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By appending anticommuting coordinates to the four commuting space-time coordinates it is pos-

sible to amalgamate gravity and internal forces without introducing infinitely many massive modes.

We carry out this synthesis for the standard model.

I. INTRODUCTION

In an earlier Letter' we outlined a Grassmannian
framework for unifying general covariance and gauge
symmetries in the spirit of Kaluza and Klein, but without
the problems related to Planck-mass excitations. In this
paper we shall give a detailed analysis of the method and
apply it to the amalgamation of gravity with chromo-
dynamics and flavor dynamics.

An "ordinary" Kaluza-Klein model is a generally co-
variant theory in a (4+1)-dimensional bosonic space-
time: the symmetry motions in the extra I( dimensions
manifest themselves as gauge symmetries in the four-
dimensional world. In order to make contact with low-

energy physics, one appeals to the idea of spontaneous
compactification, although neither the evidence nor the
mechanism for the process is particularly clear. At the
end the geometry of the enlarged spacetime factorizes
into a direct product of a four-dimensional Riemannian
manifold and the internal space which is a k-dimensional
compact manifold of Planckian size and thus is presumed
"invisible" at normal energies. However, in dealing with
the fields, it becomes necessary for consistency to expand
them into normal modes on the compact manifold and in
this way an infinite tower of very massive states is con-
jured up. For some models there is a real danger that the
integrated effect of these massive modes can produce an
unhealthy spectrum such as ghostly and/or tachyonic
states. ' Such problems have to be solved and the whole
task can become extremely unwieldy not to mention un-

likely.
The fermionic extension which we have proposed,

while retaining the basic concept that general coordinate
transformations in the internal space correspond to gauge
transformations in the four-dimensional world modifies
the Kaluza-Klein mechanism by taking the internal space
to be a 2N-dimensional Grassmannian manifold. Here,
the extra coordinates, being anticommuting, are not
detectable in the ordinary way, regardless of the energy
scale of observation: hence the concept of
compactification becomes irrelevant. Also any field,
when expanded in powers of the internal space coordi-
nates can at most contain 2 terms and at worst leads to
a finite mass spectrum. Thus all the problems associated
with the infinite number of massive modes in the conven-
tional treatment are bypassed.

This paper reports on some investigations on

Grassmannian Kaluza-Klein theories. In Sec. II we ex-
plain the basic ideas involved in constructing such
theories: in particular we develop an ansatz for the super-
bein for the enlarged spacetime and explicitly demon-
strate the connection between the gauge symmetries and
the internal space transformations. Section III applies
these principles to the construction of SU(3) and
SU(2)XU(1) models coupled to matter fields, thereby
achieving the synthesis of gravity with the standard mod-
el. Section IV concludes with some discussion of direc-
tions for future work.

II. FERMIONIC INTERNAL SPACE
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Together with the Minkowski metric g &, we can specify
the flat-space metric to be

0
Iwz ——

0 jab

In this section we shall explain the general procedure
for constructing Grassmannian Kaluza-Klein theories,
providing details which were necessarily omitted in our
Letter. ' First we give a brief account of the geometry of
the extended spacetime —a superspace —and then we
choose an ansatz for the superbein which concretely real-
izes the behavior of the system under general coordinate
transformations, generalized Lorentz in variance, and
gauge symmetries. Finally we formulate actions for
matter fields coupled to the gravity/Yang-Mills metric
which embody the (reduced) supersymmetries.

Begin by enlarging spacetime to a superspace JNby at-,
taching an extra 2N anticommuting real coordinate. The
superspace can be parametrized, at least locally, by

gM (xp gm)

where x" are the usual real four bosonic coordinates and
the g plus their conjugates (m =1,2, . . . , 2X) make up
N complex Grassmann variables. In this context conju-
gation is consistently defined as the operation

(P)*=—k =4"ri.

where q „ is a 2NX2N antisymmetric matrix. To be
concrete we put it in the form
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(@'I )
"'= [A—B](@M)'"

Under the transformation X ~X' (X), the one-forms

E "(X)=dX EM "(X), 4„(X)=dX (4M ) „
obey the transformation rules

(3)

E "(X)~E' "(X')=E"(X),
a „' e'„'(X')=@„'(X),

(4a)

while under the local frame rotation L z (X),
L EOSp(4/2N), we have

E "(X)~E' "(X)=E (X)Ltt "(X),
e„'(X) e'„'(X)

=(L '4L)„(X)+(dL '.L)q (X) .

(4b)

As usual the torsion is defined through

T"(X)=dE "(X)+E (X)hatt "(X)

and when it is specified we can determine 4„ in terms
of E" and its derivatives. In what follows we shall nev-
er treat 4 as an independent dynamical variable but in-
stead as fields constructed out of E. The curvature is
given in terms of the connection,

R~ =dew +%a @c

and in component form reads

(R )„=8 (4 )„—[MN]B (4 )„
+ [NA][NC](@lit ) „(4N )c

—[MN][MA][MC](4N )„(4M )c~ .

The scalar curvature is, of course, obtained as

R =[B]Etl E„[AN]I" (RMN)c

This is needed to construct the generalized Einstein-
Hilbert action

and this preserves OSp(4/2N) and all its subgroups.
Naturally we shall identify I as the metric for the tangent
space of W.

Next introduce the superbein EM and the connection
(%lit )„.As usual E is related to the full metric tensor G
via

GIN =EM "EN is~ [ AN ]

and 4 takes its values in the superalgebra OSp(4/2N).
The bracket notation is as follows: When there is a single
argument, as in Eq. (8), [B]=+ 1 for bosonic, —1 for fer-
mionic indices; when there is a double argument, as in
Eq. (7), [ AB]= —1 if both indices are fermionic, + 1 oth-
erwise. In particular,

comparatively easy to incorporate a scalar matter field:
one introduces the superfield 4(X), a zero-form on Af,
and an OSp(4/2N) scalar. It suffices to take the obvious
expression

S=f d4+'N X E(GN~a C 'a C +u'e'C ) . (10)

with P =—,
' [1+( —) ], b, =g 8 . They do not completely

fix the gauge for E, since there remains the residual sym-
metry

x"~x'"=x'"(x g" g')

=g"o „(x,g" g'),
P( gk gl)

L X=
gm(F (x gk. gl)) tl B (x g" g')

(12)

The only difference between the present case and the nor-
mal kind of gauge fixing is that the restriction (11) is re-
quired even at the classical level.

The remaining symmetry (12) can be used to simplify
the superbein further. Indeed one can always move to a
gauge where

e„(x,g".g') g ( A„(x,g".g'))

0 P '(x, g" g') (13)

It is nontrivial to incorporate spinorial matter fields into
the present framework since this requires investigations
of OSp(4/2N) spinor representations, which are rather
complicated objects. Fortunately we may avoid the prob-
lem in the following discussion, where we will break the
full orthosymplectic group into SO(4) X Sp(2N) and
merely consider fields which are Sp(2N) scalar but SO(4)
spinors.

All the arguments so far have been quite formal and
standard. In order to obtain a theory of gravity coupled
to Yang-Mills theory out of (9), a more concrete realiza-
tion is needed. Let us therefore consider the superbein
first. When it is expanded into powers of the Grassmann
g, some of the coefficients fields will obey the wrong spin
statistics and it is essential that we eliminate them, at the
classical level anyway. We do so by requiring that only
even powers of g appear in the bosonic fields E„and
E ', and only odd powers of g appear in the expansions
of the fermionic components E„'and E . At this stage
we also insist that general coordinate transformations
and frame rotations be restricted to &'.&e subclass which
does not involve any ghost fields as transformation pa-
rameters. Putting this another way, we impose the fol-
lowing gauge conditions on the superbein:

E„ (X} 0
PEM "(X)=

0 E '(X)

S=fd + XER=fd xd gER (9)
Now the most general transformations which leave the
constrained form of E intact are

where Esdet(E~"). As we will see later, this action
essentially reduces to that of a gravity/Yang-Mills system
after the fermionic integrations are performed. It is also

(14a)
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L„(X)=
U b( gkgl)

(14b)

changes (16). However, the combination of (16) with the
frame rotation

EM "(X)= a
P m

We will take (13) and (14) as our starting point and re-
quire the Grassmannian Kaluza-Klein models to preserve
the given symmetries. Note that the frame rotations
defined by (14b) describe an SO(4)XSp(2N) group only,
the representations of which are well known. More
specifically we wi11 take the spinorial matter field to be an
Sp(2N) scalar but SO(4) spinor. An action for this field
will simply be required to be invariant under (14).

In principle we could take (13) as the complete set of
dynamical variables and proceed to construct an action
for them. However this would lead to an inordinately
complicated system since, except for QED, large numbers
of component fields could arise in the g expansions.
Here we shall examine the simpler ansatz, consistent with
our self-imposed restrictions:

e„(x) p(g A„)'(x)

g ~g"U„(A(x)),
s.I' o

L X=
0 U, (A(x))

(18)

as a gauge transformation. We can clean up the structure
by redefining the basis of one-forms

0 U, (A(x)

does leave its form intact. This is unsurprising, because
choosing the ansatz (15) is equivalent to partly fixing the
gauge of Ebr". The coordinate change (16) takes us out
of the gauge, but a compensating frame rotation brings it
back. In fact this situation is reminiscent of supergravity
models in Wess-Zumino gauges.

Hereafter we shall refer to the combination of transfor-
mations

p= exp (15)
co =(dx",(gA+dg) ) . (19a)

1C=
16

X —1

N —1
Then the tangent-space basis, orthogonal to co' is given
by

where A„(x) takes its values in a subalgebra 8 of Sp(2N)
and g is defined as g Pri „. Using (15) we derive the
line element

D =(a„—(gA„)"a„,a. )

and the commutator of two derivatives yields

[D„,D„]=—(gF„„) i)

(19b)

dS =dX dX Giver(x)

=g„,dx "dx "+p'r),b((A +dg) (gA +d()'
It is easily shown that dS is invariant under the restrict-
ed transformations:

x "~x'"=f"(x), g ~g™=QU„(A(x)),
UEG, the group with algebra cP, (16)

provided that A „transforms according to

e"
M

A
O p-'fi '

and

showing that D acts like a covariant derivative. In these
bases the superbein and the metric simplify enormously:

e„0
~M 5 a0 p

0

A„[U 'A U+(B U ')U]
ax~

(17) lap p. v
a P

MN 2
p '9mn

(21)

In (17) we recognize the gauge covariance property of a
Yang-Mills connection: indeed A„plays the role of a
gauge field as we shall presently see.

It is important to point out that the superbein one-
forrn does not retain its form under the coordinate

It remains to find the connection and the curvature in
terms of the superbein. In order to determine 4z, we
first look at its behavior under the gauge transformation
(18):

e'.~(X') e'.'(X') U, ' o o
@ &(X) U

—iq d(X)Ub + 0a c a c d a c

a J'(X) 4 '(X)U,

U ', '4, ~(X) U "4 "(X)Ud +dU ' ' U (22)
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It is noteworthy that 4, behaves exactly like the gauge
potential A, under changes of gauge: hence we are em-

boldened to make the identification

4, =dx "(A„), (23)

To discover the remaining connection components, we
note that even when A„=O, e„=5„,4=0, the torsion
tensor does not vanish; hence it is incorrect to set the tor-
sion to zero as in ordinary Riemannian geometry. In-
stead we must take

T"=(O,cu 5 'dp) . (24)

Recalling the definition (5) of T" and Eq. (23), we arrive
at the following equations by using (24):

de +ea4a +p5 "co 4b'=0,
e a@a'+P((F)'=0, (25)

where F=dA+A A A. It is straightforward to solve
(25) by using the symmetry property (3) of 4 and one
finds

B
pro'( gF—), p((F )—dx"

p(F„ag),—dx" A,
(26)

with

R' '=[B]Ea Eq [AN]TM~ (+c)D I"
R '= [B][2aa(e,)„'—(C'a ),'(&, )„'

+ [BF](@D) ~'(@a )F']I"'
and

(28)

(29)

with 4' ' ~ denoting the ordinary gravitational connec-
tion, calculated from e„.

We are now in a position to evaluate the scalar curva-
ture. Some elementary manipulations lead to

(27)

S=f d x e — + tr(F—„F"")
4~'

(32)

Observe the necessity for the factor exp(cg /~ ).
Without it, the fermionic integral (31) would disappear;
that is the reason why we introduced it in the first place.

To add matter fields, we first consider a complex scalar
superfield 4(X) which is an OSp(4/2N) scalar. We as-
sume that it is of first order in g, 4(x, g)=g P, and is
thus intrinsically Grassmannian. Applying construction
(10) we get

S=fd x e g""[(8„+A&)P] (B„+A, )P

M'+ 1

4a

N+1
N

'N —1

(33)

Note the presence of the mass term

ccrc

for P, arising
from the Grassmannian derivative component D in
combination with E. The total scalar mass is adjustable
of course.

With a spinorial field we take g(X)=g g (x), which
is overall bosonic. In our Letter' we proposed that I',
the gamma matrices in the fermionic sector should be
taken as (M(+8/M)'iy&, which introduced a mass fac-
tor M. In this way we were able to reduce the Dirac ac-
tion to the traditional result

S=f d x e [/[i y e,"(V„+A„) iMy~]g—

volves quantities which are both gauge and general coor-
dinate invariant and qualifies as a Lagrangian density.

As a consequence of the construction (9), we obtain the
action in the supermanifold Jkf, :

S~ f d x d pep (R's'+ ,'p g—F g) . (31)

The Grassmann integration then leaves us with the tradi-
tional result

(@~)a'=E~ (@M)a
+ po aF &(i y /M )g ) . (34)

R ' ' is relatively trivial to evaluate and we get

R'r'= — p gA g gA F""g .

However, this choice of I is one of many available
choices. Recalling our earlier discussion that the final
spinor is an Sp(2N) scalar, we can just as well invoke the
action for +:

But because A, b takes its values in a subalgebra of
Sp(2N), A,~ =Ab„so (A„(=0. This in turn makes
R' ' vanish. The evaluation of R' is much lengthier and
messier; we will content ourselves by giving the principal
steps:

L(x,g)=%'(x, g)(e "y V„+m )%(x,g)

with

V„=V„+(gA„)"a„.

(35)

(36)

[B]a,(C ) 'I" =e,&a (C'")'
[B](4 ) (4 ) I" =(@~g~)&r(@~g~) a+ &p2gF Fv&g

[B][BF](4 ) (4 ) I" =(4'e') (@g')

The final result is

This too is invariant under the coordinate transformation
(16) and the gauge transformation (18). It is clearly supe-
rior over (34) because the Pauli coupling is absent (and
the singularity in M of that term ceases to be a worry)
and permits us to include an arbitrary mass just the same.

R'=R'g'+ ,'p gF„F"'g, - (30)
III. INCORPORATION OF GRAVITY

INTO THE STANDARD MODEL

where R' ' is the scalar curvature calculated from the
gravitational connection alone. As expected (30) just in-

In this section we will apply the Sec. II scheme to
SU(3) and SU(2)&&U(1) internal groups acting on the
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Grassmannian coordinates and thus achieve a synthesis
of gravity and strong/weak forces. Let us tackle chromo-
dynamics first. In order to incorporate an SU(3) group in
its fundamental representation (quarks) we will need
three complex Grassmann variables: these are to be as-
signed to the 3 representation of SU(3) and together with
their complex conjugates make up a sixfold g. If A,

'

denote the eight Gell-Mann matrices, we may write

under the gauge rotation (18).
Substituting (37) and (38) into (35), and performing the

Grassmann integrations, we obtain

S"=Jd xeq "(x) iy e " 7„+—B&'A, '

0

0 —(A, ')'
+m"' q"'(x) (40)

and express the present superbein as

EM
A

m i i a
2

e„(x) — gg (—B„'A') 'exp
z g

36K

2

'exp
36K

(37)

g(i)(x g) gmq(i)(x)

q "(x)=(q((„'),q,"(x)) .

The fields q and q, are related by charge conjugation:

q,"(x) =cq "(x)

(38)

and thus reside in 3 and 3 representations, transforming
as

(q"', q,") exp —'r'(x)X' q"',

exp ——'r, '(x}X' q,
" (39)

where g is a dimensionless coupling constant.
Now consider the quark superfield Q "(X),which is an

chromosinglet and Dirac spinor. Expanding it in powers
of g and omitting higher-order terms, because such terms
will lead to ghosts, we have

It is now a small step to write down a complete action for
the system of superbein coupled to all possible quark
fields:

S=Id x e — — F' g—'"" + g S"g (g)

4K 4
(41)

It is worth pointing out that the ansatz (38) for q is com-
plete but not compulsory. A simpler approach is to for-
get about the conjugate quark field and take
q "=(q",0). Providing the action is made real (by add-
ing Hermitian conjugate terms as needed) the same
correct Lagrangian ensues. We shall make this
simplification for the electroweak model.

Let us therefore turn to SU(2) && U(1) and recall the as-
signments of particles to that group. Since they are all ei-
ther SU(2) doublets or singlets, only two complex
Grassmann variables g are required to carry that gauge
symmetry. However, the fields all carry different weak
hypercharges y: i.e., they belong to distinct representa-
tions of U(1). Ostensibly we would need one complex fer-
mionic variable for each irreducible representation. It
turns out nevertheless that the situation is much better
because some representations can be built out of others.
We have found that four complex anticommuting coordi-
nates 0 will suffice for leptons and quarks; they carry, re-
spectively, opposite hypercharges to the right-handed spi-
nors and the Higgs boson. In this way our superbein an-
satz reduces to

A
EM 6 'p

a
m p

e„(x) ——g'A„(8 Y)'p — gB„(x)(gT)'p—

(42)

with

Y=
0 0

0 0 0
0 0

0 ——' 0

0 0 0 1

and
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( 8—2 8+4/3 8—2 /3 8+ 1 8—2 8+4/3 8—2 /3 8+ 1 )

p is the ordinary exponential factor

p= exp —ce', e'=g'[48', +(-', )'8'„„+(-,')'8' „,+8'„]+-,'g2(', c =,', (-,')' .
K

The superbein is guaranteed to retain its form under the coordinate transformations

x ~x'=x'(x ), 8~8'= 8 exp ——k(v)y, g~g'=(exp ——A, '(x) T'
2

'
2

(43)

accompanied by the frame rotation

l(x ) 0

L„(x) = 0 exp ——A(x)y
2

(44)

0
l

exp — A(x) T—
2

if the one-forms A, Y, and B 'T' undergo the gauge changes

1 l l l lA~A+ —,dA, , B~ exp AT Be—xp — AT +——d exp AT ex—p — AT—
2 2 g 2 2

(45)

Following the procedures outlined in the last section, we can also compute the connection and scalar curvature corre-
sponding to the superbein. It is not very difBcult to see that

@(g)P+ l
p2C

——g '8 A +d 8 g 'F ~8+ ——g (B+d g g6 ~g —g 'p dx "(OF„ )' —,
'
gp dx "((6„,)

B —g'p dx "(F„~O)„ ——g'(A) '
X (46)

—gp dx "(G„~g), ——g(B) '
0

and

&2

R =R's' ——p' [48—3+(Y) 8+4/3+(3) 8—2/3+8+11Fq~F""+—,'g gG„,G""g (47)

where

F„„=r)„A „—B„A„, G„,, =c)„B, r)g„+ig [B„,—B,] . (48)

What we have done so far is quite straightforward. More care is needed though when we introduce matter fields into
the game. We assume that all lepton and quark fields (of a particular generation) make up gauge-invariant SO(4) spi-
nors L(x, O, () and Q(x, 8,$), respectively. The specific forms of these superfields that reproduce the standard answer
are

L(X)=~ 8+,8 g I (x)+8 2R1(x),

(8+18+4/3+ GOO+18 —2/3)P'Vm(x)+ 8+4/3R 1(x)+8—2/3 2(x) '
(49)

where I and R&, respectively, stand for the left- and right-handed leptonic fields, while q and R
& R2 correspond to

the left-handed quark doublet and the two right-handed quark singlets. For instance, in the case of the first leptonic
generation,

I qL V Q

Im =
0 ~ q~ —

0 &
I=

7 qL =
d & Rl=eg& R) =up& R2=d

L
(50)

(As usual, the d field really represents the linear combination of d, s, and b fields, via Cabibbo-Kobayashi-Maskawa mix-

ing; the color index has also been suppressed. )
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In order to render L and Q gauge invariant, we must demand that under gauge transformations the component fields

behave as

exp( ,'—iA—+, ,'t A—T)l
qm

exp( —,'iA, + —,
' iA- T)q

R&~e '
R&, R, ~exp(3iA)R, , R2~exp( 3i—k)R2 . (51)

The final question concerns the Higgs field. For our purposes it is a gauge-invariant superscalar 4(X) with the
decomposition

4(x, 8,g)=a' '[8+i( p (x)+&+i( @ (&)] (52)

and

yo
p=icr2$* .

Its gauge transformation properties follow from those of g and 8: namely,

exp( ,'i A+ ,'i—A, T)—P

m

exp( —
—,'ik+ ,'i A T)—P

(53)

All is in readiness for the invariant action combining gravity and the standard model. Summing over all generations we
take

S= Jd k d Hd gE —R+ gL 'i7L'g'+Q' 'iVQ' '+a 'G, ' 'L '(4+4 )L' '+a. 'G2' 'Q'g'(4+@t)Q
g

+ G.VMD @ID Q+ rii 2(pt@+ QK2(i)AD @tD @)2 (54)

The strange-looking term (g*~D„&b D 4) is responsible
for the quartic Higgs self-coupling. After performing the
integrations over the Grassmann coordinates and proper-
ly scaling the fields with appropriate numerical factors,
the action (54) reduces to the familiar Glashow-Salam-
Weinberg model coupled to gravity.

IV. CONCLUSIONS

It appears that we have a consistent Grassmannian
framework for accommodating general covariance and
gauge symmetry. Because of the anticommuting charac-
ter of the additional internal coordinates it is no longer
necessary to assume internal compactification of the
internal space and the spectrum of a given theory is al-
ways finite. It is also rather economical in the number of
Grassmann degrees of freedom that have to be appended,
bearing some resemblance to preonic schemes.

We have based most of the analysis on the superbein
ansatz (12) which ofFers a transparent explanation of
gauge symmetries in terms of motions in the internal
space. It may be argued that one ought to consider the
full superbein field in place of (15) so as to gain a com-
plete picture of Grassmannian Kaluza-Klein theories.
This is surely true, but we expect that the essential prop-

erties revealed by our studies will recur in the fuller
theories: a truncation of a finite number of modes can
only cause quantitative changes to the results but no
qualitative ones. This is crucially different from the case
of extra bosonic coordinates, where truncation means ex-
orcising the infinite tower of massive spin-2 states and is
qualitatively drastic.

Finally we want to emphasize that the idea of append-
ing extra Grassmann coordinates to space-time in order
to accommodate mysterious internal symmetries is very
generally applicable. Apart from the well known and
beautiful utilization of the idea to the superspace realiza-
tion of supersymmetry, it has also been used to great
effect for visualizing spin and realizing the Becchi-
Rouet-Stora-Tyutin (BRST) algebra in gauge models. '

In this paper we have taken it a step further and inves-
tigated the simplest consequences of "general relativity"
in such an enlarged space-time. Optimistically, it is pos-
sible that the concept may shed light on the generation
problem too.
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expansion of 4:

@(&)=k '@s', (x)+O'O'2'O'M, M, M, «)+ ' ' '

even though wrong spin-statistics fields are discarded. The
series expansion order M is limited to N —I and is also con-
strained by the condition 2M+1&N. The reason for the
latter is simple: if it is not satisfied, (g ) g =0; hence,
g"'(V„P" +") V„PI' +" cannot appear in the action: how-
ever, terms such as g"'(V„P"') V„P" +" do arise. When
rediagonalizing the fields we inevitably end up with an unac-
ceptable ghost term —g""(V„P' +") V„((' +". The same
problem strikes for spinors. That is why we truncate the ex-
pansion of 4 and + to the lowest-order pieces.
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