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In this paper we carry out a systematic study of the general phenomenological ZZy coupling and
derive the helicity amplitudes for yZ production. We examine the reaction e te ~—yu*u~ with
polarized beams and search for signals of effects beyond the standard model. The results obtained
may be regarded as further evidence in support of the usefulness of polarized beams.

I. INTRODUCTION

So far the SU((2)XU(1) electroweak theory has sur-
vived all tests and it shows a remarkable agreement with
the experimental data (see Ref. 1 for a review). However,
there are well-known reasons to look beyond the standard
model and, over the last few years, we have seen the de-
velopment of two main concepts attempting to do it. The
first one—supersymmetry, supergravity, etc.—is based,
essentially, on the extension of the gauge principle to the
boson-fermion symmetry. The second attempt—
compositeness—proposes a further and deeper layer of
constituents in the structure of matter.

The phenomenological consequences of the first ex-
trapolating route have been analyzed by several authors
(see Ref. 2, and references therein). On the contrary,
tests of compositeness (for a review see Ref. 3) did not at-
tract a comparable amount of work yet. This reflects the
current fashion in theoretical physics but this fashion
could be a prejudice against the analysis of the forthcom-
ing experimental results of the new colliders.

Clearly, if the scale associated with the substructure is
of the order of the grand unification scale or higher, the
theory, even at energies of the CERN e Te ~ collider LEP
I1, will be completely indistinguishable from a renormal-
ized gauge model. Such a conservative version of com-
positeness tries to explain the spectrum of quarks and
leptons in terms of constituents (haplons, for instance)
but maintains the W and Z particles as elementary gauge
bosons. On the other hand, there are more radical mod-
els*® where even the W and Z are composite particles.
Then, the compositeness scale is of the order of a few
hundreds of GeV and, in this case, deviations from the
standard model should be observed in the next run of col-
lider experiments. In fact, these models imply (i) the ex-
istence of other spin-1 bosons and, in particular, of a
weak-isospin singlet, and (ii) different WWy, ZZy, and
Zyy couplings.

The influence of extra spin-1 particles in the M, /M,
mass shift, in the partial width T'(Z —e e ™), and in the
forward-backward and left-right asymmetries have been
studied by several authors.® Recently, three different
groups”?® have also reexamined the W pair production in
e e~ collisions. However, such systematic study of the
ZZy and Zyy vertices has not yet been done. This is
our aim.

The pioneer work in this field is a paper due to Re-
nard® where it is explicitly shown that an anomalous Z
coupling will be reflected in the photon spectrum of the
ete” —yutu~ reaction. After that, the ZZy and Zyy
three-point functions were correctly calculated'” in the
standard model and, in 1987, the e te ~—¥Z reaction
was used>!! as a testing ground of compositeness. With a
similar purpose we'? have pointed out the importance of
the neutrino-counting reaction. In this paper we follow
this work and extend it. In Sec. II we discuss the ques-
tion of extracting information about the Z polarizations
from a measurement of the differential cross section
ete~ —yff, where the invariant mass of the final fer-
mion pair is in the vicinity of M. In particular, we show
that it is possible to separate the contribution due to lon-
gitudinal Z’s. This could be important because a devia-
tion from the standard model is more likely to be shown
there. Notice that, in the standard model, it requires the
cancellation mechanism of a gauge structure to prevent
the cross section for the production of a longitudinal Z to
rise with the c.m. energy. In Sec. III we study the gen-
eral phenomenological ZZy coupling and derive the heli-
city amplitudes for yZ production. Then, in Sec. IV we
consider polarized beams. Our aim is to search for sig-
nals of effects beyond the standard model and the results
obtained can be regarded as a further evidence in support
of beam polarization. Finally, Sec. V discusses our re-
sults which are summarized in Sec. VI.

IL ete-—>yputu~ vsete —»yZ

It is clear that the Z particle produced in a e te ~ col-
lision is not directly observed since it decays promptly
into a fermion-antifermion pair. Then, any information
about the yZ production has to be obtained from a study
of the reactions e e ~—y ff.

Let us consider, in particular, the ¥ u*u~ channel.
At tree level and for center-of-mass (c.m.) energies above
the Z threshold one can neglect the diagrams where the
final-state fermions do not couple to the Z resonance.
Hence, the amplitude can be written in the form

T(yp*u™)=J,(p)g" —pFp* /M), (p)m*—~MF)~",
(1)

where J and J' are the currents coupled to the Z in the
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processes YZ * production and Z* —utu~, respectively,
p is the momentum of the muon pair, m2=p? its invari-
ant mass and

My=M,—iT,/2 2

with ', the Z-boson width. In the c.m. of the colliding
beams the differential cross section do(yu*pu™)is

|J-J' |2 4Q,7dQ,,dm’

do(yptu )= o M2 (3)
with

dQ,;=dQ,0/167°Vs , (4a)

dQ,,=dQ,q/16w’m , (4b)
and

mi=s-2Vsaw, (4c)

where (1, and o are the photon solid angle and energy,
respectively, and Q,(6,4) and g are the solid angle and
the momentum of the 4~ in the u*u~ c.m. frame. Be-
cause of our interest in the study of the Z boson we calcu-
late the cross section for an on-shell Z; i.e., we integrate
over the photon spectrum and everywhere else we set
m?=M3. Therefore, we obtain

dolyutp=)=BY do;;dTyy (5)
with (m =M )

doy=T,T3dQ,;/2s (6)

Ty, =T3T*dQ,, /2M;T 7 , %))
and

B=(M;T/m) [ dm?/|m*—M#|?. (8a)

T and T’ are the amplitudes for the yZ* production and
Z* decay, respectively, and A=0,%1 denote the helicity
of the Z*. Obviously, when A=A'do;,. is the production
cross section for a Z with helicity A and T, is the
branching fraction for its decay into u*tu~. In the zero-
width limit B=1 and a better approximation valid up to
order (T;/Mz)*~10"Cis

B=1—sT,/[mMz(s —M2%)]+O((T'z/M;)®) . (8b)

From a measurement of do(yutp~) we would like to
obtain the values of the tensor o,;.. This is quite simple
because one knows the amplitude for the Z decay.
Neglecting the muon mass both particles are emitted
with opposite helicities. Then, denoting the p~ helicity
by h /2=%1, we obtain

T'(h,0)=—(g /cosOy )g, M,sinb , (9a)
T'(h,A=x1)=(g /cosOy )g, M h
X exp(iA)(1+Ah cosf)/V2 , (9b)

where 0 is measured using the Z direction in the labora-
tory as the z axis, ¢ is defined in such a way that the elec-
tron momentum has ¢ =0 and
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g, =8y—84=sin’0y , (10a)
g§_=8y+84=—1+sin’0y . (10b)

The Z polarization vectors €.,=(€,*ti€,)/ V2 are
defined in the previous frame. Inserting Egs. (9) into Eq.
(7) and summing over the polarizations of the muons, the
result is

2 2

d[‘M,=a(—fi£%%e"“‘_"')*’GMldQu . an
with

G =2sin%6 , (12a)

Gos =G 4o=—V2sinf(cosf£A) , (12b)

G =ML+ cos’0+A(A+1")cosh , (12¢)
and

A=—-2g,8,/8}+8%) . (13)

Finally, using these relations in Eq. (5), it is possible to
project out the components of o0, integrating
do(yu*u™) with appropriate weight functions f(Q,).
In particular, we obtain

dogw=2do—5 fﬂﬂda(w.m)cosZG/B , (14a)

do_, =—3 fﬂuda(y,u,u)sinzﬂexp(ZidJ)/B , (14b)

do,,=—jdo+ fﬂﬂda(yyy)(%coszﬂicose/A)/B ,
(14c)

dog,=— fﬂ do(ypp)(3cosf+1/A)sinfexp(+i¢)/B ,
[

(14d)

where do=do |  +do_ _+doyy is the differential yZ
cross section and B is the branching fraction of the
Z —>pu*u~ channel. Results for other AL’ combinations
can be obtained from Egs. (14) noting that o,,. is Hermi-
tian. Let us point out that do,,./do =p,, is the spin-
density matrix for the Z production.

These equations enable us to obtain information about
do,;  from measurements of the differential cross section
for the reaction e e ~—yutu~ at c.m. energies larger
than M,. Clearly, our expressions above involve an ap-
proximation since, even in the lowest order, there are
other diagrams where the u*u~ pair does not form a Z.
The complete analysis was done by Renard® and there is
no need to repeat it here. It is enough to recall that, at
Vs =140 GeV and at the Z peak (0~42 GeV) the back-
ground contribution to do(yu*u~)/dw, integrated with
a cut 30°<6,<150° is roughly 100 times smaller than
the signal.

III. ANOMALOUS ZZy COUPLINGS

In the standard model the ZZy vertex does not exist at
the tree level and at one loop it is exclusively induced by
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the fermionic triangle diagram. Examining this ZZy
three-point function'® one can see that there is an electric
dipole transition (EDT) which vanishes if both Z bosons
are on shell. Furthermore, one can show!? that, for a real
photon, the lowest dimension ZZy couplings, which
satisfy electromagnetic gauge invariance and Bose sym-
metry, are

e(p?—p")/MZ[f , €Pe e pk €,
+f_(eek-e'—ee'k-e)], (15

where e (p), e’ (p’), and € (k) are the polarization vectors
(momenta) of the initial Z, final Z, and photon, respec-
tively. Furthermore, we assume orthogonality between
the polarization and the momentum of the Z’s despite the
fact that they are not on shell. This is appropriate be-
cause we are neglecting the fermion masses. The first
form factor f which is parity violating but CP conserv-
ing, is the EDT and f_ is CP violating and parity con-
serving. Of course, in the standard model f _ is zero and
f4 is of the order 107°. However, as Boudjema and
Dombey® have pointed out, f + could be enhanced by a
large factor if the Z is a composite particle. To see what
are the effects of such a large EDT is our main goal but,
before we do that it is interesting to mention that, for an
outgoing photon with helicity y =*1, Eq. (15) becomes

e(p?—p2)/MLliyf, —f_Nk-e €,-e'—k-e'el-e) .

(16)

In this form, it is easy to convince ourselves that, with
the previous conditions, this is the most general ZZy in-
teraction.!

Let us now consider the helicity amplitudes for yZ
production, T(h,A,y), where h/2 is the e~ helicity.
Since the e te ~ pair is coupled by a vectorial interaction
and we have neglected the masses, the e * helicity must
be —h/2. It is convenient to separate out the depen-
dence on the photon azimuthal angle ¢,. So, writing

T(h,A,y)= explih¢,)r(h,A,y) (17)

and using'* the spinor formalism,'> we obtain

h,0,y)=—2&
7(h,0,y) cosowg,,Z\/Zso
1 . SoX
X | =——=+h(f, +iyf_X1+yhz)— | (18a)
SoX 8
and
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eg
,ElLy)=— A
T(h Y) cosewg,, y
2h(sgd_,1+6,,)
sox(14Ahz)

SoX
+(f o HiVf B |, (18b)

with so=s/M3, x =1—1/s, is the photon energy in
units of beam energy, z =cos07,, and y =sin67. The am-
plitudes corresponding to the standard model, i.e., with
f 4 =f_=0, agree, except for the exponential factor in
Eq. (17), with the ones derived by Hagiwara et al.” This
exponential simply reflects the fact that the initial state is
an eigenstate of the angular momentum J, and it is ir-
relevant except when one has transversely polarized
beams. The same factor is missing in Ref. 5, where the
EDT amplitude is also given. However, in Ref. 5 the rel-
ative sign of the z coefficients in the standard and the
EDT contributions is not correct.

With the helicity amplitudes one can easily write the
vy Z-production cross section and look for possible effects
of the abnormal couplings. So far, this has been done
only with the EDT coupling. Moreover, the calculations
were done either for unpolarized e *e ~ beams>!! or sum-
ming over the final Z spin states.>!! In both cases, terms
linear in f | are suppressed because they are proportional
to A and so, they were neglected. Here we lift both re-
strictions.

IV. TRANSVERSE AND LONGITUDINAL
POLARIZATION

In circular colliders the electron and positron beams
have a natural transverse polarization in opposite direc-
tions. On the other hand, longitudinal polarization is
particularly interesting to study parity-violating effects
and its implementation is presently being considered. We
will see that the use of polarized beams is of great help in
the search for deviations from the standard model.

Let n~ denote the electron degree of polarization in
the direction specified by the solid angle (67,¢7). The
positron degree of polarization, n*, is in the direction
(r—60%,m+¢"). The longitudinal n;" and transverse n;
degrees of polarization are

nf=n*cos6* and nf=n*sin6* . (19)
In Eq. (6), do;, depends also on the polarizations of the
initial state. Hence, Eq. (5) gives the cross section for a
particular spin-initial state. Introducing the e~ and et
density of states,'® p,,., the relevant quantity is the prod-
uct T, T} averaged over the initial spins and summed
over the photon polarizations, given by

43 T TR A, )pp =141 )1 —n )+ +3 )+ (1—n N1 +n7 )Z(— —;A0")

yhh'

—nzng[exp(2ig,)2(

+ —;AL )+ exp(—2i¢,)Z(—+;A0)], (20)
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with

S(hh"; AN )= m(h, A y)T* (R, M, y) . 21
14

Without loss of generality we have set ¢~ +¢*=0. The
use of transverse and longitudinal beams enables us to
determine all squared amplitudes 2(hh’;AA'). In fact,
from Eq. (20) one clearly sees that integrating the cross
section multiplied by the weighting factor exp(2ih¢,)
projects out the quantity Z(—hh;AA’). On the other
hand, the unpolarized cross section is proportional to the
sum, 2(+ +;AL")+32(— —;AL’), whereas the longitudi-
nal asymmetry A,,. is given by
_ 2+ +5AM) =3 (= —;AN") 22)
R4 AN )+ 2(— —5AL)

The 2 can be trivially calculated from Egs. (18) and for
completeness we give the results in the Appendix.

Possible deviations from known physics are better
shown by suitable weighted integrals of the differential
cross section do,;. which vanish in the standard model.
If one is interested in the odd part of do;;. with respect
to z, the signature is a forward-backward asymmetry
which is obtained using the sign of z as a weighting fac-
tor. On the other hand, to get information about the
transverse part of do,, one uses the weighting factors
cos(2¢,) and sin(2¢, ). However, it is worth pointing out
that the signs of these functions project out the same
quantities. This alternative could be advantageous in
view of the experimental errors in the angular measure-
ments. We define the weighted cross sections

o [M]= [do,,sgn(sin2g,)

(23a)
and

a,[M']= [do,,sgn(zsin2é,) , (23b)

where the integration is over the photon solid angle with
a cut —z3<z<z, and similar ones, o, and a,., with
sin2¢,, replaced by cos24,. To simplify the notation, the
values of the Z polarization previously given as subscripts
are now written in the square brackets. Then, with the
help of the expressions in the Appendix we show that the
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weighted cross sections listed in Table I are identically
zero in the standard model. Notice that the a’s are
forward-backward asymmetries. Some of these quantities
signal the ZZy coupling. In fact, it is quite easy to ob-
tain contributions proportional to the constants f .
These are

al++1—a[——1=Cf 2}, (24a)
o++]1-0——1=-2Cf_z, (24b)
Re(o, [0+ ]—0 [0-1)
——CV'5g/2f, fozodz[Z/y+(so—3)y] ., (240)
Im(o [0+ ]4+0.[0-])
=—CV'sy/2f _ fozodz(Z/y —soxy),  (24d)
Im(a,[0+ ]+a,[0—])=—CV 2sof , (1—y,) , (24e)
Re(a,[0+]—a,[0—])=CV 25, _(1—yp,) , (249

where Re and Im mean real and imaginary part, respec-
tively, y, is the minimum value of sinOr,

C =8(a/sin260y,)g . g_x/s , (25)

and, for simplicity, we assumed n%: 1.

Let us look at longitudinal polarization. To be precise,
we consider a right- (left-) helicity electron beam scatter-
ing off unpolarized positrons. Let oy ;[AA'] denote the
total cross sections corresponding to these initial densi-
ties of states (n; =+1,—1). In order to derive quanti-
ties which are forbidden in the standard model we define
the forward-backward asymmetries

ap (M= [dog  [A1sgn(2) . (26)

In the standard model the left and right cross sections are
proportional to different coupling constants. Hence, it is
convenient to factorize out these couplings and define

“normalized” cross sections given by
G AN ]1=(14+A)o [AN'], (27)

and similarly for &4z[AA'] with (14+A) replaced by

TABLE I. yZ weighted total cross sections forbidden in the standard model.

Transverse polarization

Longitudinal polarization

« sin2¢, « cos2¢, LR asymmetry h independent

os[Ar] ofl++]-0o[——] Br[AA]—6L[AN] opl++]—0on[——]

a[AA] a.[AA] ar[Ar]+a [AA] ap[++1+a[——1
a,[00]

o[~ +] a[—+] Gal+—1-0.[+] ay[+~]

as[+_]+as[_+] 0c[+“]—ac[_+]

US[O+]+US[0_]
a,[0%£]

o,[0t]+0,[10]

ac[0+]'—ac[0-]
o [0£]
ac[Oi]_ac[iO]

opl+—=1—0os[—+]

on[0+]140,[0-]
a,[0+]—a4[0-]
a,[0£]—a,[10]

04[0t]—0,[£0]

Gr[0]+6,[0x]
ar[0t]—a.[0£]
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(1—A). Therefore, both are proportional to the constant
(1—A%) (g% +g?% ). With the same convention, we define
the “normalized” asymmetries, @; . Now, it is easy to
see that, in the standard model, the quantities listed on
the right-hand side of Table I also vanish. Furthermore,
it turns out that the contributions sensitive to the abnor-
mal ZZy coupling are

6r—06,=8C(so+1)f , 2, (28a)
agl++]—ag[——1+(R—L)=—4Cf 2}, (28b)
Orl+—1-06,[+—1=—4Cso(f, +if _)zo , (28¢)

Re{G[0+]—6x[0—]1+(R—L)}
=—2CV"2s,f . fozodz[3y +5o(14+22)/y], (28d)

Im{8x[0+]+6x[0—]+(R—L)}
=26'\/—2_s;f_ fozodz[y +5o(1422)/y], (28e)

Re{@x [0+ ]+8z[0—]1—(R —L))
=48V 2s050f L (1—p), (28D

Im{@g[0+ ]—az[0—]1—(R—L)}
=—4CV 2s050f _(1—yy), (28g)

where

6=1‘r(a/sin26uz)2(l—AZ)(gZ+ +8%)x/s . (29)

A relevant and interesting question is to use these re-
sults to find out what are the minimum values of the cou-
pling constants accessible in a collision experiment. For
this, we need to consider the statistical errors. The ex-
perimental measured signals are in general, given by in-
tegrals of the number of events per phase-space element,
dn /dQ, weighted by some function f () of the yu*tu~
phase space. For each direction, the number of events,
with mean value equal to the differential cross section
times the integrated luminosity, is assumed to be an in-
dependent statistical variable. Therefore, the resulting
squared standard deviation is the integral of the squared
standard deviations, given by the mean number of events
times f2(Q). If, as a criterion of discovery, we require
that the signal is 2 standard deviations larger than the
background then, for an integrated luminosity L;, the
discovery condition is

’Lif[da(yup)—dUSM(yuu)]f(Q)I

1/2
>2 [L,. [dotyupsuf 3 Q) ] . (0)

For illustrative purposes, we will use this criterion to ob-
tain some bounds on the abnormal ZZy couplings.

V. RESULTS AND DISCUSSION

In Fig. 1 we plot the yZ-production cross sections as a
function of the center-of-mass energy, with a cut z,=0.8.
The solid curve corresponds to the prediction of the stan-
dard model, with M, =92.5 GeV/c? and sin’8,,=0.226,
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FIG. 1. ete™—yZ cross section as a function of Vs, for
f+=0 (solid curve) and F?=f% + f2 =1 (dashed curve); the
dotted curves show a statistical fluctuation of two standard de-
viations from the standard-model result.

and the dashed curve includes also the extra Z amplitude
with F2=f2 4 f2 =1. As one would have expected, for
high energies, the standard unpolarized cross section goes
like 1/s while the contribution quadratic in the f in-
creases with s2. So, around 300 GeV the standard and
nonstandard cross sections differ from each other by 1 or-
der of magnitude.

In Fig. 1 the dotted curves give the two standard devia-
tion limits of the standard-model (SM) result, calculated
using an integrated luminosity of 100 pb~!. According
to our previously defined discovery criterion, a result out-
side these dotted lines should be attributed to some new
physics. Obviously, we can turn the question around and
ask for the minimum value of F such that the dashed
curve lies just outside the two o band. The resulting F
minimum is plotted in Fig. 2. Notice that F=1 is
reached at an energy of 140 GeV and, even at 200 GeV
one has F =0.3. This value is comparable with the limit
derived!? using the neutrino counting reaction. Since the
SM amplitude is a typical bremsstrahlung the photons
tend to be rather soft. So, increasing the z, cut enhances
the signal-to-background ratio, but, a smaller z, gives a
reduction in phase space which implies poorer statistics.
In such a situation a compromise is needed and we have
checked that z;,=0.8 is always close to the best possible
values.

It should be noted that the cross section also has a con-
tribution linear in f_ arising from the interference be-
tween the standard and nonstandard amplitudes. Clear-
ly, such an interference term does not exist for the CP-
odd coupling f_. Including this linear term we obtain
the bounds represented by the dotted curves in Fig. 2,
where the lower one corresponds to f, <0O. Although
the linear term could be important for | f, | <1, it is
suppressed by A and its contribution is further washed
out by the s? dependence of the quadratic term.

In the search for signals that could give information
about the signs of the constants f, discriminate their con-
tributions, or eventually ascertain more stringent evi-
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FIG. 2. Discovery limits of | f4 |. The solid and dotted
curves are obtained from the unpolarized yZ cross section and
the dashed curve is the minimum visible | f, | from the pro-
cess e Te ~ —y ff with transverse polarization.

dence of them we were lead to consider polarized beams
and Z spin effects. With complete transverse polarization
(nF=1) the best limits are obtained with the signal cor-
responding to Eq. (24¢c): namely,

fda(y,uu )sgn(cos¢ cos2¢,,)
=3BACV/5/2f | [ dzl2/y +(s—=391 . (D

The reason why this gives the best limit is the energy
dependence of Eq. (24c) which increases with V's, while
all the others, except Eq. (24d), decrease with energy.
Equation (24d) gives a poorer limit on f_ because of a
cancellation between the two terms in the integral. In
both cases the signature is attenuated by the factor

A=0.2 and also by the branching fraction B of the Z de-
J

fda(yff)sgn(z cos9)=—%BfAfC'f+z(z,+SM contribution ,
fdo(yff)sgn(COqu)=-§-BfAfC'\/So/2f+ fo 0dz[3y +50(1+422)/y]+SM contribution ,

[ do(yfFisgn(sing)= —3B,A,C'V sg/2f _ fo *dz[y +s4(1422)/p]+SM contribution ,

with
C'=m(a/sin20,)4g% +g% )x /s . (33)

The results are proportional to the product B;A,. Thus,
as we have already discussed, the only way of obtaining
an interesting signal is to consider other yff channels.
Furthermore, the last two expressions increase with ener-
gy, and so they give the best bounds. Their respective
discovery limits for f, are plotted in Fig. 3 and it is in-
teresting to point out that they are more stringent than
the ones obtained with the ¥Z production cross section.
The solid, dashed, and dashed-dotted curves correspond
to the signals (32b), (32c), and yZ cross section, respec-
tively.

cay into p*pu~. Since the signal has to be compared with
the statistical error proportional to V'B, the relevant fac-
tor is V'B times A. Its value is extremely small, —0.032
for sin’6y, =0.226. In order to overcome this handicap
one can consider other Z decay modes into ff pairs, with
a negligible fermion mass in comparison with the Z mass.
Without this restriction the previously given amplitude
for the Z decay does not hold. Hence, the most one can
do is to sum the contributions of the first two generations
of charged leptons and quarks. In this case, the relevant
parameter

Br A 0.54
?vﬁ A

is more than 16 times larger than the previous one. Tak-
ing all these four channels we obtained the limit on
| f4 | which is represented by the dashed curve of Fig.
2.

As far as the longitudinal polarization is concerned,
the signals of the interference between the standard and
the abnormal amplitudes are, as a general rule, weighted
left-right asymmetries [see Egs. (27) and (28)]. The
weighting factor of the L (R) cross section is 1+(—)A,
where A [see Eq. (13)] is the LR-asymmetry parameter
with respect to the Z coupling. Curiously enough, not all
of these interference signals arise from an asymmetry,
i.e., a subtraction of the normalized cross sections,
d&p ;. Indeed, Egs (28b), (28d), and (28e) show a sum-
mation over the electron helicity. Obviously, if the
beams are unpolarized we cannot factorize the coupings.
Nevertheless, it is still possible to obtain a signal for the
presence of the extra Z couplings using similar Z helicity
combinations but without the caret. In fact, these ele-
ments of the do,; tensor have a nonstandard part linear
in the f’s and a standard-model contribution suppressed
by A. Again, with an appropriated convolution, we ob-
tain

(32a)
(32b)

(32¢)

1

The other quantities in Eqs. (28) are left-right asym-
metries which require longitudinal polarization to be ob-
served. Those with the best behavior as a function of en-
ergy are shown in Egs. (28a), (28f), and (28g). The dotted
curve in Fig. 4 displays the minimum values of | f |
arising from the signals corresponding to Egs. (28f) and
(28g); namely,

[ d6 (v fF)sgn(z cosd cosp)—(R —L)

=—8/mB,CsgV 2sof . (1—yy), (34)

and a similar equation with cos¢ replaced by sing and f
replaced by — f _. Even for an ideal case with B =1, this
puts a limit on | f | similar to the one achieved with ex-
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FIG. 3. Discovery limits of | f, | (solid curve) and | f_ |
(dashed curve) from the unpolarized angular asymmetries of the
vff differential cross section. The dashed-dotted curve is the
same as the solid curve in Fig. 2.

pressions (32b) and (32c), and again it implies a weighted
integration over the ff phase space. Indeed, at 200 GeV
we obtain 0.28 whereas the previous limits were 0.21 and
0.26, respectively.

Equation (28a) does not involve any angular asym-
metries either in the ff phase space or in the photon
scattering angles. This remarkable feature enables us to
define a left-right weighted asymmetry

Ap=[14+A)o, —(1—A)og /(o +0g)sm » (35

in terms of the total yZ cross section. Its value turns out
to be

Ar=—4C(so+1)f 1 20/T5y » (36)

where oy is the ¥ Z-production cross section with unpo-
larized beams. In Fig. 5 we plot the absolute value of this

If4dmin 10 F

0.01 1 L L L L L n L
100 120 140 160 180 200 220 240 260 280 300

FIG. 4. The dashed curve is the minimum visible | f, | from
a measurement of A4 Lr» and the dotted one is the | f4 | limit
from the y ff angular asymmetries with a longitudinally polar-
ized e ~ beam. The dashed-dotted curve is the same as the solid
curve in Fig. 2.
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FIG. 5. The solid curve is the absolute value of the weighted
left-right asymmetry with f, =71 and the dashed one is its
minimum value statistically discernible from the vanishing
standard-model result.

asymmetry with f =1. For the calculation of the sta-
tistical variance of the numerator in Eq. (35) we took an
integrated luminosity of 50 pb~! for each helicity
configuration. The error variance is given by the product
of (1—A?) times the number of events with unpolarized
beams. For comparison, the dashed curve, in Fig. 5,
gives the upper limit of the standard-model asymmetry
(4 g =0), with B =1, corresponding to a statistical fluc-
tuation of two standard deviations. In other words, with
this statistical significance, a new physical effect put in
evidence by this asymmetry must give an absolute value
above the dashed curve.

VI. CONCLUSIONS

In this paper we have studied the reaction e fe ~—y ff
in order to learn about the abnormal ZZy couplings, in
particular the EDT. We have carried out a detailed
analysis using both longitudinal and transverse polarized
beams. The minimum visible value of the EDT coupling
is obtained using longitudinal polarized beams. Its value
as a function of c.m. energy is shown by the dashed curve
in Fig. 4. At 200 GeV it gives 0.11 and this is the best
limit for this coupling constant accessible with LEP II.
Such a value of f is 4 orders of magnitude larger than
the SM result (f | =4X 10~3) but, unfortunately, it could
very well be even larger than some current estimates® in
composite models (f, =0.05).

We would like to stress that the best limits on the Z-
boson EDT coupling, obtained at LEP II energy with a
polarized e ~ beam, is only a factor of 2 smaller than our
previous limit'? derived using the neutrino counting reac-
tion at the Z peak. This enhances the importance of the
e e~ —yv¥ reaction.
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APPENDIX

The squared amplitudes defined in Eq. (21) are given in units of (eg /cosf, ) by

S(h —h;00)=16g_ g _so[(sox) "2 —(Fsoxy)*/64] ,

S(h—h;A0)=4g g _[—(s§+1)(sox) "2+ (Fsoxy)? /16 —(zf , +ihf _)A/2],

S(h—h;0M)=4g . gV 2s0/y {(Ah +2)[(so+ 1)(sgx) "2 —(Fsoxy)2/32]+[F_5(so—2)y 2+ Fy(14+Ahz)2]A/8} ,

S(h —h;A—X)=8g g _so(sox) " H(1—Ahz)*/y?,

S(hh;00)=16g2so[(sox) "2+ (Fsox)X(1+2%)/64+hf /4],
S(hh; AN =4g7[(s3 + D(sox) "1 —Ahz)* /y> 4+ (Fsoxy)* /16 +-hf (1 —Ahz) /2],

(A6)

S(hh;00) = —4g2V/ 250 /y {(so+ 1)(sox) " 2Ah —2)+(Fsoxy)X(Ah +2) /32 +[(2F _, +F, )y 2+ F _;s0(1—Ahz)*]A/8} ,

S(hh;h—N)= —8g2so[(sox )2 +hF, /4],
where Fy =f_ +iAf_, and F2=f2Jr +f2. Notice that
S(hh"; AN )=Z*(h'h;A'0) .
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