
PHYSICAL REVIEW 0 VOLUME 38, NUMBER 8 15 OCTOBER 1988

Chiral anomalies and point-splitting regularization
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The anomalies of chiral gauge theories are discussed from the point of view of point-splitting reg-

ularization. The integrability of the regularized current is examined. Its relations with the Wess-

Zumino consistency condition and Bose symmetry of the regularized Feynman diagrams are dis-

cussed. A point-splitting regularization scheme of the action is proposed as an alternative way to
calculate the consistent anomalies.

I. INTRODUCTION

The interacting quantum field theories are plagued
with ultraviolet divergences. To define a meaningful per-
turbative expansion one has to regularize certain prod-
ucts of operators. The renormalizability of the theory
implies that the physical observables are independent of
regularization schemes. Not all of the symmetries of the
classical theory are preserved throughout the regulariza-
tion process and some of them are anomalous even after
the regulator is removed. A typical example is the
Adler-Bell-Jackiw (ABJ) anomaly' which is related to a
global axial-vector rotation of the fermion field. The
form of this anomaly is regularization-scheme indepen-
dent and it has many physical implications. Among them
are the tr decay amplitude and the solution of the U(l)
problem in QCD. Another example is the anomaly asso-
ciated with chiral gauge theories which puts a severe re-
striction on the model building of the grand unification
theory. This anomaly will be discussed in the present pa-
per.

There have been clarifying studies done on chiral
anomalies up to now. In the case of the ABJ anomaly,
the vector Ward identity due to gauge invariance fixes the
axial-vector anomaly to a unique expression. In the case
of chiral gauge theory, a gauge-invariant regularization is
lacking. The associated anomaly depends on the finite
part of the regularization. The typical forms are the co-
variant anomaly and the consistent anomaly, which have
been clarified mathematically by Bardeen and Zumino
and also by Fujikawa. It is demonstrated in Ref. 4 that
it is always possible to add a local polynomial to the co-
variant current to get the consistent current and vice ver-
sa. There can be many other forms of anomalies, depend-
ing on the details of the regularization. A11 these
different forms are proportional to the same Casimir
operator of the gauge group and they are canceled simul-
taneously in an anomaly-free quantum field theory. In
this paper, we will discuss the scheme dependence within
the framework of point-splitting regularization. The in-

tegrability of the regularized current is investigated,
which requires that the regularized current is a functional
derivative of a quantum effective action and guarantees
the consistency of the associated anomalies. For an
anomaly-free theory, the covariance and the integrability
can be preserved simultaneously. With the presence of
anomalies, only one of the above conditions can be main-
tained by the appropriate choices of the operator inser-
tion. Determining the correct operator insertion is trivial
for the covariant current but is less trivial for the con-
sistent one. However, instead of choosing carefully the
operator insertion for the point-split current, one may
regularize the classical action directly and then preserve
manifestly the integrability of the related current. This
gives a new method to compute the consistent anomalies.
Our discussions are restricted in D=2 and 4. The con-
clusions are, however, generalizable to higher dimen-
sions.

This paper is organized as follows. In Sec. II we will

investigate the integrability condition and discuss its rela-
tion with the Wess-Zumino consistency condition. In
Secs. III and IV we shall discuss the point-splitting regu-
larization in D=2 and 4, respectively. In Sec. V we shall
propose a point-splitting regularization of the action
which will give an explicit expression of the anomalous
effective action upon the perturbative expansion. Some
remarks then follow.

II. POINT-SPLITTING REGULARIZATION
AND INTEGRABILITY

Ultraviolet divergence stems from the quantum fluc-
tuation of the field amplitudes at a set of infinitely closed
points in the spac ctime continuum. The composite
operators, e.g., the current, which contain the product of
the field operators at the same point, are ill defined. To
damp such a fluctuation, one may either regularize the
definition of each composite operator or regularize the
action to avoid the coincidence of the points where vari-
ous fields interact. In this section and the next, we shall
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consider the first strategy.
Let A„=T'A„' be the gauge potential with T' the gen-

erator of the gauge group in a certain representation.
is the two-component spinor field in the representation
generated by T'. The Euclidean action of the system
reads

SE = x —,'TrFp„F„+ w„q+ A„, 1

where we have adapted the chiral representation of y ma-
trices:

However J„contains the product of two operators at the
same points and is therefore ill defined. A regularization
scheme has to be introduced. It has been established that
there is no satisfactory regularization scheme such that
the right-hand side of (6) vanishes in general. The quan-
tized theories are therefore anomalous. To calculate the
anomaly, one has to specify the regularization scheme at
first. In what follows we shall adapt the point-splitting
regularization. The general structure of the regularized
current reads

1 0
75 0 1 & 3 p.

0

0
[J' (x ) ]"s= 1(r x +—T'Q x +—,x ——

2 2' 2

with

(l, i), D =2,
(l, ie, ), D =4, (3)

and o.; are the Pauli matrices. The quantized fermionic
effective action is given by the formal functional integra-
tion

e ' '= D D e

where

Sf ——Jd x fr„(B„+A„)g

is the fermionic part of the action (1). To examine the
gauge invariance of the quantized action, one calcu1ates
the gauge variation of W( A ). Consider a gauge transfor-
mation generated by infinitesimal parameters 8, i.e.,

5s A„= D„8=—(8—„8+[ A „,8] ) .

The corresponding variation of the effective action is

5sW( A) = J d x Tr8(x)D„(J„)„,
where J„ is the Noether current associated with the
gauge transformation and ( ) „ is the functional average
with the action (5). Formally

E'

)&r„g x ——
A

(9)

The average over all orientation of e is understood. It
follows from the formal expression (7) that J„' are both
covariant and integrable (i.e., it can be written as the
functional derivative of something). This is, however, not
the case for the regularized current (9). For an arbitrary
operator insertion Q, the right-hand side of (9) may not
be covariant and the right-hand side of (6) with J„re-
placed by J„" may not be able to be written as a gauge
variation of something. The form of the anomaly de-
pends on the choice of Q(x, x') even after the regulator is
removed.

The covariance of J„"I' can be easily implemented by
choosing Q(x, x') to be the parallel transporter from
x —el2 to x +el2 in the group manifold, i.e.,

0 x+ —,x —— =Pexp — A . 102' 2 . x —en

The order of 0 and T' does not matter when a~0. A
straighforward calculation of (10) gives the standard co-
variant anomaly. For example,

D„(J„'(x)"')g

(J„(x))g = —
( ~( A)= (f(x)T'r„g(x)) „ (7)

and

D„(J„'(x)) „=0 .

The current regularized this way is, however, not inte-
grable. Using the strategy outlined in the next section,
one may check that

(J'.(y)"' ) „— (J'(x)"s)„5 g „, 5
e-o 5A'(x) 5A „(y)

T

5' e„„5(x —y), D =2,
2m

E„„„Tr(I T', T"I )F &5 (x —y), D =4 .2 P&P

(12)

In order for a quantum effective action to exist even in the presence of an anomaly, J" should satisfy the integrabilityP
condition

( Jb(y)res ) (Ja ( )res ) 06 5
e-o 5A'(x) 5A „(y)

(13)
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which will determine the functional form of the operator insertion. The anomaly deduced from the integrability condi-
tion (12) will satisfy the Wess-Zumino consistency condition

5sG (8')—5e 6 (8)=G ([8,8']) (14)

with G (8)= —fd x 8'(x)D„(J„'(x)"s)„. In the perturbation theory, the integrability condition (13) implies the Bose
symmetry of the regularized Feynman diagrams. Indeed, the functional Taylor expansion of (J„'(x)"s) „ in terms of A

reads

(J„'(x)"'&~= g N, J d'yi d'VNAp (yl) Ap (VN)+pp', , . . .', p (x yi VN)
E=l

(15)

where K„'„' ' "„(x;y,, . . . ,y~) corresponds to the amputated part of the one-loop diagram of N+ I external legs.

The first D —1 of them are regularized. Clearly

~i~}i ~ ~ 'i i ' ~ i i . il 1 'i '11 11

p, p~, . . . ,p, . . . , /l, . . . , /l+( &yl& ' ' ' &pi i ' ' ' iyji ' ' ' &VN} pp~, . . . , p, . . . , p, . . . , p+( iyji ' ' ' iyj yj i iy+)

The integrability condition (13) requires that

li1) i ~ i 1'i ~ ~ ~ i l~ ~ ~ i&i, . i~, i~N
VN) +p, ,p, , , p, . . ., p .(y. .i Vl ''' x ''' VN)

which together with (16) implies the Bose symmetry.

(16)

(17)

III. THE INTEGRABILITY CONDITION IN D=2 AND IN D=4

In this section, we shall examine in detail the integrability condition and shall determine the functional form of 0 in
D=2 and 4. It follows from (9) and (13) that the integrability condition implies the following equations of the vacuum
expectation values:

TrT'~ Q x+ —,x —— g x ——g(y) T r„g(y)4 x+—2' 2 2 2

TrT r„Q y—+—,y —— P y ——g(x) T'r P(x)g y+—2' 2 2 2 A

+Tl T 7p

E' E5Q x+ —,x ——2' 2

5A (y)
x ——g x+—

2 2 A

—TrTb~,

50 y+ —,y ——
v —— x+— (18)

The right-hand side (RHS) vanishes only formally as @~0. A few lower-order terms in A contribute. The expectation
value of the regularized current (9) can be written as

(J' (x)"s) = —TrT'0 x + —,x ——r S x ——,x +— (19)

and its covariant divergence is

D„(J„'(x)"s)„=—Tr A x+—
2

—A (x) TQ x+ —,x ——1

P 2' 2

+T A (x)—A x —— & x+ —,x ——I E E
P P 2' 2

1 a E E+T ~ 0 x+ —x ——+
Bxp 2 2

E E E'
x ——0 x+ —,x ——

2 2' 2

E'

7@Sg x — sx +
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where S„(x,x') = ( g(x)g(x') ) „ is the Green's function of the Dirac operator in a background gauge field and is given
formally by

S„(x,x't=(x x'
r& Bz+ A„

(21)

Th«races in (19) and (20) are taken over both the group and the spinor indices. The object inside I ] is of the order of
e and the first D —1 terms of the perturbative series of (21) in terms of A contribute to the anomaly.

A. D=2

The most general operator insertion can be put in the form

0 x+ —,x ——=P exp — d X A2' 2, x-~re
(22)

with X„(A) a local linear polynomial of A„. S„(x—e/2, x +@/2) can be expanded perturbatively according to the
power of A:

x ——,x+ —=Sp x ——,x+ —— d ySF x ——,y A(y)SF y, x+—E

2' 2 ~ 2' 2 F 2' 2
(23)

where SF(x,x') is the Green's function of the free Dirac operator and it diverges as O(1/e) as a~0. The subsequent
terms of (23) are finite in the limit @~0.

Upon substituting (23) into (20) one obtains

(J„'(x)"s)z —— TrT'[X&( A ) i e„+—,( A )]+regulator-independent terms . (24)

The regulator-independent terms satisfy the integrability condition automatically. Thus

(J"s(x)') z — ( J'„'s(y)~) z
— TrT'[X&( A ) —i e&Q&( A )]

5A (y) " 5A„'(x) 4~ 5A (y)

TrT [X„(A) ie„P~—( A)]
5A'„(x)

(25)

X„(A ) =c ( A „+i e„,A „) (26)

with e an arbitrary constant. Substituting (26) into (20),
one ends up with the consistent chiral anomaly

(27)

The first term of (27) is trivial since

as can be derived directly from (18).
For X„(A„)= A„, which corresponds to the covariant

regularization, the right-hand side of (25) does not vanish
and is given by (12). The integrability can be satisfied by
taking

one component and Jz ——iJ& for the point-splitting regu-
larization. It follows from the integrability condition (13)
that

+& (Jl )res 0
5A',

(29)

This implies that (J&)"s cannot depend on AI iAz. —
Since this should be true for any group, J" has to be a
functional of A ] +i A z only. Furthermore, the current
without any operator insertions, i.e., c=O, is already in-
tegrable. This is, however, not the case in higher dimen-
sions.

fd x OTrT d„A„=5&fd x TrA„A (28) B. D=4

and (28) can be absorbed into the effective action. One
observation is that both the insertion (25) and the anoma-
ly are functionals of A, +EAz ——~„A„. As was pointed
out by Jackiw this dependence is more natural since the
chiral Dirac operator depends only on ~„A„. In fact, the
case of D=2 is rather special. The chiral spinor has only

J (x) s=f x+ —Tr f x ——l re ~ I
P 2 P (30)

The integrability condition reduces to

Instructed by the result in D=2 one may try the
point-split current without operator insertions, i.e.,
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5 Ab(y)
(J'(x)" ) — (J„(y)" ) = —TrT'r S„x——,y Tbrgg y, x+—

L

Substituting the perturbative expansion of S~,

+TrT'r„S„x,y+ —T ~P„y ——,x
2 2' (31)

E' E E'

Sg x +,x — =SF x +,x—2' 2 2' 2
"y SF x+ —,y ~„A„y SF y, x ——

+ f d y, f d y2SF x+ —,y r A (y, )SF(y„y2)r„A„(y2)SF y2, x ——+2' (32)

and working in the momentum representation, one ends up with

RHS of (31)=——,'5 (x y)[T—rT'T B~APe&S& P(e) TrT'—BiAPT e&S&P„(E)],

where

d4
S„„p(e)=f 4 e ' 'Trr„Sp(p)rgb(p)rPF(p)

(2m )

(33)

(34)

the trace in (33) is taken over the group indices and that in (34) over the spinor indices. In deriving (33), we have
dropped the terms which vanish as a~0. Upon average over all directions of e one ends up with

and

1 1

PP 2 P" P~ PP ~ P2 "P 2 8"P~
48m 16m

(3&)

4
(J„'(x)"s)— (J„(y)"s)= — Tr[[T', T"](B„A„+B„A„+5„„8,A)+3@„„2jT', T jB A2] .

5A (y) " 5A„'(x) 96m2

(36)

The regularized current can be easily made integrable by adding a term

X„'(x}=— TrT'([5&A„, A&]+[8&A&, A„]+[8„A&,Az]+3@„z &[ A, B&A&j+3e„z &[ A, B&A&j ) .
288+2

This is equivalent with the following regularized current with the operator insertion:

J"x(x,e)„'= (p x + —T'e exp[ —„exe e (Bx4x4,—xAxxBx4„))p x ——

(37)

(38)

where

A„=~tr„A„
the chiral anomaly deduced from (38) reads

(39}

D„J„'(x)"s= 2e„„P&TrT'B„(A„BAz+ —,'A„A A2)+TrT'I
24~

where

', , a„A„— ', a2a„A„— ', [A„,2a„a,A„+a2A„]
32~2/2 ~ ~

192~2 ~ ~ 5 /6~2

(40)

, I A„A„,a„A„+a„A„j—,[A', a„A„j . (41)

The contribution of (41) to the anomaly can be written as the gauge variation of the following local functional:

S=—f dx Tr A +. A„B A„+ A„B„B„A„+ (A„A„A„A„+2A )
16m e 1152m. " " 567m " " 36m

(42)
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s.e.,

Tr f d x 81'=5sS . (43)

Therefore, I is a cohomologically trivial term and can be
absorbed into the effective action.

IV. THE POINT-SPLITTING
REGULARIZATION OF THE ACTION

The point-splitting regularization discussed above is re-
stricted to the definition of the composite operator alone.
The radiative corrections are still calculated by the un-

regularized Feynman rules. Although the integrability
can be established by a careful choice of the operator in-
sertion into the point-split current, the integrability con-
dition will be satisfied automatically if one regularizes the
classical action and defines the current as the functional
derivative of the regularized action. In this way all the
Feynman rules are modified systematically. One example
of such a regularization is the lattice formulation, in
which the fermion fields in the bilinear products of the ki-
netic energy and the interaction part are defined at
different lattice sites. Such a regularization preserves the
gauge invariance but causes the species doubling due to
the point splitting of the kinetic energy. A possible
point-split action in the continuum reads

Sf = x x 7p p x

x+ —r&A„(x)f x ——,(44)

where the kinetic energy term remains unregularized. It
is easy to show that this regularization is sufficient to re-
move all the ultraviolet divergences due to the fermion
loops with a finite e. Indeed, for a fermion loop with I
external legs, there will be at most / —1 fermion propaga-
tors which diverge like x +' (i.e., the two ends of the
propagator coincide). This singular product will be in-
tegrated over 1 —1 relative coordinates and the resulting
degrees of divergence is (l —1)D —(l —1)(D —1)
= l —1 & 0. Therefore all fermion loops are finite after in-
tegration.

The current operator associated with the action (41) is

J„'(x,e) =P x +—T'r„P x —— (45)

It appears that the form of the current is the same as that
defined in the previous section without any operator in-
sertions. But the vacuum expectation value of (45) is
quite different from that of (30) since the Feynman rules
for the perturbative expansion are modified. The fermion
propagator from the regulated action is

gD dD
s„(x,x')= f ~ f ~e('* '~*t„(pp'( (46)

(2m ) (2m)

with the perturbative expansion

Sq(p, p')=(2m) 5 (p —p')SF(p) —exp ——(p+p')e Sz(p)r„A„(p —p')SF(p')

q / . i+ D exp — pe iq—e ——p'e —Sz(p)r„A„(p q)SF(q)r—A„(q —p')Sz(p')— (47)

The divergence of the regularized current is

D„J„'(x)"'=Trr„[A„(x +e) A„(x)]T'S„x———,x +—e —
T&[ A„(x +e) A„(x)]S„—x — E,x + ——

+A (x)T S x ——,x+ —e —S x ——,x+-1
E' 3 6 E

P 2' 2 " 2' 2

—T A (x) S„x——e,x + ——S„x——,x +—3 E E'

2
'

2 2' 2

where we have used the following Dirac equations:

and

g(x )r„+g(x +e)r„A„x+—
Bx„ P P

=0 (49)

Q(x)+r„A x ——((i((x —e) . =0 .a E

x P P (50)

Substituting (46) and (47) into (48) one obtains the Wess-Zumino consistent anomaly
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D„(J„'(x))"„'s= (5„+is„„)TrT'a„A, (51)

for D=2 and

D„(J„'(x))'„'s= e„„&TrT'a„(A a Ax+ —,'A„A Ax)
24m

BA„ 1
,a'a„A„+,[A„(2a„a.A„+a'A„)]

4 e ~&„192~' " " 576~

',
I A„A„a„A„+a,A„j+ ', [ A', a„A„~ (52)

for D=4 This. expression is identical to that of (40) even
for the cohomologically trivial part. An explicit expres-
sion of the effective action which will produce the above
anomalies can be obtained by expanding the regularized
path integration:

—w(a)= D D (53)

with Sf"s given by (44).
The scheme dependence of the chiral anomaly is a

re6ection of the inconsistency of the ordinary renormal-
ization method in an anomalous gauge theory. Different
currents give rise to anomalies of distinct mathematical
structures and they cannot be transformed to each other
by adding counterterms to the action. The long-
wavelength behavior is sensitive to the detail of the
short-distance cutoff. The theory cannot be quantized by
the usual procedure and new ingredients are needed. The

covariant anomaly, due to its covariance, may be relevant
to some physical process. The consistent anomaly is a
direct implication of the noninvariance of the effective ac-
tion under a gauge transformation and may indicate some
structure of the quantized theory if it exists. The possi-
bility of quantizing an anomalous gauge theory has been
seriously considered by several authors' and it will
detect the fundamental nature of quantum field theories.
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