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We make use of the arbitrariness in defining lattice gauge theory to propose a new form of lattice

Hamiltonian with exact ground state. Four such Hamiltonians are obtained. Since the ground state

is exactly known, a variational method is applied to obtain rigorous upper bounds of the mass gap
in (2+ 1)-dimensional U(1), SU(2), and SU(3) lattice gauge theories. Trial wave functions for excited

states contain loop variables up to 30' 30 Wilson loops. Nice scaling behaviors are obtained. The

scaling behaviors of the mass gap and string tension in non-Abelian theory are in agreement with

that predicted by weak-coupling perturbation theory and the Monte Carlo method, but is extended

to a much weaker coupling region 1/g -7. For non-Abelian theory, universality is confirmed.

I. INTRODUCTION

One of the most interesting problems in particle phys-
ics is to clarify the low-energy behavior of gauge theory.
There are many approaches to investigate it. The Monte
Carlo method is one approach. It has been successful in
giving us numerical values of various physical qualities.
However, up to now, it cannot give us the wave functions
of the vacuum and excited states which are important in
the study of the breakdown of chir al symmetry,
confinement, and so on. Therefore, the need for analytic
approximations in the investigation of lattice gauge
theories (LGT's) is generally accepted. The variational
method presents itself as one of the promising nonpertur-
bative approximation schemes. In particular, in the case
in which the ground state is exactly known, we can ob-
tain rigorous upper bounds of elementary excitation ener-
gies by this method.

In this paper, we adopt the Hamiltonian formalism of
LGT and make use of canonical transformations and the
arbitrariness in defining lattice gauge theories to obtain
four Hamiltonians for which the ground states are exact-
ly known. Since the ground states are exactly known, we
can obtain unambiguously the upper bound of elementary
excitation energies by the variational method. The mass
gaps of U(1), SU(2), and SU(3) lattice gauge theories in
2+1 dimensions are studied in this paper. Trial wave
functions for excited states contain loop variables up to
30)& 30 Wilson loops, whose coeScients we take as varia-
tional parameters. It is found that the coeScients of
large Wilson loops increase with 1/g . We also calculate
the string tensions using the exact vacuum wave func-
tions. All results mentioned above show good scaling be-
havior extending to a very deep weak-coupling region
(1/g -7). This region is far beyond those investigated
in present Monte Carlo and analytic calculations. The
universality in LGT is confirmed in this paper.

m a =8nPexp[ —2n u(0)Pj,

o a 2=(4&2 g /m. ) exp[ —Hu (0)P],

( l. la)

(1.1b)

where a is the lattice spacing, the bare coupling g is relat-
ed to charge e by g =e a, u (0)=0.2527, and p= 1/g .

The scaling behavior for mass gap m and string tension
o of (2+1)-dimensional SU(2) LGT obtained by weak-

coupling perturbation' is

ma ~g

oa ocg

(1.2a)

(1.2b)

Monte Carlo simulations confirm the above behavior in
the intermediate-coupling region.

The plan of this paper is as follows. In Sec. II we pro-
posed a new form of Hamiltonian with exact ground
state, and obtain four such Hamiltonians. The general

The main motivation for studying the (2+1)-
dimensional pure Yang-Mills theory is its relevance for
QCD at finite temperature (hot QCD) as the high-

temperature limit of it. Therefore, there are many pa-
pers' ' extensively discussing (2+1)-dimensional LGT.
It was shown that the theory was confined and asymptoti-
cally free. It should be mentioned, however, that Yang-
Mills theory in 2+ 1 dimensions has no true instantons,
but possesses Wu- Yang-type monopoles. Furthermore,
in 2+ 1 dimensions, the square of the bare coupling con-
stant has dimension of mass, so that the theory is super-
renormalizable.

In 2+1 Hamiltonian LGT, the expectation value of
any operator in the vacuum can be calculated exactly.
This exact integrability is the reason why we choose the
Hamiltonian formalism in 2+1 dimensions.

The theoretical predictions of asymptotic behavior for
the mass gap m and string tension o in (2+ 1)-
dimensional QED are
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procedure to obtain the mass gap of (d +1)-dimensional
SU(N) LGT (d =2, 3} by the variational method and to
obtain the string tension is investigated in Sec. III. The
mass gap and string tension of (2+1)-dimensional U(1),
SU(2), and SU(3} is discussed in Secs. IV —VI, respective-

ly. Section VII is devoted to a summary and further dis-

cussions.

II. THE HAMILTONIAN WITH EXACT
GROUND STATE

exp(E}A exp( L—)=A +[X,A]

].+ [—L, [L, A ]]+

we obtain

2

H = [E, —[E;,[E;,R]]—[E;,R][E;,R]] . (2.4)
a

In this form of H, its continuum limit is easy to be de-
cided. Comparing Eqs. (2.1) and (2.4), the sufficient con-
ditions for H possessing the correct classical continuum
limit are

The Hamiltonian of LGT is not uniquely determined.
The lattice Hamiltonian should satisfy gauge invariance
and possesses a correct continuum limit, otherwise it is
arbitrary. By using this arbitrariness, we can obtain four
suitably modified Hamiltonians of LGT which have exact
ground states and also have the same continuum limit as
the Wilson form of lattice Hamiltonians.

Let the Hamiltonian of (d + 1)-dimensional SU(N}
LGT be (d =2, 3)

and

(2.5)

2

bH = — [E(,R][Et',R]~0 as a ~0 .
2a

(2.6)

2

[El', [EI',R]] 2—+ tr(U~+ U~)~0 as a~0

H = g Ef g—tr( U + U, )+hH,2a, ' ag'
(2.1)

Four kinds of functions R are discussed in the following.
First, a simpler form of R can be taken as

where hH is some function of plaquette variable U . If
b,H is Hermitian and vanishes in the continuum limit
a —+0, this H has the same continuum limit as the stan-
dard Wilson Hamiltonian and can be taken as a new
Hamiltonian of LGT.

For the convenience of finding the exact ground state
of H, we rewrite H in the new form

2

H = exp( —R )EI' exp(2R )E&' exp( R)—
2a

2

[ exp(R )Ef exp( —R )] [ exp(R }EPexp( —R )],
2a

(2.2)

R, = g a, tr( U~ + Uz ) .
p

Making use of the commutation relations

[Ep, U, ]=A'UI, [Ep, UI 1=—Ui A',

(2.7)

(2.g)

where Cz is the Casimir invariant of the gauge group in

the fundamental representation.
Using the condition in Eq. (2.5), we obtain

where A' is a representation matrix of the generator T'
of the gauge group, we obtain

2 2 2

[E(',[EI',R, ]]=— C~a, g tr( Up+ Up ),
2a a

where R is some function of plaquette variables and
satisfies the following conditions: (1) [R,[R,E&]]=0; (2)
R =R; (3) H possesses correct classical limit.

Obviously, H in the form (2.2) is Hermitian, positive,
and has an exact ground state

~
%o ):

a) ——1/(2g C~) .

We now show that, for (3+ 1)-dimensional LGT,
2

bH~ ——— [EI',R, ][E&',R&]~0 as a~0 .
2a

(2.9)

~

bio) = exp(R)
~
0), (2.3)

gtr(2 —U —U ) .
p

We have omitted the constant term (I/ag )g tr2 in

(2.1) to yield the ground-state energy exactly zero. Had
we included this term in the Hamiltonian, the ground-
state energy would be ultraviolet divergent in the contin-
uurn limit, in agreement with the continuum theory.

Using the relation

where
~
0) is the state defined by EI'

~

0) =0. The energy
of the ground state is zero, that is, H

~
%0) =0.

It should be mentioned that in the lattice Hamiltonian
corresponding to the continuum theory, the magnetic
term should be

U =I+iga F& +O(a ) . . (2.10)

Let the two plaquettes on opposite sides of 1 be p(n)
and p (n —e ), respectively, then

For R
&

in the form (2.7), bH& contains a double sum

over all plaquettes p and p' sharing the same link 1:

[EI', tr( U~ + Up ) ][El', tr( U .+ Ut. ) ]
p,p'31

tr[A'( U~ —
Up )]tr[A'( U~. —U~ )] .

p,p'Dl

In the above expression, the positive orientation of p is
taken to be that induced by the positive direction of l.
For a plaquette p on the Ij plane, the continuum limit of
U is
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g tr[A'(U —U )]
pD1

= giga [Fii(n) F—IJ(n —e, }]+O(a )

J

= giga d FI +O(a ) .
J

(2.1 1)

Substituting (2.7), (2.9), and (2.11) into bH&, we obtain

b,Hi ——[1/(8g C&a}]g g a BkFIkB FI/

R2 = g [a2tr( U~+ U~ )+p2[tr( U~+ U~ )] j,
p

(2.13)

R3 ——g [a3tr(U +U )+p3[(trU ) +(trU ) ]j, (2.14)
p

R4= g [a~tr(U +U )+p~(trU )(trU )] .
P

(2.15)

a, ,p, (i =2, 3,4) are determined by the correct classical
continuum limit of H„ that is the conditions in Eqs. (2.5)
and (2.6). The condition in Eq. (2.5) gives the relation for
a; andP, :

Ca~+K, N P, =1/(2g ), (2.16)

where K2 ——4, K3 ——2, and K4=1. The condition in Eq.
(2.6) gives another relation for a; and p,. :

a, +K,NP, =0 . (2.17)

Therefore, the conditions that the (2+1)-dimensional
non-Abelian SU(N) lattice Hamiltonian H; has correct
classical continuum limit are

[1/(8g C~)]J d x a 8 FI dkFIk O(a )

and is irrelevant in the continuum limit. Actually, the
form of hH, is similar to the regularization term in the
method of regularization by higher-order derivatives.
Therefore, we can certainly take H

&
as a substitute of the

standard Hamiltonian in (3+ 1)-dimensional LGT.
Unfortunately, things are more complicated in (2+1)-

dimensional LGT. In this case, g =ae, where e is the
invariant gauge coupling.

The continuum limit of U is

U =1+iea FI +O(a )

and AH& becomes

AHi ——[1/(8g Cza)] pe a BJFIJc}kF(k
n

~[1/(8e C~)]f d x B,FilBkFI =O(a ) .

Therefore, hH, is not negligible and H, does not possess
the same continuum limit as the standard Wilson Hamil-
tonian in (2+1)-dimensional LGT.

In order to find some Hamiltonians with exact ground
state in (2+1)-dimensional non-Abelian SU(N) LGT,
some more complicated functions R must be chosen:
three of them are

a, = N—/[g (N +1)],

P;=1/[K;g (N +1)] .

(2.18)

(2.19)

III. MASS GAP AND STRING TENSION

In the preceding section we have studied the exact
ground state of the gauge field. Now, let us turn to the
excited states. Especially we will investigate the lowest
excited state with zero momentum, which gives us the
so-called mass gap.

First, we describe the general procedure to obtain the
lowest state of (d + I )-dimensional SU(N) LGT for given
quantum numbers. Let

i %0) denote the exact vacuum
which is assumed to be normalized:

H i+0)=E ~40)=0.
Then we can write a trial wave function for the zero-

momentum excited state in the following form:

(3.1)

where (4 )0 means the expectation value in the vacuum
state i'Po) and 4 is a linear combination of gauge-
invariant operators which are translationally invariant
and which have the given quantum numbers. To make

~

qi) orthogonal to the ground state, the expectation
value (4)o is subtracted from the operator 4 in Eq.
(3.1),

For Abelian U(1) group theory, we can also show that

2

H2 —— exp( —R, )EI exp(2R2)EI exp( R—2)
2Q

possesses the correct continuum limit.
Up to now, four Hamiltonians have been found. In

3+ 1 dimensions, all four Hamiltonians possess the
correct continuum limit. In 2+1 dimensions, H2, H3,
and H4 (which correspond to R2, R3, and R4, respective-
ly) possess the correct continuum limit, but H, does not.
For the SU(2) theory, trU =trU; therefore, H2 H3-—
=H4.

Since the ground state is exactly known, rigorous
upper bounds of the mass gap can be obtained by the
variational method, and the string tension can be ob-
tained by calculating the vacuum expectation of Wilson
loops, we will discuss them in the later sections.

Even in the case where H does not possess the correct
continuum limit, e.g. , Hi in (2+1)-dimensional theory,
we can still consider H as a model Hamiltonian with
nontrivial self-interactions and study its spectrum. The
theory may be of interest by itself or by comparing it
with the standard theory. In Sec. V on SU(2} theory, we

present calculations on both H& and H2. The results give
a detailed comparison of two theories with di8'erent con-
tinuum limits. In the U(1) and the SU(3) cases, we give
results on H, only for simplicity. Calculations on Hz in

U(1) theory are in progress. Preliminary results are simi-
lar to those of H, .
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The norm of the state
~

4 & can be written in terms of
vacuum expectation values:

where 4 is the Hermitian conjugation of 4.
The expectation value E of H in

~

+ & is

E=&eiH i+&y&ei +&,

where

(3.3)

2

&4
~

H
~

4& = &0
~

exp(R)(4 —&4 &0) exp( —R)E/'exp(2R)E/'exp( R)(—4 &4—&o) exp(R)
~

0&
2Q

2

& [E/' c"][E/' @1&0 ~

Minimizing E in Eq. (3.3) for a set of trial functions, we

obtain an upper bound of the mass gap.
Variation with respect to 4 is carried out as follows.

Let us write 4 as the linear function of variational states

q;, that is,

S
g pa;/p;(x),

Np -/ x

(3.4)

where y„(x)'s (n =1,2, . . . , N) are gauge-invariant

operators with the given quantum numbers on position x
and where the a„'s are variational parameters, Nz is the
number of plaquettes (N = g„l}, and N is the total

number of trial states y„.
Then we obtain

2

E= a C,JQJ /(ak D/, /a/),l lJ J (3.5}

where

D;, = g[ &q;(0)p, ( )&,—&y;(0)&,&/p, ( )&,], (3.6 )

CJ = — Et'y 0 EI', q x
X

The extreme of E is obtained by

(3.6b)

BE g~ 1 (C 2PaED}, a=—0 . "
Ba» 2aa D al k k1 I

lJ J

Therefore,

det
~

C 2PaED
~

=0 . — (3.7)

The solutions E' (i =1,2, . . . , N) to Eq. (3.7) are the
energy eigenvalues of the excited states. Owing to the
fact that matrices C and D are real, symmetric and posi-
tive definite, all eigenvalues E are real and positive and
the eigenstates are orthogonal to each other
(a; Dza ~=6 ~) if their quantum numbers are complete-
ly specified.

Now, we examine the lowest excited state with zero
momentum using the general procedure explained above.
The lowest excited state must be rotationally and
reflectionally invariant. In the strong-coupling limit 4 is
dominated by the one-plaquette loop variable

p, (x)=tr[U~(x)+U (x)]. When we go into the weak-

coupling region, larger loop variables are expected to
contribute. After making many trials, we found that in

IV. (2+ 1)-DIMENSIONAL U(1) LATTICE THEORY

Now we turn to study the mass gap and the string ten-
sion of (2+1)-dimensional U(1) LGT. In Sec. II we have
found two Hamiltonians H, and H2 which possess exact
ground states. In this section we only study the mass gap
and the string tension of H&.

For U(1) LGT, we write I, as

X E/', g ( U~. + Up ) (4.1)

The exact ground state of H
&

is

the weak-coupling region, the lowest excited state 4 is
dominated by larger square Wilson loop variables.

Now, let us discuss the calculation of the string tension
using the exact vacuum wave function obtained in the
preceding section.

In the Hamiltonian formalism, the string tension is
usually computed from the energy of the q-q state. '

However, we will compute it by another method, i.e.,
from the vacuum expectation value of Wilson loops. The
string tension derived from the timelike Wilson loops has
the exact meaning of energy (per unit length) of the q-q
state in the Hamiltonian formalism. However, in this
formalism it is somewhat cumbersome to evaluate the
timelike Wilson loops. Therefore we evaluate the space-
like (or fixed time) Wilson loops. It is not well known
that the string tension obtained from it is identical with
the one obtained from the timelike Wilson loops in the
continuum limit. In the space-time symmetric Euclidean
formalism, there is no difference between the timelike and
spacelike Wilson loops. The Hamiltonian formalism is
obtained from the space-time symmetric theory by taking
the lattice spacing of the time direction to vanish. The
scaling behavior of the string tension obtained from both
methods must be the same in the weak-coupling limit, al-
though there might be a difference between the absolute
value of them by a numerical factor.
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~%o)=exp g(U+U ) ~0) .
1

2g
(4.2)

In (2+1)-dimensional LGT, it can be shown that
[dUi ]= [dU ], and the vacuum expectation of all gauge-
invariant operators can be evaluated exactly. The norm
of the ground state is

coupling region 1/g &2 is much greater than that pre-
dicted in the periodic Gaussian model. (2) The slope in
the deep weak-coupling region is much greater than that
in the crossover region 1/g (2 in previous Monte Carlo
and analytical calculations. (3) The slope seems to be still
increasing in the deep weak-coupling region, that is, ma
may decrease with 1/g faster than exponentially.

For the J =0++ state, we use the trial functions
(eo

I
eo) = g Io(x),

ip„(x)=U~(x)+U~(x), n =1,2, . . . , N, (4.6)

( U")o ——Y„(x), (4.3)

where x =1/g and I;(x) is the ith modified Bessel func-
tion. The vacuum expectation of U" is

where U„(x) is the n X n Wilson loop located at x, and N
is the total number of trial functions. For these trial
functions (n )m),

pn (x }= [ U~ (x)]"—[U (x)]", (4 4)

where Y„(x)=I„(x)/Io(x).
The lowest excited state of the system is a static

J =0+ state. For this state, we use the trial functions

yn +m 2im—(1 yim )

+8m(n —m —1)Y", (1—Y2 ),
D „=2(n —m —1) Y", (1+Yz —2Y, )

(4.7a)

where U (x) is the plaquette located at the position x,
and n =1, 2, 3, . . . , N. N is the total number of trial
functions.

The symmetric matrices C „and D „are easy to ob-
tain for these trial functions (n )m):

+8 y yn +m —2ij(1+ Yij 2Y2ij )

m

+8( 1 } y yn +m —2im(1+ yim 2 Y2im }

C „=8mn( Y„+Y„+ —2Y„Y ),
Dm„=2( Y„m —Y„+ ) .

(4.5a)

(4.5b)

101

1Q

"a

10 I

The resulting curves for the mass gap 0+ are shown
in Fig. 1. Inclusion of other trial functions does not alter
the curve of N =15 significantly. Exponentially decreas-
ing behavior ma vs 1/g is observed in the interval
2&1/g &4.4. However, (1) the slope in the weak-

(W) =2[y, ( )]", (4.8)

where A is the area of the loop in units of a .

(4.7b)

The Pam (0++ ) vs 1/g curves corresponding to
N = 1, 2, 3, 4, 5, 8, 15, and 30, respectively, are given in
Fig. 2. The scaling behavior am =2.77g in weak-
coupling region 1.6&1/g &7.0 is observed. am(0++}
in weak-coupling region 1.6&1/g &7.0 is observed.
am(0++) decreases with 1/g much more slowly than
am(0+ ). It is conceivable that m (0++)/m (0+ ) —+ oo

when g ~0, similar result for the string tension com-
pared with the mass gap is also noted in Ref. 4.

Now we are to compute the string tension by comput-
ing the vacuum expectation value of Wilson loops. The
vacuum expectations of Wilson loops are easily obtained:

10

& ~o-' ~

10 R

Ri

1O 11

5.50
5.00
4.50
4.00

I 3.50

3.00
2.50
2.00
1.50 (2+~) —o U(~) o++

I I t I I I [ I I I

0. 00 1. OQ 2. 00 3. 00 4. 00 5. 00

p =~lg2

1.00
I I I I I I I I I I I I I

0.00 1.50 3.00 4.50 6.00 7.50

p -~/g2

FIG. 1. Graph of mass gap am(0+ ) against 1/g with
Hamiltonian Hl in (2+ 1)-dimensional U(1) theory.

FIG. 2. Graph of mass gap Jam(0++) against 1/g with
Hamiltonian H, in (2+ 1)-dimensional U(1) theory.
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this section, in order to observe the difference of their
property in the weak-coupling region, we study the mass

gap and the string tension of both H, and H2.
For the fundamental representation of the SU(2) group,

the group element U can be parametrized by

U~ =cosg~ + i cr ns.in/~,

where cr are Pauli matrices, and

n=(sin8~cosg~, sin8~sing~, cos8~ ) .

At first, let us study the property of H, . The ground
state of H& is

FIG. 3. Graph of string tension era'/g against 1/g' with
Hamiltonian H, in (2+ 1)-dimensional U(1) theory.

%0& = exp(R
&

)
~

0 &,

where R&
——(x/2) g trU, and x =8/(3g ).

The norm of the ground state is

(5.1)

From this the string tension o. is obtained as

oa = —ln Y&(x) .

We show in Fig. 3 the curve o'a /g vs 1/g, the scaling
behavior is cra =0.51g in the interval 2.4&1/g &7.0.
This scaling behavior is in agreement with that of
m (o++).

In Ref. 5, the mass gap and the string tension of
(2+1)-dimensional U(1) LGT with Villain action is in-
vestigated by Monte Carlo method in the interval
l. 5 & 1/g & 2.0. In this region, their results are in agree-
ment with our results.

V. (2+ I }-DIMENSIONAL SU(2) LATTICE
GAUGE THEORY

Let us now study the mass gap and the string tension
of (2+ 1)-dimensional SU(2) LGT. In Sec. II two Hamil-
tonians H, and H2 which have different continuum limits
and possess different exact ground states are found. In

Z=(+,
~
+,&= gz= pi, (2x)/(2x) .

p p

(5.2)

The expectations of the following operators are useful to
obtain the matrix elements C „and D „:

U = (cosf &0= Yz(2x),

A = (cos'g &0
——[1+3Y3(2x)]/4,

(n, &,=o,
(n, n, &,=5,, /3,

(5.3a}

(5.3b)

(5.3c)

(5.3cl)

where Y;(2x ) =I;(2x)/I, (2x ), and I;(2x ) is the ith
modified Bessel function.

Let

B;=(tr(U, U2 U; )tr(U, Uq U; )&0,

where U,p is the ith plaquette. Denote U&p U2p U'p

n, using the ~~l~ti~n~ o io ki =25 tskj —~ iskl, an
tr U =tr U, we can obtain the recurrence formula of 8;:

B,= ( tr( U, , U p )tr( U;, U~p ) &0

=(tr(U;, )tr(Ut &)cos I(; +tr(U, ,o')tr(cr Ut &)n n; si g; &0

=(tr(U, , }tr(U, ~}(cos p, —
—,'sin p; }+~4tr(U;, Ut

~
)sin 1(t,. &o

= Y3B( )+2Y2/x . (5.4)

The initial value of this recurrence formula is

B,=(tr(U, „)tr(U, ) & =4[1—3Y2(2x)/(2x)] .

Using the recurrence formula of 8; and its initial value,
we can obtain 8; for all i.

The lowest excited state of SU(2) theory is a static
J =0++ state. We chose trial functions

where U„~(x) is the n &&n Wilson loop whose lower-left
corner is located at I and n =1,2, 3, . . . , N. N is the to-
tal number of trial functions.

The symmetric matrix elements C „and D „can be
obtained from the expectation of operators given above
(n &m):

C „=m (n —m —1)Y2 (4—B 2)

y„(x)=trU„~(x), (5.5)
+2 y kYn +m —2km(4 B )

Il =].
(5.6a)
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4 ~ ( yn +m —2k' 4yn +m
2 jk 2

kj =1

+4(n m I ) g ( yn +m —2kmg

k=1

2
4yn +m (5.6b)

0 35

0 30

0. 25

0 2Q

0. 15

0 10

0 05
1!—D SU (2)

By solving the eigenvalue equation (3.7) for N =1,
2,3,4,5,8, 15, and 30, the curves Pam vs 1/g are obtained
in Fig. 4. Good scaling behavior am =2.28g in the in-
terval 1 &1/g &7 is observed.

The string tension in Fig. 5 can be obtained from the
vacuum expectation of the Wilson loop, its scaling behav-
ior is oa =0.28g in the interval 2&1/g &7.0. There-
fore, we can obtain m(0++)=4. 3t/tr. The scaling be-
haviors am ~g and o.a ~g given above are in agree-
ment with that predicted by the weak-coupling perturba-
tion theory despite the fact that this Hamiltonian does
not have the correct continuum limit.

We now consider the Hamiltonian H2 which possesses
the correct continuum limit. The exact ground state of
H2 1s

0 00
Q. 00 1. 50 3. 00 4 50 6. 00

p -&/g

I

7 ~ 50

FIG. 5. Graph of string tension Oa'/g against 1/g' vvith
Hamiltonian H& in (2+1)-dimensional SU(2) theory.

(k n) 42k —2ny2k-(2k)!
n!k!(k + 1)!(2k 2n—)!

The expectation value of operators given in (5.3) are
changed into

U=(cosf )o
I
+o) = exp«»

I
0),

where

(5.7)
=z ' g g z(k n)(k n)/(4y—),

n =Ok =n+1
(5.9a)

R2 ——g trU +—g (trU~)'
p p

x = —8/(5g ), andy =2/(5g ).
The norm of the ground state is

Z=(eo eo)=gz,
P

where

A =(cos t|l~)o

=z ' g g z( kn)n /(4y),
n =Ok =n

(n, )o=o,

(n, n, ),=5,, /3 .

The recurrence formula in (5.4) is rewritten as

(5.9b)

(5.9c)

(5.9d)

and

yn d&» I, (2x)
Z=

n! dx" x

5.50

g z(k, n)
n =Ok)n

(5.8) 8; = ( tr( Utq Uqp Up )tr( U,~ U2 U p ) )o

=8; t(4A —1)/3+4(1 —A )/3,
and its initial value is

8t ——(tr(Ut )tr(U, ))o——4A .

(5.10)

5.00
4.50
4.00

g 3.50
3.00

Choosing the same trial functions as that of H1 for a
static J =0++, the symmetric matrix elements C „and
D „can be obtained as (n )m)

C „=m(n —m —1)U" (4—8 2)

2.50

2.00
1.50
1.00

I I I I I I I I I I I I I I

000 1 50 300 450 600 750

p -~/g2

+2 y Un +m —2im(4

4 ~ ( Un +m —2ijg 4Un +m
mn Li

ij =1

+(n —m —1) (U" B 2 4U" + )—

(5.11a)

FIG. 4. Graph of mass gap Pam(0++) against 1/g' with
Hamiltonian Hl in (2+ 1)-dimensional SU(2) theory.

+4(n m I ) g ( Un +m 2img 4—Un +m

(5.11b)
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5- 50
5- 00
4- 50
4. 00

I 3. 50
~3. 0O

2- 50
2-00 „
1 ~ 50

0.45

0.40
0.35

0.30—
0.25

0.20
cN

0.15

0.10
0.05

(2+1) —n SU(2)

0. 00 ] 50 3. 00 4. SO 6. 00 1 5U

p -&/g2

0.00
I I I I I I I I I I I I I 1

000 1 50 300 450 600 7.50

p -~/g

FIG. 6. Graph of mass gap Pam(0++) against 1/g' with

Hamiltonian H, in {2+1)-dimensional SU(2) theory.
FIG 7. Graph of string tension era /g against 1/g with

Hamiltonian Hz in (2+ 1)-dimensional SU(2) theory.

In the same way, the curves Pam vs 1/g are given in
Fig. 6. Good scaling behavior am =2.28g in the inter-
val 1.2 & 1/g &7 is obtained, it is the same as that for
H, . The difference between them only appears in the in-
termediate coupling region. Why H& and Hz, which pos-
sess different continuum limits, have the same value for
am, is not known to us at present.

Figure 7 shows that the scaling behavior of string ten-
sion for Hz is Oa =0.228g, the absolute value of which
is slightly smaller than that for H&, although both of
them have the same scaling behavior. Therefore, for
Hamiltonian Hz, we can obtain m (0++ ) =4.8v'cr.
These results above should be compared with those ob-
tained from Monte Carlo calculations and other analytic
approximations.

The first Monte Carlo calculation for the Euclidean
version of the model was made by D'Hoker. ' His results
were in agreement with the theoretical expectations in
(1.2), and he estimated that in the continuum limit
oaz=(0. 26+0.02)g4, M/+a=4. 520.5. Ambjorn, Hey,
and Otto' performed a more careful Monte Carlo
analysis, giving era =0.2g . Irback and Peterson' ob-
tained m (0++ ) = (4.7+1.2)&o in the range
4 & 4/g & 6.5 by using a long-distance correlation Monte
Carlo method. The latest Monte Carlo result' is
ma =(2.15+0.2)g in the range 4.5&4/g &5.5. The
cluster expansion methods show the results 0 a
=(0.14+0.01)g and ma =(2.2+0.25)g in the continu-
um limit. Finally, the scalar mass gap has been evaluated

I

in weak-coupling perturbation theory by Muller and
Ruhl, ' they obtained a result ma =0.2637g which is
much smaller than the results quoted above.

VI. (2+ I )-DIMENSIONAL SU(3) LATTICE
GAUGE THEORY

~
4o) = exp —gtr(U&+ Uz)

~

0),'
p

(6.1)

where x =3/(4g ).
The SU(3) one-link-invariant group integral in lattice

gauge theory is derived by Eriksson and Svartholm: '

The mass gap and the string tension of (2+1)-
dimensional SU(3) LGT is investigated in this section. In
Sec. II, we have found four Hamiltonians which possess
the exact ground states. Hz, H3, and H4 possess the
correct continuum limit and H& does not. But the
preceding section shows that, although H& does not
possesses the correct continuum limit, it gives the mass

gap with the same scaling behavior as that of Hz, which
possesses the correct continuum limit.

It seems difficult to discuss the mass gap of Hz, H3,
and H4 in SU(3) theory. Therefore, before we find an
effective method to calculate the property of Hz, H3, and
H4, we only discuss the mass gap and the string tension
of H& in this section. Perhaps it can give us some useful
information. The exact ground state of H, is

CO
1 X~ Y" D

dUexp[tr(U J+JtU)]=2
SU(3) k(„o (j +2k +31 +n +2)!(k+21 +n + 1)! j! k! I! n!

(6.2)

where

X =tr(JJ ),
Y= —,'t[tr(JJ )] —tr(JJ ) I,
D =det( J )J,

6=detJ+ detJ where

z(j, k, l, n)= g z,.x',
jkln =0 i=0

I

Letting Jbe equal to the constant x, we obtain

z= dUpexp xtr U +Up
SU(3)

(6.3)
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3j+k2n
z(j, k, l, n)=2 . ,1!k!!n!

~2j+4k +61+ 3n

(j+2k+3l+ n+2}!(k+21 +n+1}! '

and z,. can be obtained by computer.
The derivatives of Eq. (6.2) with respect to J,, and J,'

give us vacuum expectation of the following operators:

( ( U~ );J )o
——z ' fd U~ ( U~ );J exp [x tr( Uz + Uz }]

The initial values of these recurrence formulas are

A, =((U );,(U );, ) =3,+9, ,

B, = ( ( Up );;( U ),. )]]
——9a ] +3a2,

C, =((U, );;(U,"),, ),=9b, +3b, .

(6.7a)

(6.7b)

(6.7c)

The lowest excited state of this system is a static
J =0++ state. For this state, we choose trial functions
as

=z ' g iz;x' '/65, J
——U5;/, (6.4a) q&„(x)=tr[U„(x)+U„(x)], n =1,2, . . . , N, (6.8)

z Up Up j Up kl exP x tr U + U

z Up Up j'Up kl exP x tr U + Up

where U„(x) is the n X n Wilson loop located at x and N
is the total number of trial functions.

The symmetric matrix elements C „and D „ for
n)m are

u ]5/j 5k/+u25j k 5i/

z-1
Up Up, j Ups klexP xtr Up+Up

(6.4b) C „=—', m(n —m —1)U" (B 2
—3A 2+9—C 2)

+ 8 g /'Ull +m 2/m(—B 3A +9 C )

=b, 5; 5k/+b25;k5//, (6.4c) (6.9a}

where

a] ——z ' g [(2j+4k+6l+3n)
jkln 36x

+9n —4k —4j]z (j,k, l, n),

a2 —z ' g — (2k +61 +3n)z (j,k, I,n),
j

b] ——z ' g 2 [(2j+4k+61+3n)1

jklp 36x

—(4k +4j +9n)]z (j,k, I,n),

bz=z ' g 2 (j+k}z(j,k, l, n) .1

jkln 3+

Note that

3=z ' U tr U U exp x tr Up+Up

=z ' U U; U'; expxtr U+U

=3b1 +9b2 .

(6.Sa)

(6.5b)

(6.5c)

(6.5d)

8 g Un +m —2//(B +C 18U2/J')

ij =1

+8(n —m —1) g U" + ' (B, +C;

18U2' )

+2(n —m —1) U" (B 2+C 2
—18U ) .

/p„(x)=tr[U„~(x) —U„(x)], n =1,2, . . . , N . (6.10}

In the same way, the symmetric matrix elements C „and
D „ for n )m are

5.50

(6.9b)

The curves Pam vs 1/g are given in Fig. 8, the curves
for N=15 and for N=30 coincide with the range con-
sidered. The scaling behavior am =3.62g is observed in
the interval 2&1/g &7.

For the J =0+ state, we use the trial functions

Using the computer techniques we can show that b1 and

bz in Eq. (6.5) satisfy this relation. Therefore, the
correctness of Eq. (6.4) is confirmed.

Let U;=U, U2 U;, and U, is the ith plaquette,
then using the relation in Eq. (6.4), we can obtain the re-
currence formulas:

5.00

4.50

4.00
6

3.50

A„=(tr(U]pU2~ U„~U]~U~ . U„p})]]

=(tr(U„, U„,U„,U„, )),
= (( U„])~J(U„])k/( U„p )/k( U„p )/; )0

1+~2~g —1
(6.6a)

3.00

2.50

2.00 ! ! ! I 1 I ! ! I I ! I !
0.00 1.50 3.00 4.50 6.00

p -~ig~

B„=(tr( U„)tr( U„))o=a]B„,+a& A„

C„=( tr( U„)tr( U„)) =b] C„]+3bq

(6.6b)

(6.6c)
FIG. 8. Graph of mass gap Pam(0++} against 1/g with

Hamiltonian H& in (2+ 1)-dimensional SU(3) theory.
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in (2+ 1)-dimensiona

—)U" (3A,—8,+—2 2 —C 1)C =—'m(n —m —1mn 3

+3 Z, ™ im im
m —2lm13A g +9

(6.11a)

Un +m —2ij(C
mn

ij =1

(C 2 81)—+2(n —m —1) U

Un
'+ m ' —2im( C+8(n m 1) Z

i=1

(6.11b)
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Wilson loops might be different from that of the energy of
quark-antiquark state per unit length, although both of
them should have the same scaling behavior. So we had
better evaluate the quark-antiquark potential in order to
compare numerically with the other physical qualities
such as the mass gap.

(3) Investigation of the mass gap and string tension in

3+1 dimensions. In 3+1 dimensions, the expectation
value of operators in Eq. (3.6) cannot be calculated exact-
ly. A possible way is to calculate the expectation values
of operators in Eq. (3.6) using the Monte Carlo method.
In this respect, some attempts have been made to (2+ 1)-
dimensional SU(2) LGT. We substitute the 120-element

icosahedral subgroup Y for the continuous SU(2) group,
and worked on 18)& 18 lattice size to perform the Monte
Carlo integration in Eq. (3.6). The results are in agree-
ment with that in Sec. V in the range 1/g (2. However,
the extension to the (3+ 1)-dimensional continuous group
needs a great deal of computer time.

(4) Investigation of Hamiltonian including fermions
with exact ground state.
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