In this paper, we want to report on the next problem,
which is calculating the absolute normalization of the
dominant helicity amplitudes. To begin, one needs a
well-founded model for the wave function of each baryon
resonance involved. Only the three-quark wave functions
for very small transverse separation are needed for high-

Q processes, and for this the @CD sum-rule method
gives relevant information about some low moments of
the momentum-space wave function (or more precisely,
moments of the distribution amplitude, which is the
momentum-space wave function integrated over trans-
verse momentum}. This has been worked out for the nu-
cleon by Chernyak and Zhitnitsky, ' with significant
augmentation by King and Sachrajda, and we extend
this work to three additional nonstrange-baryon states:
namely, the 6(1232) and the lightest negative-parity
isospin- —' and -—' states.

2 2

The QCD sum-rule moments constrain the distribution
amplitude. The distribution amplitude can be expanded
in orthogonal functions (Appell polynomials) whose
coefficients decrease logarithmically with Q . The mo-

ments determine the coefficients of the few lowest polyno-
mials, and one neglects the higher polynomials hoping
that their coeScients are small enough at the Q scales
were are interested in.

Once the distribution amplitudes are known, then
high-Q baryon resonance electroproduction from nu-

cleon targets, among many other processes, can be cal-
culated. The procedure involves convoluting the distri-
bution amplitude with a perturbatively calculated hard-
scattering amplitude which, for the case of electro-
production, describes the absorption of a high-Q photon
by one quark and the subsequent sharing of momentum
with the other two quarks by gluon exchange.

We have chosen to present our calculations of the mo-

ments, distribution amplitudes, and electroproduction
amplitudes resonance by resonance. The b, (1232) is

presented in Sec. II, with individual sections devoted to
kinematics, resonance and quark evaluations of a certain
correlator, moments, the distribution amplitude, and the
transition amplitude, the latter presented along with

some data. Sections III and IV are devoted to the
S»(1535} and the negative-parity ground state, respec-
tively. They are short compared to Sec. II and rely on
Sec. II for details. Readers chiefly interested in the
"answers" and comparison with data will find them
mainly in Secs. II F and III C. Conclusions are given in

Sec. V.

II. THE DELTA

A. Kinematics and de6nitions

The three-quark Fock-space components of the proton
and 6 are

Qs(x;, k;z. ) 1 f~ (x;,k;T )
~

p(&= —,')) = f [dx][d'kT] ' —
~
2uud —udu —duu ) t(t+

' ' —
~

uud —duu ) tttQx, x,x, v'6 Qx,x,», v'2

and

38 2758 1988 The American Physical Society



38 DISTRIBUTION AMPLITUDES AND ELECTROPRODUCTION OF. . . 2759

P]](x;,k;„)
~

&(A, =—,
'

) ) =f [dx ][d kr ] ~

uud+ udu+duu ) t]]
Qx]x2x3

(2)

from which we may define the distribution amplitudes
]I)s, ](}„,and Pa by, for example,

Pq (x;)=f [d kT]g]](x, , k;T) (3)

in the manner favored by Brodsky and Lepage where the
normalization follows from

f [dx][d kT]
~
p~(x;, k;T) ~ =P3q

and where P3q is the probability of finding the three-
quark Fock component of the h. Note that ]t]a, like Ps, is
not forced to be totally symmetric although it must be
symmetric under the interchange of x& and x3.

It is sometimes useful, particularly when discussing
moments, to use a differently normalized distribution am-
plitude following Chernyak and Zhitnitsky wherein

f [dx]P~ (x;)=1.

The two notations are related by a constant fz which can
be defined by

Interesting questions about p& include what is its width
compared to the asymptotic distribution amplitude
x ]x 2x 3 what is the actual overall symmetry of ((]z, and
what is its normalization or the value offz?

We will adopt the notation of Ref. 7 as much as possi-
ble. The starting point is the matrix elements of three-
quark fields between the vacuum and 6+ in light-cone
gauge:

(0
~
u~(z] )u]JI(z2)dr(z3)e;, k ~

b(p, A)) = ,'fs[(y„C),-i3N"„(p,A)ma V(z,'p)+(y„y, C) &[y,N~(p, h)],m~ A(z, p)

+ (i o „~"C ) &N" (p, A ) T(z, p )I,
where z„zz, and z3 are on the same light line and Nr is the Rarita-Schwinger wave function of the iI]. (For future use,
we can note that if we were interested in a negative-parity spin- —, state we could use the same expression save for multi-

plying each Rarita-Schwinger wave function by y5.} Functions V and T are symmetric and A antisymmetric in their
first two arguments and each can be Foui'ier transformed as

d(z'p }
V(x] xg x3)5 1 —gx; = f g exp i gx, (z,'p) V(z, p)

J

T(x „xz,x, )—:T(123}

= —V(123)+ V(231)+ V(312), (9a)

A(123)=V(312)—V(231) . (9b)

Also, since the b, is isospin —,', only one of the three func-

tions is independent and

(n, , n, , n, ) ll] Pl2 Pf3
V [dx]x, xz x3 V(x]yx2yx3)

=(z p) "g(]z ]},) 'V(z, p)
~ 0, (12)

where N=n&+n&+n3 and z is a lightlike vector with
z q =q+ =q +q for any vector q.

We use the QCD sum-rule method to get the moments.
An operator P' that is useful in projecting out the mo-
ments is

The reader will doubtless be able to show that f', ' ' ' =[(iz D) 'u]'Cy z[(i.z D) .'u]J

P~ (123)= V(123)—A (123) . (10) X [(]z.D }"'"fe;Jk, (13)

We cannot expect to calculate the full wave function
using perturbative QCD, but we might expect that the
wave function and some of its derivatives at short range
are amenable to calculation. In momentum space this
means that some of the lower moments might be amen-
able to calculation, and we note that

V(z, .p =0)=f [dx] V(x],x2, x3 )
—= V"'"

or generally

where D is the covariant derivative, D =8—igt - A.
(Again, if we were interested in a different parity state, we
could insert a y5 just before the d field. ) Matrix elements
are

(0
~

0',"]
~
h(p, A, )) = —[maf~z N, (p, A, )(z p) ]V'"'

(14)

with (n)=(n„n2, n3). Next we need to define a vacuum



2760 CARL E. CARLSON AND J. L. POOR 38

expectation value or "correlator" that we shall evaluate
in two ways, once by saturating it with baryons and once
by saturating it with quarks. We choose

J'"'" '=i f d y e'~"(0
~

TP''"'(y)J ~ '(0)
~
0)d (15)

where the auxiliary operator is FIG. 2. Diagrams for the quark evaluation of the correlator.

J',"' = [a [(iz.D )"u ]JCtu~d,"+b[(iz D )"u ]'C/d~u,"

+c[(iz D )"d ]'Ctu'u," I e)„. I. For zero derivatives the results are the same for nu-

cleon and b, and we use the notation

We choose the constants a =b =c=—,
' to make this opera-

tor isospin —', for the b, calculation. Choosing a = b= 1—

and c =0 makes the operator isospin —,
' and is useful for

checking against the nucleon calculation of King and
Sachrajda.

(f ) (n, 0) . (20)

for one derivative, the nucleon case is given for complete-
ness and checks against King and Sachrajda and we are
using the notation

B. Resonance saturation b(n) c(n, )) (21)

+other resonances

+continuum,

where the residue is

2 I P t 2y(n)y'(n', 0,0)P '
I&

[Equation (5) implies V' '=1.]

(17)

(18)

C. Quark saturation

The Feynman diagrams corresponding to a quark satu-
ration of the correlator are shown in Figs. 1-3 and we
shall evaluate them in turn. Figures 2 and 3 involve situ-
ations where the nonperturbatively calculated structure
of the vacuum is parametrized in terms of gluon density
and quark density matrix elements which are taken from
other studies.

The purely perturbative evaluation (Fig. 1) can be done
in either momentum or coordinate space and the terms
that will contribute to the imaginary part are

If we saturate the correlator with ordinary hadrons, we

get (N'=N+n')

( 1 / )lm J(n, n') (n, n')( )N'+3g
(

2 ~ 2
)

J(n, n')
( 1 /%2)c(nn )(z ,

q
'P +3q &( (a /m)G2 ) (22)

where the last piece of notation means
(0

~
(a, /m)G„„(0)G""(0)

~

0). The results for c2 are also
given in Table I.

Finally we evaluate the diagrams in Fig. 3 which con-
tain four quark lines or else two quark lines and a gluon
line disappearing into or emerging from the vacuum.
The gluon equation of motion may be used to express
both cases in terms of (qq ) . The result is

J(s,n') (1/~)c(~n, n )(z.q)N''+3 —4(~ (23)

and the coeScients c3 are also in Table I.

The diagrams of Fig. 2 are calculated in fixed-point
gauge y, 3 "(y)=0 so that gluons attach at only one of
the vertices. The calculation except for the parametriza-
tion of the gluon density in the vacuum is perturbative
and yields

J(n, n') (1/ 4)c(n, n')( .q)N'+3q2ln( q2/P2) (19)

We have calculated c& for the auxiliary operator having
zero or one derivative and tabulated the results in Table

D. Matching and moments

The two ways of calculating the same correlator should
give the same results. Thus (displaying the imaginary
parts for both evaluations of the correlator)

FIG. 1. Diagram for the quark evaluation of the correlator. FIG. 3. Diagrams for the quark evaluation of the correlator.
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—Im q ln( —q /A )+ G + 4 (Qa, qq) =r5+(q m—z) — 4q e(q —so),
7r 7T' 7T'

(24)

where the contribution of higher resonances and the continuum is approximated by the perturbative contribution above
some threshold so. Superscripts on the c;, r, and so are implied. The two sides of the above equation cannot be
matched as they stand, but a smoothing will be done with some extra weighting in the smoothing given to lower q con-
tributions. Each side will be Borel transformed, where the Borel transform of a function f(q ) is given by

Sf(M )=——I dq e ~ ~ Imf(q ) .
7T 0

Then, transferring one term to the opposite side of the equation, we have

C)
M [I—(1+so/M )e ]— G + -(Qa, qq) =re

~4 ~' m ~ M'

(25)

(26)

Matching the left-hand side and the right-hand side is
now possible. However, and unlike the nucleon case, a
stable rnatch (i.e., one that works over some reasonable
range of M ) cannot be obtained for all the moments
studied. A stable match is always obtained when cz and

c3 have opposite sign. The results in terms offz and mo-

ments of V are given in Table II. Also included in Table
II are the corresponding quantities from the nucleon case
taken (and confirmed) from King and Sachrajda, and the
moments that follow from the asymptotic distribution ' '

amplitude ((), =120x,xzx3.
We can summarize here the nontrivial stable moments

for the b, :

V' "=0.35+0.02,

V'~"=0. l6*0.02,

V" "=0.092+0.02 .

(27)

These three moments are dependent since

TABLE I. Coefficients for the quark evaluation of the correlators for the nucleon and delta. For the case of no derivatives in the

correlator, the nucleon and b, coefficients are the same.

y(0, 0,0)

y(1,0,0)

y(0, 0, 1)

V(2, 0,0)

y(0, 0,2)

y(1, 1,0)

V(1,0, 1)

a1

1

160

1

480

1

480

1

1120

1

1120

1

1680

1

1680

b1(X)

1

480

1

1344

1

1680

3
8960

1

4480

1

4480

1

5376

b1(b, )

1

480

19
26 880

3
4480

11
35 840

1

3584

11
53 760

1

5i20

Q2

1

288

1

1152

1

576

1

1440

1

720

1

5760

b2(N)

1

576

1

1920

1

1440

7
17 280

1

2160

1

8640

b2(h)

1

1152

1

5760

1

1920

11
69 120

1

2304

I
34 560

1

23 040

Q3

2
81

14
81

2
81

4
27

1

81

1

81

44
243

77
972

11
486

26
405

2
135

1

90

19
4860

b3(h)

8
243

29
3888

31
648

13
3240

23
540

59
9720

17
6480
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TABLE II. Moments of the distribution amplitude with normalization V' '=1. Typical errors
are +0.02 or %10%, whichever is larger, for each moment. The constants f; are given in units of 10 '
GeV .

Moment Nucleon 6(1232) S11 ( 1535) Asymptotic

y(0, 0,0)

y(1,0,0)

y(0, 0, 1)

y(2, 0,0)

y(0, 0,2)

y(1, 1,0)

y(1,0, 1)

g (1,0,0)

g (2,0,0)

g (1,0, 1)

1.00
0.38

0.24

0.22

0.12

0.10

0.06
—0.17
—0.13
—0.04

5.1

1.00

Unstable

0.35

Unstable

0.16

Unstable

0.09

Unstable

Unstable

Unstable

11.5

1.00
0.36

0.27

0.17

0.11

0.10

0.08
—0.08
—0.06
—0.02

10.2

1.00
0.33

0.34

0.14

0.15

0.09

0.09

Unstable

Unstable

Unstable

17.0

1.00
1

3
1

3
1

7

1

7
2

21

2
21

V' "=V' '+2)& V" ", which within errors is compa-
tible with the above results.

The remarkable feature of the nucleon was the asym-
metry discovered in the distribution amplitude. No
asymmetry, given our uncertainties and missing mo-
ments, is forced by the 6 results. Recall that symmetry
in the first and third arguments of the 6 distribution am-
plitude is required but that in these light-cone frame
quantities total symmetry is not. However, we seem to
have it.

E. Distribution amplitude

85 ——0. 1821.32 (32a)

and

8~ ——0.41+3.09 . (32b)

Taking central values, this result in Brodsky-Lepage
notation is

=x ] x2x3 (0.34/0 —0. 12(t)2+0. 14/3+ 0.06/3 ) (33)

For comparison, the symmetric part of the King-
Sachrajda amplitude is

The moments may be used to give a model distribution
amplitude for the b, . The standard technique is to ex-
pand in Appell polynomials as

X]X2X3(0.11/0 —0. 14(t2+0.44/3+0. 11/3)

F. N-4 transition with data

(34)

(()z ——120x,x2x3 g B;P,(x],x2, X3) . (28)

Thus,

The sum is over only the symmetric Appell polymonials,
so that 8, and 84 are zero, and the factor 120 ensures
that Bp= 1. In general, the linear moments determine
the coefficients of the linear Appell polynomials 8& and
Bz, and then the quadratic moments determine 8&, 84,
and 85, the coefFicients for the quadratic Appell polyno-
mials, etc. We have

(29)

Q '41/2 e[2mN(m a mN)l Q GM g+

=0.277 GeV Q G
Mph+

(35)

and for several choices of the nucleon distribution ampli-
tude and the present 6 distribution amplitude, we get

The consequences of the b, distribution amplitude for
the leading N~6, electromagnetic transition amplitude
can be determined using formulas in Ref. 3. That refer-
ence gave results in terms of a certain 6 + chosen to

Mph, +
be analogous to the proton elastic GM~. The amplitude
A &&2 is equivalent and probably more common. We have

B2 ——21(—,
' —V( ")= —0.35+0.42 . (30)

For the quadratic polynomials we have one remaining
independent moment and two coefficients to determine.
If we suppose that the quadratic terms of the distribution
amplitude are totally symmetric (at some relevant scale),
then' B~=—,'85 and

0.02 GeV ~ (Chernyak-Zhitnitsky ' ),
Q ~ A]&2 ~

= 0.03 GeV (King-Sachrajda ), (36)

0. 17 GeV (Gari-Stefanis") .

ls9
( 1 7$CZ(]00)+ 2s yCZ(200) )3 20

leads to

(31)
We used a, =0.3. The result is sma11 if we use the
Chernyak-Zhitnitsky or King-Sachrajda nucleon distribu-



38 DISTRIBUTION AMPLITUDES AND ELECTROPRODUCTION OF. . . 2763

tion amplitudes, which are distribution amplitudes based
on the QCD sum-rule moment results for the nucleon.
The smallness has to do with cancellations between the
symmetric and antisymmetric parts of the nucleon ampli-
tude which would occur for almost any 6 wave function.
For the Gari-Stefanis» distribution amplitude, which was
partly inspired by a particular analysis' of the data'
hinting that the neutron magnetic form factor is small,
the result is typical of what one sees experimentally for
other nucleon-resonance transitions. (In all cases the re-
sult is roughly what was estimated earlier when the 6
amplitude was guessed to be the same as the symmetric
part of the nucleon one, and the "anticorrelation" be-
tween GM„and Q A, /z for the N +6 st—ill holds. ' Also,
if the 6 distribution amplitude is purely asymptotic with
our fa the Gari-Stefanis result becomes —,

' of what is

given above. )

Data for the 6 are shown in Fig. 4. It is based' on
cross-section measurements for e+N ~e'+X, with the
background subtracted incoherently. If A3/2 is small
compared to A, &2, which one should understand is pre-
dicted by perturbative QCD (PQCD) but not yet estab-
lished experimentally, then the central values of Q A i&2
fall between Q of 3 and 6GeV . The

falloffis�b

a factor
of 2 if squared and is clearly visible in the falling peak-
to-background ratio in the data. In contrast, for the oth-
er resonance bumps Q A i/2 is roughly constant at higher
Q2 and the peak-to-background ratio is also roughly con-
stant, both in accord with PQCD. However, a constant
Q A &/z for the b(1232} is still compatible with the edges
of the error bars, so that while awaiting more precise
data, higher Q data, or separated data for the individual
amplitudes, we should not conclude if Q A, /2 for the
N~h transition has already stabilized at a normal sized
value or has yet to stabilize at a lower value.

III. THE $„(1535)

This section is devoted to the ground-state negative-
parity I=—,

' baryon. There are two candidates for this ti-
tle: the Di3(1520} and the Sii(1535}. The light-cone for-
malism distinguishes helicities but not total angular
momentum, so that the state we will consider is really a
linear combination of these two. However, experiments
at lower Q where a separation of amplitudes is possible
show that the cross section at increasing Q is doininant-
ly the S» and so we shall call our state by that name.

A. Kinematics, etc.

The S&& has the same spin as the nucleon but the oppo-
site parity. Hence we can use operators to define and
project V, A, and T that are the same as the nucleon ones
except for removing some factors of y5 where they exist
and inserting them in some places where they do not.
The y5's cancel in actual evaluations, so that the end re-
sult for the coefficients is the same as for the nucleon
case. The matching is changed because the mass put in
for the baryon is different, and we need to use a larger so
to get stable solutions with both the nonperturbative con-
tributions and continuum contributions below 25%
simultaneously. The best results for the moments are
shown in Table II. The moments still show the asym-
metry that made the nucleon case so remarkable, but the
effect is less great at the higher mass.

B. Distribution amplitude

Fitting the central values of the moments to the first
six Appell polynomials gives a distribution amplitude

(()(Si i ) = 120x ix2x3(go+ 1.68$) —0.56pz+0. 63(()s

+0.27$s) (37)

CV

LA P
Q

0.2

+
P4

p. 1

C3

0 1 2 3 0 5 6 7 8

Q2 {Gev 2)

C. Transition amplitude and data

The expression for G~p $ is similar to the expression

for the magnetic form factor of the proton and is given in
terms of the Brodsky-Lepage style B; in Ref. 16. They
are there called N; and one needs to symmetrize the ex-
pression

N N, ~[N;(p)N (S„)+N (p)N;(S„)]/2 . (38)

(coefficient 84 came out zero). Cotnpared to the nucleon
case, the higher-order Appell polynomials are less impor-
tant. Coefficients for both quadratic compared to linear
polynomials and linear compared to zeroth-order polyno-
mials have decreased.

FIG. 4. Plot of Q3(Aii~, + A32~2)'~ for the h(1232). Pertur-
bative QCD predicts that A, ~2 falls like 1/Q' and A 3/p falls like
I/Q' (both modulo ln g' to a power) if we are in the asymptotic
region. The data for Figs. 4—6 is from Ref. 15.

With

A i/2
——0. 182 GeV Q GMp s„

one gets

(39)
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A~i2

(Gey si2

0.3

0.2

O. t

0

0

II
II

P4
CV

h4
C4

0.3

0.2

0. 1

II il

0 1 2 5 4 5 6 7 8

Q& (Gey & )

0 1 2 5 4 5 6 7 8

Q2 (Gey 2)

FIG. 5. Plot of Q A, ~2 for the $»(1535). The open circles
are separated data that are just the S» and the high Q2 points
are from tota1-cross-section data using an assumption justified
from the low Q2 data that the S» dominates the total cross sec-
tion in this bump.

FIG. 6. Plot of Q'(A', ~z+A3/2)' for the bump around
1688 MeV. A number of resonances lie under this bump, and
the total should scale the same way with Q as the individual
contributions.

0. 11 GeV ~ (Chernyak-Zhitnitsky),

Q ~
A, &2(p~S» )

~

= 0. 14 GeV (King-Sachrajda),

0. 12 GeV ~ (Gari-Stefanis)

(40)

(41)

at high Q and for the same selection of nucleon distribution amplitudes as before. The error range on the moments al-
lows large variations in the B; and the A, zs's quoted above may be as much as a factor of 3 larger (or they may be
smaller). The available data are shown in Fig. 5.

In case data for the transition to the neutral S» from a neutron target become available, we wish to quote the results

0.08 GeV ~2 (Chernyak-Zhitnitsky),

Q ~
A, &s(n~S»)

~

= 0.06 GeV (King-Sachrajda),

0.05 GeV ~ (Gari-Stefanis) .

IV. THE I=
q NEGATIVE-PARITY STATE

This state bears the same relation to the h(1232) that
the I=—,

' negative-parity state bears to the nucleon and so
the bulk of the calculation is already done. The candi-
dates for this state are the S3&(1650) and the D33(1670),
and there is no evidence that either dominates the other
or that they collectively dominate the cross section for
the 1688 (nominal) bump. The matching procedure using
a mass of 1660 MeV and an so of 6 GeV leads to mo-
ments (Table II) that are compatible with an asymptotic
distribution amplitude, and the transition amplitude from
the nucleon is small. The bump seen at 1688 is at high
Q very possibly dominated by I=—,

' resonances and un-
less the individual contributions can be separated is not

relevant to this section. There is still some interest in see-
ing the data plotted to check the I/Q scaling of the lead-
ing amplitude and so we present Fig. 6.

V. CONCLUSIONS

The 5 distribution amplitude has the same symmetry
as the symmetric (under the interchange x,~x3 if 1 and
3 represent the parallel helicity quarks) part of the nu-
cleon distribution amplitude. In the nucleon case all of
the moment sum rules led to stable results, so that there
were four pieces of information up to the quadratic
moments —one normalization and three independent mo-
ments. In the 6 case some of the moment sum rules do
not give stable results, so we lose some information on
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the moments and some of the cross-checks that helped
reduce the uncertainties. However, we are still left with
the normalization and two independent moments.

The moments are consistent with the distribution am-
plitude being totally symmetric and even with the distri-
bution amplitude already having its ultimate asymptotic
form. If we expand the distribution amplitude in Appell
polynomials and fit to the moments, then while the
asymptotic form is very possible, the best fit has a
significant amount of quadratic polynomial mixed in.

For the S»(1535) the asymmetry seen in the nucleon
case is still plainly there although the amount of higher-
order polynomial in the distribution amplitude has de-
creased. For the lowest negative-parity I=—,

' state the
distribution amplitude is compatible with being asymp-
totic.

For the leading nucleon resonance electroproduction
transition amplitudes, the results from perturbative QCD
and the distribution amplitudes based on the sum rules is
in the ballpark of the data.

The high Q N ~5 transition of course depends on the
nucleon as well as the 6 distribution amplitude. The 6
amplitude is important for setting the overall scale, and
the relative sign of the symmetric and antisymmetric
parts of the nucleon amplitude leads to self-cancellations
and small asymptotic N~h transitions for some distri-
bution amplitudes such as those of Chernyak and Zhitnit-
sky and of King and Sachrajda. Other nucleon distribu-

tion amplitudes such as that of Gari and Stefanis give
asymptotic N~h transitions that are similar in size to
other N ~resonance transitions.

If the Chernyak-Zhitnitsky or King-Sachrajda distribu-
tion amplitudes are correct for the nucleon, then there
will be substantial self-cancellation in the calculation of
the leading electromagnetic transition amplitude for anyI=—,

' state, leading to a prediction that the I=—,
' reso-

nances will always be more visible at high Q than the
I=—,

' ones.
For the nucleon to S» transition amplitude there is lit-

tle spread among the calculations using difFerent nucleon
distribution amplitudes and the S&& distribution ampli-
tude presented here and all are in the ballpark of the
data.
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