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QED on a circle
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QED with massless fermions on a circle (0&x &L) is exactly solved. The nonintegrable phase
exp[ie I dx A, (t,x)], which is a dynamical degree of freedom on a circle, couples through the

anomaly to the zero mode of the fermion-antifermion bound states, leading to the 0 vacuum.

,'F„„F""+1p(i 8——eA ) l( . —

On a circle boundary conditions must be specified to
define the theory. We require that X, in addition to F„,
and j"=gtiy"P, be single valued:

A„(t,x +L)= A„(t,x),
g(t, x +L)= e' g(t, x) . —

Parity invariance is maintained.
Within (2) one can always find a gauge in which

A, (t,x)=b(t) .

(2a)

(2b)

Almost three decades ago Aharonov and Bohm'
showed that the electromagnetic field strength in quan-
tum mechanics underdescribes electromagnetism. The
vector potential which gives a vanishing field strength in
the region where the electrons propagate still affects the
motion of the electrons through the nonintegrable phase
exp(ie f A„dx"}, an integral along a noncontractable

loop. In the Aharonov-Bohm experiment it is related to
the total magnetic Aux inside the solenoid, and is ap
external parameter of the system. Years later, it was
recognized by one of the authors that if one of the spatial
dimensions is given by a circle, the nonintegrable phase is
promoted to a dynamical degree of freedom, leading to
dynamical gauge symmetry breaking in non-Abelian
gauge theory. ' lt was shown that the value of the
nonintegrable phase is determined by quantum effects. In
this paper we attempt to clarify the dynamics behind this
phenomenon, analyzing the simplest example: QED with
massless fermions on a circle. This model is exactly solv-
able and was previously analyzed by Manton. It
turns out that the nonintegrable phase couples through
the anomaly to the zero mode of the fermion-antifermion
bound state, leading to the well-known 0 vacuum. The
infrared divergence, which sometimes plagues analysis of
two-dimensional gauge theory, is absent on a circle. We
confirm most of Manton's results. The main difference
between Manton's analysis and ours lies in the way of bo-
sonizing the fermions [Eq. (12) below]. We believe that
our derivation is much simpler and more deductive.
Moreover, it clarifies the connection between the nonin-
tegrable phase and the 0 vacuum.

The Lagrangian density of the model is

There still remains the residual gauge symmetry which
shifts b by 2rrleL:

+ g q e
—2(pix /Ly2'

P P eL P &i' (4)

Since Ao = ej and A—c(t,x+L)= Ao(t, x),

Ao(t, x)= —e f dy D(x,y;k)j (t,y),
0

D(x,y;A, )=-(i x —y i + (x —A, )(y —i(, )

(7)

(8)

A, is arbitrary due to (6). Ao is completely determined by

j up to an irrelevant constant. The second equation in
(5), with r)J"=0, then leads to

b(t) = —— dx j '(t, x) = —eg5/L .
L 0

The time evolution of the nonintegrable phase is con-
trolled by the total current or the axial charge.

The Hamiltonian reads

F2H= + f dx 1ity'( iB,+eb)—g2L o

2

f dx f dyj (t x)D(xy;A)j (t y),
where F(t)=Lb(t) is canonically conjugate to b(t). The
proper antisymmetrization of fermion operators has been
understood.

It is instructive to quote some of the results in Ref. 2.
The effective potential for a constant b due to one-loop
diagrams of fermions satisfying (2b) is

V,e[b]=i Tr In(p'+eA )

(10)

2 "
( —1)"

cosn (ebL —2m.a)+const .
m.I. „) n

(11)

The zero mode b(t), now being a dynamical degree of
freedom is related to the nonintegrable p ase by
exp(ie dx dt(= exp(iebL(, and cannot be gauged

away. ' The electric field E =F0& ——b t —Ao t, x
satisfies

E'=ej, E= —ej' .

The first equation implies

g= f, dxj'=0.
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It has minima at ebL =2ma (mod2tr) (Ref. 10). The value
of b is dynamically adjusted such that the physics is in-

dependent of a in two-dimensional QED. This is a conse-
quence of the invariance of the action under a boundary-
condition-changing gauge transformation, A=2mux/eL.
The periodicity of V,tt[b] is due to the residual gauge
symmetry (4). Does this imply that all the minima are
just gauge copies of one physical configuration? %'e wi11

show that in massless QED ground states are still
infinitely degenerate, but a small fermion mass term lifts
the degeneracy. To understand this and the dynamics in-
volved in this phenomenon we need to keep track of both
fermion degrees of freedom and the nonintegrable phase.

To this end we bosonize the fermions ' '" in the in-
teraction picture:

+i[q++2ttp+(tax)/L] kit)+(t, x)

v'L :e

4
—[Pt, (B,+ieb)f ]——[(t), i—eb)g, tt) ]4

m 1=+
12L' 4~

2
2qrpg BP+

+eh+

Going back to the Schrodinger picture, one obtains'

F2

2

+f dx ,'N„~-„P2-+tt '+ P (17)

where t(x)=(4w) rr (()+yt) ), f dx $(x)=0, eed
0

Similar manipulations lead to the expression for H in
the interaction picture. For instance, the kinetic term is

C+ ——1, C =e + (12}
[$(x),II(y)]=i 5(x —y) ——

L

(t x) y (a e 2min(tk—x)/L+H. c. )
1

, &n

where [q+,p+]=i, [a+ „,a+ ]=5„, and all other
commutators vanish. Operators in the interaction pic-
ture are given by p+(t)=p+, q+(t) =q++2qrp+t/L, and

a+ „(t)=a+ „exp( 2rtint—/L) .

N„ in (17) indicates normal ordering in the Schrodinger
picture' with respect to a mass parameter p. Notice that
the Coulomb interaction induces a mass term only for the
oscillatory part of t)I). The zero mode of (t), on the other
hand, couples to the nonintegrable phase b through the
anomaly. The residual gauge symmetry (14) is represent-
ed by

g'=(t}/+, g ) satisfies the free massless Dirac equation
with y =o) and y'=io2. Since

UHU =H, U= exp i q++q +
2m.F
eL

(18)

Qg(t, x +L)= —e *((('t~(t,x)= g~(t, x)e—
p+ must take discrete values a (modl) in physical states,
which conforms to the angular nature of qz. Our choice
of the Klein factor C simplifies the discussion of the re-
sidual gauge symmetry, which now reads

ebL ~ebL +2m. , p+ —+p~ —1 . (14)

1
q++q +2tr(p++p )—

&4~ + — +

+2~(p+ p) L +4++0—

It follows that

a= f'dx J'= p. +p—
(16)

ebL
Q5= dx 4 r~W= dxj =p++p +

0 0

ebL /n in Q5 represents a contribution from the anomaly.

In rewriting the Hamiltonian in terms of bosonic
operators, due caution must be taken to respect gauge in-
variance. For instance,

j "(x)= lim exp[ ieb(y —x)]—,'[1(t(y—), r"1('t(x)],
g —+X

.p 1 BP . ( 1 B((} ej = — —,j =+ — +—b
v'tr Bx' v'~ Bt

The Hamiltonian (17) can be exactly solved. The oscil-
latory part of (I} is just a free scalar field corresponding to
fermion-antifermion bound states with mass e /&tr,
hence we focus on q+, q, and b. As remarked before,

Q ~
phys) =0, and therefore p+ ~

phys) =p
~
phys).

Since [H,pz]=0 and

e +
~
phys) =e '

~
phys),

eigenfunctions ofp+ and H can be written as

1 —i q +q n+a
u (ebL —2qrn 2qra)e —+

2'
where n is an integer. It is easy to see that u (x) obeys the
harmonic-oscillator equation with frequency e/&m. . For
the ground-state wave function

u (x)=(eLqt / } ' exp[ x /(2eLn' )]—,
the 4„'s satisfy

) = f d(ebL) f dq+ f dq 4&„' It=t5„

(20)

The ground states are infinitely degenerate. For each
4„, (4„~ebL

~
4„)=2~(a+n), exactly as was found in

the computation of the effective potential (11). Each 4„
is related to the others by the residual gauge symmetry:
U4„=N„

The degeneracy is lifted by a small fermion mass m (T)f
(Refs. 7 and 8). The bosonization (12) immediately leads
to
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—& —xs g= exp[ —in(p+ —p )+2ni(p+ —p )x/L]

'i&++&—i 1 ~ (
iv 4(e(t() (21)

B(pL)= exp y+ +2 dx (1—e" "'"")
4n PL 0

one finds

in the Schrodinger picture. Making use of the identity'

1 4wf) B( L)~ (e( 4w4t)

(22)

L
where dx p,„,(x ) =D. In the Coulomb interaction
term in (10) j is replaced by j +p,„„and the mass term
in (17) now becomes (e /2n )(P+P,„,), where

P,„,(x)=P,„,(x)—L ' f dy P,„,(y) .
0

The background electric field is given by E,„,= —(e/v'~)p, „,. Let us introduce two point charges:

p,„,(x)=q[5(x)—5(x —d)] .

They yield

dE,„,=eq ——+8(d —x) (O~x &L) .

—& —rs
g w, )=e„, ,e

~e B((e,L),

where p=e/&n True .eigenstates are 8 states:

(23)

(24)

4e is gauge invariant: U@e———e ' 4e [U defined in

(1&)].
We define ( A )z——(4e

~

A
~
4&) l(4z

~
4z). Then,

(25)

In the presence of the mass term m tT(f the 8=0 state has
the lowest energy, i.e., ~

vac ) =
~
4e p) ~ When the spa-

tial volume is finite, 8&0 states are unstable.
The result (25) shows that the appearance of the 8 vac-

uum is closely related to chiral-symmetry breaking. ' '

Indeed, p+ +p, the generator of chiral transformations

(q~ —+q++P), does not annihilate the vacuum. It is also

easy to see, in the Heisenberg picture,

2m.E,„,
( itif ) z

—2 cos 8——— —n jpLB( L ) (27)

which establishes the fact that in the presence of a small
mass perturbation, 8=2nE,„,/e.

With the exact vacuum wave function 4& 0 in hand,
one can evaluate various correlation functions. We quote
some of the results:

(E) =(F) =0, (e ') =e (28)

Suppose that eL &&1 and we are far away from the
sources so that we are examining the physics in a uniform
background electric field. Then the only change brought
about in the Hamiltonian density in (17) is the shift
P-w(I)+P, „,

—=(I)„,„. We rewrite everything in terms of
P„,„. Since the difference between (T).( and P„,„is a c num-

ber, one has, in (22),

—i@4m'P) ( ex(~new( ~new)
—i&4m I &4~„e =e „e

where p =e /&n. It follows that

a„(pygmy, q) = (a,'-a', )y+ —b

2

(I) + b= e""—F„„, (26)
2~

where p =e/&~.
A = exp(iebL),

For the nonintegrable phase

( A ) 2wia nieLI4—
0
——e

which, integrated over x, implies that Q& ebL /n is con--

stant, in accordance with (16) and (17).
It is known that in Minkowski spacetirne the 8 pararn-

eter is related to the background electric field. ' To
make this connection more transparent we introduce a
static source

( A (t)A (0))p——exp — (1—e '"')
2

(A(t)A(0)) =exp 4~ia (1+e—'"')mpL

2

(29)

a
v'~ ax

Notice that ( A )p~0 as L ~ ao. For the order parame-
ter M=t/i ,'(1 —y~)g of t—he chiral-symmetry breaking,
one finds

(M ( )xM(0)) p B(iL)iexp g—— , e
1

„~p [n 2(+p 2/m) ]'~

2

"e& exp
1

e
—Plx

4m u'pfx
f

(30)
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for 1«p
~

x
~

&&/LL.

Finally, we stress that the nonintegrable phase plays a
crucial dynamical role on a circle. It links the residual
gauge invariance, chiral-symmetry breaking, and the 8
vacuum. The L ~ 00 limit is well defined only for matrix
elements of physical operators in Minkowski spacetime,

as the above results indicate.
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