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In this paper we further develop a novel perturbation scheme for quantum field theory in which

the form of the interaction is expanded about the free theory. A set of Feynman rules for the per-
turbation expansion is derived that does not require the introduction of the provisional Lagrangian
used in earlier papers. The rules permit direct calculation to all orders in the 5 expansion, and are
almost identical to standard Feynman rules. Only the form of the propagator and the vertex func-

tion are changed.

I. INTRODUCTION

In a recent series of papers' we introduced and ela-
borated upon a new perturbative approach to quantum
field theory. This approach relies upon the introduction
of an artificial perturbation parameter that allows the in-
teracting theory to be expanded about the free, nonin-
teracting theory. For example, a scalar polynomial field
theory with an interaction term of the form A, (P ) we
rewrite as A,(P )'+ and consider 5 as the perturbation pa-
rameter. In the resulting 5 expansion, the Green's func-
tions of the interacting field theory are obtained as power
series in 5 with coefficients that can be calculated by ordi-
nary diagrammatic techniques. The n-point Green's
function has an expansion of the form

In earlier papers we discussed and illustrated a number
of calculational advantages enjoyed by this new perturba-
tion scheme. The results obtained in the 5 expansion
have a more complicated analytic dependence on the nat-
ural parameters of the theory (masses and coupling con-
stants) than emerges from weak- and strong-coupling per-
turbation theory. In massless theories this technique can
provide a natural way to remove the infrared divergences
because, even in a massless theory, the lowest-order term
in the 6 expansion, corresponding to the free theory, typi-
cally has the form of a mass term. In field theories where
there is no natural small perturbation parameter this
technique offers a means for developing a perturbation
series in powers of an artificial parameter. For example,
even though a supersymmetric Lagrangian contains no
natural perturbation parameter one can develop a 5-
perturbation expansion for the ground-state energy. Fi-
nally, in the sample problems that we have discussed, the
6 expansion appears to produce series expansions for the

Green's functions that are less divergent than are those in
conventional weak-coupling perturbation expansions.

The apparent disadvantage of our technique is that one
must use interaction Lagrangians containing powers of
logarithms of the fields. To deal with these Lagrangians
we developed a complicated scheme that allows us to cal-
culate the coefficients of each term in the 5 expansion by
conventional weak-coupling techniques applied to a pro-
visional Lagrangian. The calculation at each order in 5
requires the introduction of a new provisional Lagrang-
ian with polynomial interaction terms. The provisional
Lagrangian for the 5" calculation contains n interaction
terms. After developing the weak-coupling expansion for
the Green's functions of this provisional Lagrangian one
extracts the coefficients in the 5 expansion by application
of an nth-order differential operator at the point 5=0
(the free-theory limit).

In this paper we show how to calculate an arbitrary or-
der in the 5 expansion in a much simpler way that avoids
altogether the introduction of the provisional Lagrang-
ian. In this new method the number of diagrams that
must be evaluated in each order is enormously reduced
and the differential operator that is employed is trivial.

In Sec. II we will briefly review the details of the 5 ex-
pansion technique as developed in previous papers, using
the scalar self-interacting A, (P ) theory as an example.
In Sec. III we will derive the new technique by calculat-
ing an arbitrary Green's function for the A,(P ) theory to
fourth order in 5. We show how to generalize the result
to any order in 6 in Sec. IV.

The calculations in Secs. II and III are quite involved
and require a very careful application of the 5-expansion
techniques developed in Refs. 1 and 2. The purpose of
these calculations is to establish a new and much simpler
technique for developing the 5 expansion. This result,
which relies on a set of rules similar to standard Feynman
rules, is summarized in Sec. IV. The reader who is un-
concerned with following the fine details of establishing
the equivalence between the two techniques may briefly
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II. REVIEW OF THE 5 EXPANSION

For definiteness we shall review the 5 expansion in the
context of the Lagrangian

& (gy)2+ & p2(()2+gM2$2(M2 —F2)s (2.1)

review the 5 expansion in Sec. II, follow the discussion of
the one-vertex graphs in Sec. III A, and skip to the sum-
mary of the new technique in Sec. IV. The application of
the technique to the calculation of the 5 expansion for the
two-point function for scalar field theory through second
order, which is given in Sec. IV, will then be easy to fol-
low.

( )s and ( )U are two of the four special functional forms
involving the four roots of 1, which are defined in the Ap-
pendix.

Using the Lagrangian (2.3) one calculates all diagrams
having at most E vertices that contribute to G '"', the n-

point function for L. One now regards the parameters aj,
as continuous, applies a specific Kth-order derivative
operator to the Green's function G '"', and takes the limit
aI, ~0, k = 1,2, . . . , I( . The result is 6'"' for the La-
grangian (2.1) exact to order 5 .

For K =1 the derivative operator is Di ——
. BIBai. For

larger values of E the derivative operator is more compli-
cated. It is convenient to use the notation employed in
(2.4) and explained in the Appendix to write, K =4,

where d is the space-time dimension, p is the bare mass,
and M is an arbitrary mass parameter introduced so that
the coupling constant A, is dimensionless. We regard 5 as
a small positive parameter and expand (2.1) in powers of

1 8 1 8 1 8D =— +—
~ +4 Ba U

8 Ba2 „24 Bai

4

96 ()~4
(2.5)

L = —,'(BP) +—,'(p +2AM )P

5k
+gM2y2 y [ln(y2M2 —d)]k (2.2)

The use of the rules given above to perform calculations
in example Geld theories has been illustrated in Refs. 1-4.

Llr ———,'(Bp) + —,'(p +2AM )p

+2gMd g (y2M2 —d) k+ P
/c =1

(2.3)

where the coefficients Pk are polynomials in 5 and [ak I,
and the al, are initially regarded as integers.

In Ref. 2 the specific forms of the polynomials Pl, are
given for k &4. For example, for K =1, P, =5, and for
E =4 the four polynomials are

P, = 5+[—,'+ —,'(a)s+ —,'(a )U]5

+-,'(4+5a, )5'+54, (2.4a)

P2= i5+ ————(~)s+ —(a')U
3 6 2

+—,'( —4i +5a2)52+ 54,

P3= —5+[—,
' ——,'(a)s ——,'(a )U]5

(2.4b)

The coefficient of 5 in (1.1) is simply the n-point
Green's function of a free theory with bare mass

p +2k.M . To calculate the other coefficients in the 5 ex-
pansion of the Green's function G'"'(x, , . . . , x„;5) in
(1.1) through order 5 we first introduce a provisional La-
grangian, specific to this order, that involves E separate
polynomial interaction terms, namely,

III. GENERAL FOURTH-ORDER CALCULATION

We now calculate, through fourth order in the 5 ex-
pansion, the 2n-point Green's function G' "' for the La-
grangian (2.1). In the course of this calculation we will
discover a new and simplified set of rules for the 5 expan-
sion that avoids the introduction of the provisional La-
grangian.

Notice from (2.4) that each of the polynomials Pk con-
tains terms of order 5 and higher. Therefore each of the
interaction terms in the provisional Lagrangian (2.3) is at
least proportional to 5. Thus the expansion of the
Green's functions through order 5 can involve diagrams
with at most four vertices.

We now consider the calculation of the 2n-point
Green's function G ' "' for the Lagrangian Llr in (2.3).
For the case K =4 the provisional Lagrangian Lz con-
tains four distinct interaction terms of the form
2AM (p M )

" Pk, k =1, . . . , 4. Initially we will
choose the ak so that n &ak+ I (later we will define a
specific analytic continuation of G ' "' in the ak ). With
this assumption every graph with 2n external legs and
with one, two, three, or four vertices will contribute to
the Green's function G ' "'. To organize the discussion
that follows we will consider separately the contributions
to the 2n-point function from graphs with one, two,
three, and four vertices.

+—,'( —4+5a3)5 +5 (2.4c)
A. One-vertex graphs

1 i 1P4= '5+ + (~)s (~ )U 5
3 6 2

+ ,'(4i + 5a4)5—'+54 . (2.4d)

Here a&, az, a3, a4 are the four exponents that appear in
the provisional Lagrangian (2.3) for the case K =4 and

Because the polynomials P& are fourth order in 5, the
one-vertex graphs in Fig. 1 produce contributions to
G ' "' of order 5, 5, 5, and 5 . We treat 5 as a small pa-
rameter and calculate the contribution of these graphs in
weak-coupling perturbation theory. The Feynman rules
are as follows.
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FIG. 1. The one-vertex graphs that contribute to G ' "'.
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For a boson propagator:
FIG. 2. The two-vertex graphs that contribute to G ' "'.
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For the ak vertex:

2AM Pk (2ak +2)!M

(3.1a)

(3.1b)

We now apply the derivative operator D4 in (2.5) to the
expressions (3.4) and use the rules given in the Appendix
for the effect of the derivative forms (()'/()a')z T U z on
the functional forms (f(a ) )s z U „.The result is

We first consider the order-5 terms in this calculation.
The a, vertex contribution in order 5 is

5u, (2,+2)!I '

=——5v„(a, ) .
(a(+1 n)!2 '—

2

one-vertex contribution = —5v„'(0)——u„"(0)

——u'"(0) ——u' '(0),
4t

(3.5)

Here I is the boson loop integral given by

(3.2)
where v„(a) is defined in (3.2) and

1 d p
(4 )d/2 2+ 2+ 2gM2

(3.3)
v'"(0) = v (a)

da a=0
(3.6)

—5H~(„)= —5( v„(a)}T . (3.4a)

Similarly, one finds that the order-5 contributions from
the one-vertex graphs, which we label —5 Hz„', can be
written as

—5'H,"„'= 5'[-,'( v„(a—) )„+—,'(a)s(u„(a) ) U

+ —,'(a') U(u„(a) ) T ] .

The 5 contributions are

—5'Hz„) ———5 [—', (u„(a))U+ —', (av„(a))&],

and the 5 contributions are

5H'„'= —5 (u„(a)}—

(3.4b)

(3.4c)

(3.4d)

(For d )2 the loop integral must be suitably regulated,
but the following arguments are not sensitive to how this
is done. )

The az vertex contribution in order 5 is i5v„(a—z), the
a3 contribution is +5u„(a3), and the a4 contribution is
+i 5v„(a4)

The sum of the order-5 contributions of the four
graphs in Fig. 1 is

5H'z'„'= —5[v„—( a)+)i (uza) —v„(a3)—iv„(a4)] .

Comparing to the forms defined in the Appendix we see
that this can be written

It is clear from the calculation given above that in or-
der 5 the one-vertex graphs will contribute to the n

point Green's function as follows:

E k
G(n) y v(k)(0) (3.7)k) vn

k=1

B. T~o-vertex graphs

Because the polynomials Pk in (2.4) are at least of order
5, the two-vertex graphs produce contributions to 6 ' "'
of order 5, 5, 5, and higher. The general two-vertex
graph is given in Fig. 2. Note that both the left and right
vertices may be labeled by any of the four ak correspond-
ing to the four interaction terms in the Lagrangian (2.3).
There are 2n external lines. The left vertex, labeled by
ak, has a total of 2ak+2 lines, 2n —p of which are exter-
nal and l of which are connecting lines, leaving
ak+1+p/2 —l /2 —n boson loops. The right vertex, la-
beled by a, has a total of 2a +2 lines, p of which are
external, and l of which are connecting lines, leaving
a +1—l/2 —p/2 boson loops. To obtain the contribu-
tion of all two-vertex graphs to 6 ' "' we must sum over
all values of I )2; 2n )p)0; 1(k,q (4, subject to the
constraint p + i=even.

The graph in Fig. 2, for given values of k, q,p, l, con-
tributes
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(2n )!
(2n —p)!p!

d +(d —2)(ak + 1)
k (2ak+ 2) a +I+p/2 —n —I/2 Gl&qkk

I 2"ak + 1+p/2 —n —I/2 I!
uk+1+ —n ——!

2 2

2A.P M ' (2 2)'

a +1——— 2'I g a +1—I/2 —p/2

2 2

a +1—I/2 —p/2
(3.8)

where ek~ ——1 if k&q and e'k ———,
' if k =q. The first factor in (3.8) is a symmetry factor associated with the external

lines. The second factor is associated with the ak vertex and includes the vertex strength, the symmetry factor, and bo-
son self-loop integrals. Similarly the last factor is associated with the a vertex. The factor Gl/l. is the internal loop
integral and symmetry factor associated with the I connecting lines, where

Gl ——J d"x 5'(x) . (3.9)

The factor e k accounts for the difference in the symmetry factors when q =k.
It is important in performing the summation over k, q,p, I to first do the k and q sums holding the variables p and l

fixed. Performing the k and q sums and using the factor e~k one obtains

(5H2» p+I+5 H2» p+I+5 H2» p+I+5 H2» p+I)(5Hp'+!+5 Hp+I+5 Hp+I+5 Hp+I), (3.10)

where the H" are defined in (3.4) and where we have suppressed the factor [(2n)!/(2n —p)!p!](Gl/I!). Expanding
(3.10) and retaining only terms of order 5 or lower we get

5 H2n —p+I p+I+5 ( 2n —p+I p+I +Hp+! 2n —p+I)+5 ( 2n —p+IHp+I + 2n —p+IHp+I+ p+I 2n —p+I )
2 (1) (1) 3 (1) (2) (1) (2) 4 (2) (2) (1) (3) (1) (3)

Next, apply the operator D4 to (3.11) and again use the rules given in the Appendix. The result, after setting the a; =0,
1s

v2'„+I(0)v'+I(0) v "+I(0)v2„+I(0)
two-vertex contribution= 5 [v2„+l(0)v'+l(0)]+5, +

+54
v2'„' p+l(0)vp+l(0) vp"+l(0)v2„p+, (0)

3T 31

v2'„p+I(0) vp"+l(0)

2! 2T
(3.12)

The result in (3.12) must be multiplied by the symmetry factor and loop integral factor [(2n)!Gl /I!]/(2n —p)!p! and the
result summed over p and I to obtain the full two-vertex contribution to the 5 expansion of the 2n-point Green s func-
tion 6' "'.

Note that (3.12) can be rewritten in a factored form whose relation to (3.7) and whose generalization to arbitrary or-
der is obvious:

52 $3 $2 $3
2 —p+I( )+ v2 —p+l(0)+

I
v2 p+I(0) 5vp+I(0)+

I
vp+I(0)+ vp+I(0) (3.13)

C. Three-vertex graphs

These graphs produce contributions to G ' "' of order 5, 6, and higher. The general three-vertex graph is given in
Fig. 3, where any of the three vertices may be labeled by any of the o.k, k =1, . . . , 4. As in the two-vertex graph of Fig.
2, this general graph is labeled by the total number of external lines 2n and a set of additional external and internal line
numbers I, m, p, q, r which must be constrained so that the total number of lines at each vertex is an even number:
2a+2. The graph must also be one-particle irreducible. Thus there are constraints that rim&0, q+k+m =even, and

p + r + I=even.
The value of the graph in Fig. 3 is calculated by the same technique as above. Its general structure is as follows:

(external symmetry factor) &((connecting-loop integrals and symmetry factors)

~ (product of three-vertex contributions, boson self-loop integrals,

and symmetry factors) . (3.14)

The first two factors are standard to any perturbation theory calculation. Only the last factor depends upon the n, . It
is a straightforward but tedious calculation to show that, after performing the i,j,k sums, this factor reduces to
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Expanding (3.15) and retaining only terms of order 5 or lower yields

g3H( & ) ~(1) H(1)p+r+l~~q+r+m 2n —p —q+I+m

R4( rl(2) rr(&) u (&) ~(2) ~(1) ~(1) u'(2) H(1) ~(&)~ (x p+r+lxxq+r+mxx 2n —p —q+I+m+~~q+r+mxxp+r+lxx 2n —p —q+I+rn+xx 2n —p —q+1+m p+r+I xq+r+m }

(3.16)

Applying the operator D4 to (3.16), using the rules given in the Appendix, and setting the a s =0 gives

three-vertex contribution= —5 [v2„+l+ (0)v'+„+ (0)v'+„+l(0}]

[v2 p q+l+ (0)vq+ + (0)vp+ +l(0)+v2 p q+l+ (0)vq+ + (0)vp+ +l(0)

+V2n p q+l+m(0)Vq+r+m(0)Vp+r+l(0)] (3.17)

This result must be multiplied by the symmetry factors
and connecting-loop integral factors mentioned above
and the results summed over p, q, I, m (subject to the con-
straints discussed previously ) to obtain the full three-
vertex contribution to the 5 expansion of the 2n-point
Green's function O' "'. As expected, (3.17) can be rewrit-
ten as the product of three truncated Taylor series in a
form analogous to (3.13) and (3.7}.

D. Four-vertex graphs

These graphs produce contributions to 6 ' "' of order
5 and higher. The general four-vertex graph is given in
Fig. 4. The vertices may be labeled by any of the ak,
k = 1, . . . , 4. This general graph has 2n external lines. It
is labeled by a set of external line numbers p, q, l which
can take a variety of values and is further labeled by
internal line numbers i,j,k, m, r,x. Note that some of
these indices can assume the value zero, so long as the
graph remains one-particle irreducible. The constraints
on these line numbers are similar to those obtained in the

I

two- and three-vertex cases but are irrelevant for the
present discussion. The contribution of a general four-
vertex graph has the same structure as in the expression
(3.14). For the purpose of the 5 expansion only the
dependence on the a, is important. The external symme-

try factor, the symmetry factors associated with the con-
necting lines, and the connecting-line loop integrals are
not important as they do not depend on the parameter a;.

The calculation follows exactly the same procedure as
in the other subsections above. Apart from external sym-
metry factors and loop-integral factors, the result is

p+i+j+x( }Vq+j+k+r( ) 2n —q —p —I+k+x+m(

Vl+m+l+r(o} ~ (3~ 18}

After calculation of the symmetry and loop factors and
summation, subject to the constraints on
i j,k, l, m, p, q, r, x (3.18) gives the full four-vertex contri-
bution to the 5 expansion of the 2n-point Green's func-
tion G(2

-q-p+m)
2

-n
loop

(r+ q+ m)
2

loops

2n- g-p
2n-q- p- l

FIG. 3. The three-vertex graphs that contribute to G ' "'. FIG. 4. The four-vertex graphs that contribute to G ' "'.



38 FEYNMAN RULES FOR THE 5 EXPANSION 2523

IV. SUMMARY OF FEYNMAN RULES
FOR THE 5 EXPANSION

We now summarize the rules established in the previ-
ous section for developing the 5 expansion for the La-
grangian (2.1). The rules for calculating any given graph
are identical to the standard rules for a scalar field
theory, except for the vertex factor. In the following
rules, what differs from standard perturbation theory is
the prescription for which graphs are to be included, the
specific form of the vertex factors, and the mass term in
the propagator.

To determine what graphs contribute to the 2n-point
function 6' "' we first note that 5, in the interaction term
(P )'+, can be an arbitrarily large integer. To obtain the
expansion of 6' "' to order 5" we include all one-
particle-irreducible diagrams with up to k vertices, 2n
external lines, and any number of internal lines Eac.h of
the diagrams with j vertices contributes to order 5J and
higher in the 5 expansion. To obtain the contribution of
a given j-vertex diagram to the order 5 in the 5-
expansion one must use the power-series expansion of
each vertex factor vz&(5} in the diagram:

(b)

(c)

U2(+ 2

2t+ 1

U2(+ 2

v„(5)= y, u', -, '(0) .
) m!

One then retains all terms of order 5" or lower in the ex-
pansion of the full diagram.

Finally, recall that the expansion of the interaction
term AM P (M "P ) in (2.1) about the point 5=0 in-
troduces a term A,P M in the free Lagrangian. This term
shifts the bare mass p so that the propagator that enters
the 5 expansion calculations is (p +p +2k,M )

To illustrate this procedure we give here the expres-
sions, obtained from the Feynman rules, that contribute
to the 5 expansion for the two-point function to second
order. The three classes of diagrams are given in Fig. 5.
The value of the vertex with 2n external lines is

(5)
2A (25+2)!M (IM i ~)s

(5+ 1 n)~25+1 —nIn —1

2" +'A,M (5+1)5(5—1) (5+2 n)—

6(n)= Jd x 5"(x), (4.5)

and h(x) is the boson propagator in configuration space.
From (4.1) one finds

ui(0)=2AM [g( —,')+1+in(2IM )],
vz'(0) =2AM I [g( —,')+1+in(2IM ~)]~+/'( —', ) —1j,
uz&(0)=AM ', ( ~ 1,Il —1

A.M 2'+'
vi'i(0) = i, ( —1)'(( —2)!

X g( —', ) +ln(2IM ) ——,
' ——,

'—

FIG. 5. The graphs that contribute to the two-point function
through second order.

X 1 (5+ 3 )(2IM )s

where I is given by (3.3).
The graph in Fig. 5(a) contributes

$2
5v z(0}+—u z' (0)

2I

The graphs in Fig. 5(b) contribute

G(2(+1)
X 2(2( 1 )t

[ at+2+
and the graphs in Fig. 5(c}contribute

6 (21)5 X 2, , vli+~(0)vli(0»
1=1

where

(4.1)

(4.2)

(4.3)

(4.4)

101 .

The sample calculation given above is one part of the
calculation required for the renormalization of the 5 ex-
pansion, which will be the subject of a subsequent paper
in this series. Obviously the renormalization program in
the 5 expansion is very different from that in standard
weak-coupling perturbation theory.

Finally we remark on the generalization of these rules
to the case of Lagrangians with more than one field or
with multiple interaction terms. The procedure is similar
to that outlined above. A separate vertex function v(5)
analogous to (4.1) must be defined corresponding to each
interaction vertex of the theory. Each must be expanded
to an appropriate order in 5, consistent with the order of
the 5 expansion at hand. All possible conventional Feyn-
man graphs in the theory must be calculated, using the



2524 STEPHEN S. PINSKY AND L. M. SIMMONS, JR. 38

standard Feynman rules except for the changes in the
propagators and vertex functions described above.

Note added. After this work was coinpleted we re-
ceived a paper from Nicholas Brown which contains
some of these results, although the point of view and con-
clusion are rather different. We are grateful to Professor
Brown for sending us an advance copy of this work and
for correspondence on the subject. We have also received
a recent paper by I. Yotsuyanagi which presents a set of
simplified Feynman rules for the 5 expansion similar to
those derived here.
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(&(a))„=(A'(a))r .
Ba

(A4d)

The result in (A4) can be conveniently summarized by
the notation

APPENDIX Ba
( & (a))~=( & '(a)) ttx, (A5a)

In the fourth-order calculation described in this paper
it is useful to consider a&, a2, a3, a4, to be the elements of
a 4-tuple, a=(a„a2,a3,a4). We then define forms, com-
posed of the elements of any such 4-tuple, as follows:

where the subscript UX is determined from the multipli-
cation Table I below, with X=S, T, U, or A.

Similarly, the action of the other derivative operators
defined in (A3) is given by

(a)s =a, +a2+a, +a4,

(a)r=a, +ia2 ai i—a4, —

(a) U =a, i a2 —ai+i —a4,

(a)„=a& a2+a& —i a4 . —

(Ala)

(A lb)

(A lc)

(Ald)

(& (Q))/ ——(&"(a))gx,

83
( & (a) )x =( & "'(a) )rx,

Ba r

(A5b)

(A5c)

( A(a))s —= A (a, )+ A (a2)+ A (a&)+ A (a~),

( A(a))U= 3 ( &a) i A (az)——3 (a&)+iA (a4),

(A2a)

(A2b)

Note that the coefficients in these forms are the four
roots of 1: 1, —1, i, —i. These forms can be composed
for any four-component object, such as
a =(ai, az, ai, a4). Thus (a )U, which appears in (2.4), is
given by (a )tt=ai —iaz —a&+ia~. More generally, let
A (x) be any function. Then we define

4

(&(a))x=(&' '(a))sg .aa' (A5d)

For the calculations in Sec. III of this paper one also
needs to evaluate the results of the application of the
derivative operators (A3) to products of functional forms
of the type defined in (A2). By repeated application of
the chain rule and the multiplication rules given in Table
I and used in (A5) one can establish

8 8
()a U Ba)

and so on. It is useful to note that ( A (0))s ——4A (0) and
( 3 (0))U =( & (0))r=( A (0))g =0.

Similarly, one can define derivative operators com-
posed from (axaai, araa, ,araa, , alaa4) as follows:

EB 8 EB
(A3a}

a
[( A (a) )r(8 (a) )„]= ( A '(a) )U~(B (a) )„Ba

+( A (a))~(&'(a))U„

and

(A6a)

a' a' a' a' a'
+

aa2 aa2 a 2 aa3 aa2
(A3b)

id
Ba & Ba& Ba2

3+
a3

Ba3

EB
3Ba4

(A3c) TABLE I. The table entry in row x, column y gives the
correct subscript ( )~~ in (A5).

g4 g4 g4 g4 g4
+ + + . (A3d)

It is straightforward to establish the results below for the
action of each of these derivative forms of the functional
forms defined in (A2).

U

U
S
T

S
T
A

T
A

U
S
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[(A (a))~(B(a))„]
Ba

=(A "(a))„x(B(a))),+(A (x))x(B"(a))„r

where the subscript AXY refers to repeated application
of the multiplication rules embodied in Table I (the order
is immaterial) and X, Y = A, S, T, or U.

Similarly,

+2( A '(a)B'(a))g~y (A6b)

3

[(A (a))x(B(a))r]= ( A"'(a))Tz(B(a))r+(A(a))z(B'"(a))T„
CX

+3( A "(a))(B'(a))Txr+3( A'(a)B "(a))Txr, (A6c)

[(A (a))&(B(a))r]= (A' '(a))z(B(a))r+( A(a))x(B' '(a))r
s

+4( A "'(a)B'(a) )~&+4( A '(a)B"'(a) )xii+6( A "(a)B"(a))xr . (A6d)

Similar rules can be derived for the result of applying the four-derivative forms to the product of three or four func-
tions.
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