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Two-body Dirac equation with a scalar linear potential
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A semirelativistic equation which describes the relative motion of a Dirac particle and its antipar-
ticle, interacting through a scalar potential, linearly dependent on the relative distance, is investigat-
ed. The simplest case, corresponding to 'So and Pp solutions, of total angular momentum J=0
and positive and negative parities, respectively, is easily worked out for massless constituents. The
case of massive constituents, which gives rise to a different regime, is also examined together with

other salient features of our approach. A treatment of the light- and heavy-meson J=0 sectors is

briefly discussed.

Phenomenological potential models based on the Dirac
equation with a scalar central potential, linearly rising
with distance, have been proposed in the literature. '

Such potentials give rise to confinement since the Dirac
particle gets heavier and heavier when its separation from
the fixed center increases indefinitely. Furthermore, the
confinement by a scalar potential is also known to be rela-
tivistically consistent. By this we mean that it is free of
the disease, consisting in the tunneling of the particle
through the otherwise confining potential, known as the
Klein paradox.

We note, on the other hand, that relativistic potential
models have been applied to investigate the hadronic
structure under the assumption that the constituent
quarks (and/or antiquarks) are spin- —,

' Dirac particles
which, in a first approximation, move independently of
each other inside the confining potential. An obvious
feature of this "independent quark approach" is the in-
herent necessity of subtracting the spurious energy due to
the center-of-mass motion of the system. In the present
work the need of these center-of-mass corrections is cir-
cumvented ab initio if we restrict ourselves to mesons, de-
scribed by a two-body Dirac equation formulated in the
center-of-mass frame of the quark-antiquark system. As
we shall see, such an approach, when implemented by the
introduction of Lorentz-scalar linear potential terms for
both a quark and an antiquark, seems to provide a con-
venient basis for a treatment of mesons in which relativis-
tic effects are incorporated in a simple and direct way.

Having this in mind, let us consider a system consisting
of a spin- —, Dirac particle (say 1) and its antiparticle (say

2},of common rest mass m and obeying, in the center-of-
mass reference system, the equation (R=c = 1)

WI+2iV F+4(m +Br)A4 ——0,
WF+2i VI =0, WA4+4(m +Br)I =0,

where

(2)

(3)

It is easily seen that (2) yields the following system of
radial equations:

Wf &(r)+2i r +3 f3(r)+2(m +Ar—)f2(r) =0,1

dr r

r=r, —r2 and r =
~

r
~

. The wave function g(r} is a 16-
component spinor f;, the subscripts i and j
(i,j =1,2, 3,4) referring to particle (1) and antiparticle
(2}, respectively. We note that Eq. (1) may be considered
as a special case of the Kemmer equation which was also
applied by Fermi and Yang to pions, regarded as a
bound state of a nucleon and a antinucleon.

We shall confine our attention here to solutions of Eq.
(1) corresponding to J =0, J being the total angular
momentum of the system. These solutions are labeled as
'So and Po and have negative and positive parities, re-
spectively.

Several formalisms exist in order to derive the radial
equations relative to Eq. (1). For the present purposes it
is reasonable to adopt the more compact treatment given
by Moseley and Rosen and Nagasaki. From their work,
we know that there arete linear combinations involving
the 16 components g;J, which are nonvanishing for the
'So state. With respect to rotations, they are two scalars
denoted by I and A4, and one vector F=(F&,F2,F3).
They obey the set of equations

[ ia, V+P, (m —+Ar}.+ia2 V

+P2(m +A,r) Wjf(r) =0 . (1)—Wf2(r)+2(m +Ar)f~(r)=0, (4)

In Eq. (1), a linear scalar potential A,r is introduced in
both particle and antiparticle mass terms. The operator
—iV appearing in it is the momentum conjugate to

By eliminating the components f2 and f3, one gets
(with a prime denoting d /dr)
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IV (m +Ar)
4 W'

(5)
easy to see that the solutions of Eq. (5) can then be ex-
pressed in terms ofparabolic cylinder functions D„(z):

where we set u (r) =rf, (r).
The energy eigenvalues 8'are obtained by means of the

boundary conditions

u (0)=0, u ( ~ ) =0 . (6)

For simplicity, we shall restrict our discussion to mass-
less constituents (m =0). In this case it is interesting to
point out that, although we started from linear potentials
in Eq. (1), the radial Eq. (5) corresponds to the radial
Schrodinger equation for a three-dimensional isotropic
harmonic oscillator, in the S wave. This feature is clearly
a consequence of the relativistic kinematics in which Eq.
(1) was formulated.

The eigenfunctions u(r), satisfying conditions (6), are
given in standard form as

u(r)=r exp — r&F, ( —,
'—

( —', +a), —,';Ar ) . (7)

In Eq. (7),

8'—a = =2n, +—,',
where n„ is a non-negative integer (n„=0,1,2, . . . ). The
corresponding eigenvalues W are given by

—=2(4n„+3)'~ (9)

The 'So states, Eq. (3), are normalized by means of the
relation

u (r) =D,(z), (13)

with z =(2A, )'~ (r +m/k. ) and v= 8 /%, ——,'.
Thus, in view of (7), the energy eigenvalues can be ob-

tained, for m & 0, as solutions of the equation

D„(m &2/A, ) =0 . (14)

0, =P,Pz, 02= —,'(1 —a( az),

03 =—plpz(&l'a2+a, az),

O, =-,'(a, a, —r, r, ),

It is remarkable that the massive regime departs from
the harmonic behavior, characteristic of the massless
case, being described by the positive zeros of the parabolic
cylinder functions, Eq. (14). In other words, as far as
J=0 solutions are concerned, we predict that light
mesons and the different families of heavy mesons corre-
spond to different regimes, associated, respectively, to the
massless case and to each one of the massive cases, as dis-
cussed above. Similar behavior is also expected for the
J&0 solutions of Eq. (1) which, however, would require a
separate discussion.

We now wish to point out that the present scheme can
be extended in a straightforward way by introducing
in Eq. (1), as in the case of the Kemmer equation, ad-
ditional two-body interaction terms I&2, each one being
characterized by its specific Lorentz nature:
I,z=gk pbkOk Vk(r). Here, bk are constants, V„are
given functions of r, and Ok are the operators

and

o, =p,p, r, r, ,

with o =(i/2)aXa, and I = ia„a a-,
In brief, our prescription here is to treat the Kemmer

interaction terms at the level of first-order perturbation
theory, in order to avoid spurious singularities in the ra-
dial equations which would destroy the normalizability of
the solutions, as discussed by Childers' in a similar con-
text, involving Breit interaction terms.

Finally, we remark that a generalization of Eq. (1) for
the case of constituents of unequal masses can also be
performed similarly. This corresponds to having a sys-
tem consisting of a Dirac particle of given type and mass
m, and an antiparticle of another type, of mass m2, a typ-
ical instance being, of course, the kaons belonging to the
0 pseudoscalar light-meson sector. For the particular
instance of 'So solutions, instead of the radial Eq. (5), we
now get

g"——g(r)+ 1 —4
2 8' (m +Ar)

2 4
g(r)=0, (10)

with the conditions g (0)=g ( ao ) =0.
We note that Eq. (10) differs from Eq. (5) only by the

presence of a P-wave centrifugal term. Again, for mass-
less constituents, the radial wave function g(r) is of the
form

4~~ J, ( Ifi I'+ Ifz '+f3 I')r'«=1

For the lowest-energy state (n„=0), one finds
JV'=(A, /4m )'~ . We note from (9) that IV goes to zero as
the interaction is cut out adiabatically to zero, as expect-
ed.

The state Po, of positive parity, can be worked out in a
similar way, ' in terms of seven linear combinations,
denoted as J =f4(r), G=f, (r)r/r, and U=f6(r)r/r We.
get, with g (r) =rf&(r), the radial equation

g(r) =r exp — r&F&(—,'( —', +a), ——', ;Ar ),2

corresponding to a tower of P-wave energy states

u-+ —' W-
4

(m, —mz)

8

—=2(4n„+5)' (12) X 8' — (m, +mz+2Ar) u =0 .
1

8' (15)

Our next step is to consider massive constituents. It is In the so-called one-body limit, when 8 = W, +m2
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and m& /m2 «1, Eq. (15) results in u" + fV&( W&

—2i,r)=0, an equation which can be readily solved in

terms of the Airy function Ai(z). One finds for W, the

expression

~

3/4 (16)

where a„ is the nth zero of the function Ai(z),
n=1, 2, . . . .

In conclusion, the following remarks are in order. If it
is assumed that the ri(550) 0 state of the pseudoscalar
light-meson sector is described by the 'So solution Eq.
(3), then its correct mass can be obtained by taking
&A, =0.158 GeV, in the massless regime of ordinary u

and d quarks. With the same value of A, , the kaon, as de-
scribed by a 'So negative-parity solution, Eq. (15), ac-
quires its correct mass for m, =0 and a strange-quark

mass m2 ——0.461 GeV. Notice that, by using Eq. (14), we
can get the mass of the ri, 0 state of the J/P family
again with the same k and a charmed-quark mass of 1.35
GeV.

Finally, we remark that an adequate choice of the
two-body relativistic interaction terms I,2 is required to
obtain the spin-dependent interactions responsible for a
correct description of the fine splitting of the PJ states in
quarkonia and, particularly, of the transition rates for ra-
diative decays involving heavy-meson excitations in both
J/g and Y spectroscopies. " However, a discussion of
such topics, in the light of the present approach, requires
a detailed discussion of the J&0 solutions of Eq. (1),
which are outside of the limited scope of this work,
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