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Central charge, trace and gravitational anomalies in two dimensions
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The origin of the trace anomaly and of the central charge in the Virasoro algebra associated with

the energy-momentum tensor of a bosonic two-dimensional model is considered. It is shown that
both these quantities represent different aspects of the same gravitational anomaly.

I. INTRODUCTION

It is well known that scale-invariant cr models in two
dimensions play a crucial role in string theories. After a
classical action has been produced, the relevant quantity
to consider in building up a string model is the central
charge of the Virasoro algebra associated with the
energy-momentum tensor. Equivalently, one is interested
in the trace anomaly of the two-dimensional model. '

The fact that the central charge is strictly related to
the trace anomaly is not obvious a priori. A first hint in
this direction can be obtained by considering the two-
point function of the components of the energy-
momentum tensor. The short-distance behavior of this
correlation function together with the conservation of the
energy-momentum tensor can be used to show that the
Virasoro coefficient is equal in fact to the multiplicative
constant of the trace anomaly.

In the above approach it is hard to realize a possible
geometrical origin of the trace anomaly and therefore of
the central charge. The subtractions needed to define a
regularized energy-momentum tensor mask the meaning
of the anomaly.

Yet there are indications that a topological interpreta-
tion of the trace anomaly might be possible. ' Alvarez
has shown that in certain two-dimensional models the
trace anomaly can be evaluated by using a family index
theorem. He has also pointed out the connection be-
tween the trace and the holomorphic anomalies. How-
ever, the geometrical origin of the anomaly still remains
unknown. The use of the family index theorem is in fact
justified only a posteriori.

Another open problem is to find a closed expression for
the trace anomaly and for the central charge of a generic
(interacting) scale-invariant two-dimensional model. The
only hope to solve this problem is to have a clear under-
standing of the origin of the trace anomaly and of the
central charge even for the simple systems. For this
reason, I consider in the present paper the bosonic model
in two-dimensional space-time with Euclidean signature,
with action

S= fd x ,'&gg""a„—ya„y'.

The dynamical scalar fields P'(x), with i =1, . . . , D, are
in presence of an external gravitational background; g"

II. A CRUCIAL PROPERTY
OF THE TWO DIMENSIONS

To display the anomalous behavior of the symmetry
transformations, it is convenient to introduce the generat-
ing functional I defined by

—r f~~ —s (2.1)

where the action S is given in Eq. (1.1). 1 is a functional
of the classical background of course, and one is interest-
ed in the behavior of I under a variation of the metric in-
duced by an infinitesimal coordinate transformation

b, i,g„,(x)=V„V„(x)+V„V„(x), (2.2)

where V„ is the covariant derivative, and under Weyl
transformations

6 g„(x)=2o(x)g„(x) . (2.3)

What is the expected behavior of I under the transfor-

and g indicate the inverse and the determinant of the
classical metric g„„. I shall use mainly functional
methods to understand the origin of the trace anomaly
and of the central charge for the model (1.1).

It turns out that both the trace anomaly and the cen-
tral charge represent different aspects of a unique "true"
anomaly of the model: a gravitational (DiS anomaly.
This result is not quite surprising, especially in view of
the works of Alvarez-Gaume and Witten and of Bonora,
Bregola, Pasti, and Tonin. ' However, at least two as-
pects of the above result are particularly interesting: (i)
the new direction suggested on the problem of the topo-
logical origin (if any) of the conformal anomalies; (ii) a
clear setting for the problem of the computation of the
trace anomaly (and central charge) for an interacting
model.

The paper is organized as follows. A preliminary dis-
cussion of the general framework together with the basic
definitions are contained in Sec. II. The computation of
the Diff anomaly is reported in Secs. III and IV. The
connection between the Diff anomaly and the trace
anomaly is considered in Sec. V. In Sec. VI it is shown
how the central charge is related to the Diff anomaly. Fi-
nally, a summary and the conclusions are contained in
Sec. VII.
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mations (2.2) and (2.3)7 A variation (2.2) of the metric
alone in general does not leave the action S invariant; but
if in addition to (2.2) one also transforms the scalar field

'as

and

a

q
(2.11)

h„P'= V"(x)V„Q'(x), (2.4)
The H operator (2.10) is Hermitian and positive, and un-
der a Diff transformation (2.7) one obtains

then the action is invariant. Since I is obtained by "in-
tegrating over P'," one naively expects that I is invariant
under a transformation (2.2).

With the Weyl transformations (2.3) it is a diff'erent

story. The action (1.1) depends on the classical back-
ground through the combination

g "'=&gg"".
Now, it is a pecularity of the two dimensions that g ""is
invariant under the transformations (2.3). So, not only
the classical action S is invariant under Weyl transforma-
tions, but also any functional of g ""is invariant. In par-
ticular, the generating functional I depends on g ""only:

(2.6)

Therefore, I" is invariant under Weyl transforrnations for
the good reason that under a transformation (2.3) we
have nothing to do on I .

The above argument shows that the possible geometri-
cal origin of the anomaly in two dimensions lies on the
structure of the group of g " 's transforrnations

AvH =ip& V H —iHV p& . (2.12)

=i—Tr(e ™[pq,V ]),
2

which can be written as

(2.13)

The similarity of the expression (2.13) with the well-
known analogous formula for the chiral anomalies should
be noted.

In the @~0 limit, the right-hand side (RHS) of Eq.
(2.13) has an expansion

From the transformation law (2.12) one can. easily see
that I is naively Diff invariant; in fact

b, vln DetH =Tr(H 'h~H) =i Tr([p&, V ])=0 .

For the regularized I' one gets, instead,

hvr=i J—drTr[e '
(p&V H HV p—&)]2

1—a, +ao+ea, + (2.14)

(2.7)

6'S
I = —,'Trln

5$'5$J
(2.&)

and therefore the regularized generating functional is
given by

In the following, a transformation (2.7) will be called a
Diff transformation. It is also assumed that the parame-
ters V"(x) of the transformation vanish sufficiently fast at
infinity, so that partial integrations can be performed
without any contribution at infinity.

To complete the argument one still has to consider an
important task: the regularization. The point is whether
the regularized generating functional depends only on
g "". Perhaps the regularization necessarily introduces a
dependence on the determinant of the metric also.

The classical action depends on the background
through g" which is Weyl invariant because, apart from
the requirement of general covariance, the fields P' are
massless and because we are in two dimensions. So, one
needs a regularization which preserves both these two
properties. Such a regularization exists; one can use for
instance Schwinger's proper-time regularization.

One formally has

~%~V ~V~W ~Y ~

where

(2.15)

I'"= V BgW"—W Bqv" . (2.16)

On the other hand, from the expression (2.13) and by
means of Eq. (2.12) one finds

and as usual the anomaly, if it is present, is contained in
the e-independent part of the expansion: ao. Apart from
the transformation parameter factor 8&V, ao will be a lo-
cal functional of g" with two space-time derivatives be-
cause of dimensional reasons.

One can also show at this stage that ao satisfies the
consistency condition following from the structure of the
Diff transformations group. The proof is very simple.
The expression (2.12), being the variation of the regular-
ized generating functional, does of course satisfy the con-
sistency conditions. The point is that for any value of e
the consistency conditions are satisfied. So, each single
term of the expansion (2.14) also does, in particular, ao.

As a check, one can verify that the expression (2.13)
indeed satisfies the consistency conditions for any value
of e. From Eq. (2.7) it follows that

(
—7H)

2 6 'T
(2.9)

I = —— daTr(e "' ' 8 W"He ' 8 V )W' V P V

where

H =p„g "'(q)p„ (2.10) Hence

——Tr(e 'HW"a a V") .
2 V P (2.17)
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(&s b v —&v&gr)r= T—r[e '
( V"B,B„W"

—w"a.a„v~}]

=a,r, (2.18)

in agreement with Eq. (2.15).
The explicit computation of the first two terms of the

expansion (2.14) is reported in the next section. I con-
clude this section with a few remarks on the algebraic
origin of the anomaly.

The clue of the matter is the transformation law (2.12).
If one exponentiates the infinitesimal variation (2.12), one
obtains

of using a regularization which does not introduce a
spurious dependence of I' on the determinant of the clas-
sical metric.

In general, the change (2.22) corresponds to consider
different models, and the comparison of the two sets of
anomalies does not make much sense. A comparison of
the anomalies might be meaningful if I and I" differ by
local functionals. The relation between the trace and the
Diff anomalies, when one allows the possibility to add to
I, Eq. (2.9), local functionals of g"' and of the deter-
minant of the metric, will be discussed in Sec. V.

III. DIRECT COMPUTATION
OF THE Dift' ANOMALY

H) H'= U HU,

where

(2.19) In this section the computation of the e~O limit of ex-
pression (2.13) is reported. Equation (2.13) can be written
as

—i V"p„U=e (2.20}

The U operator (2.20) just represents the action of a
change of coordinates on the scalar fields. The anomaly
can arise because if B„v &0 then U is not unitary; E,r is
in fact proportional to B„v",Eq. (2.13).

One can imagine to avoid the Diff anomaly by reorder-
ing in some appropriate way the generator operator
—i V"p„; for instance, by performing the substitution

r = f—d x a V'(x) & x
~

e 'H'&"
~

x ) .
2

In deriving Eq. (3.1), I used

X X X =l

where

q" ~x)=x" ~x) .

(3.1)

(3.2)

(3.3)
iv"p„—~ i [

V"—,p„I . (2.21)

Exponentiating the anti-Hermitian operator shown in
(2.21) one certainly gets a unitary operator and, as a
consequence, the generating functional I will be invari-
ant. Unfortunately, with the substitution (2.21) one does
not generate the algebra (2.15) of the Diff transforma-
tions. It is the anomaly of the Diff transformations with
precisely the algebra (2.15) on which we are interested in.
On the other hand, it is immediately recognized that a
general change of coordinates on a scalar field cannot be
represented by a unitary operator. So, tricks such as that
shown in Eq. (2.21) lead nowhere.

Finally, it remains the possibility of modifying the
definition of the regularized generating functional

= &0
(
e 'H(~ ~+")

[ 0 (3.4)

Then, a Taylor expansion of H(p, q+x) in powers of q"
gives

H(p~q +x)=Ho(p''x)+HI(p&q ~x)

where

(3.5)

Ho(p;x) =p„g "'(x)p, (3.6}

The e expansion of the amplitude
&x

~
exp[ eH(p, q)]

~

x )—can be obtained in several
different ways. For instance, one can write

&x
~

e 'H'~' '
~

x ) =&0
~

e'" e ' '~' 'e '"
~

0)

r[g "'] r'[g "",b] (2 22) and

by introducing an additional dependence of I" on a new
field b (x) with definite transformation laws under general
coordinates and Weyl transformations. In this case the
anomalous content of I" may differ drastically from that
of I . It is precisely for this reason that I have taken care

HI(J»q») =J,q'du""(x}p, + 2J„q'q d~dg""(x~S.

(3.7)

The amplitude (3.4) is evaluated by means of a perturba-
tive expansion in HI ..

&0[e '+ ' [0)= &0[e

"' '
I
»+

'/0) —ef da&0/e

+e f ada f dp&0
~

e 'Hie ' 'Hie (3.8)
0 0

Now, each term of the expansion (3.8) can be easily computed. First, one notices that Ho does not depend on the q~
operators. Second, all the q" operators appearing in Hi can be moved (through commutators with the p"'s) on the left
or on the right. Finally, one uses the fact that

&0/ q"=0 or q"
f
0) =0. (3.9)
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Because of dimensional reasons, the relevant terms in the expansion (3.8) are those explicitly displayed. One obtains
the following.

Zero order:
w pp

(0)=(O~e '~0)=fd k(0~ k)(k~e '~0)= fd ke " ' = det 'g""(x)=
(2~)2 4m e 4m.e

First order:

(3.10)

O e p q I x p + p q q P
&

P' x p e P

The first term on the RHS of Eq. (3.11) vanishes by parity; so, by moving q qi' on the left-hand side one finds

(I)=——f da(0~ e '[2e(1—a)g~ (x)a ag"'(x)p~„
2 0 P

—4e (1—a) g' (x)g ~ (x)aga g I"'(x)p,p~„pq

+4e(1 —a)g ~ (x)a&a+""p~p„]e '
~

0) .

At this point, one can go to the momentum basis and integrate over k„by using

fd k e ~ k„k„k„k„=,(g„„g„„+permutations),
I 1 n n 2~~&+ I 1 n n

where

(3.11)

(3.12)

(3.13)

g~„(x ) = — g~„(x) =e~~e„~g (x )Pv
( )

pv /l1' v(T

is the inverse of g "'(x). The final result is

(3.14)

[a„ay~"(x)+,g ~"(x)a„ag"(x)g,.(x)] . (3.15)

Second order: At second order in HI, the only nonvanishing term in the e~O limit is

(II)=e f ada f d13(0
~

e 'p„q ag"'(x)p„e 'p q a g~'( )px, e
'

~

0) .

By using the same method illustrated before, one finds

(II)= [a~ ~"(x)ag qx)g, (x)+-,'a~ ~"(x)ag "(x)g ~(x)g„,(x)g, (x)] .

From Eqs. (3.10), (3.15), and (3.17) one obtains, finally,

(x e ' ' '
~

x ) ~, = + [—a„ag""(x)+—,'ag' (x)ag"'(x)g, (x)+ —,'g ""ag' (x)ag, (x)],

(3.16)

(3.17)

(3.18)

and therefore, from Eq. (3.1),

~,l-= D fd2xa, v'(xm(x),
48m

where

a(x) = —a„ay ~"(x)+-,'a~ -(x)ay ~ (x)g.,(x)

+-,'g ~ (x)ag-(x)ag, .(x) .

(3.19)

(3.20)

There is no I/e term in expression (3.19) because the
1/e factor in expression (3.18), when inserted in (3.1),
multiplies the integral of the divergence a&V (x). With
the appropriate behavior of V (x) at infinity, this integral

vanishes. On the other hand, if the integral of a&V (x) is
not vanishing, then the additional term

D
d xB~V x

8m@
(3.21)

—lnDetH =—Tr(a V )
D

V 2

) fd' a„—v'( ).
2

just represents the explicit and not the anomalous nonin-
variance of I under Di8' transformations:
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IV. CONSISTENCY CONDITIONS

In this section it is shown that the expression (3.19}
satisfies the consistency conditions following from Eq.
(2.15). It is also shown that b, vI [g" ] represents in fact
an anomaly, i.e., it cannot be written as the variation of a
local functional of g" .

From the transformation (2.7) one has

R = —a„a~~.+-,'a~-a@~ g.,
+ —,'g""a~' a~, —g"'a„apng

—a~""aPng ——,
' g""a„lngaPug, (4.9)

Eqs. (3.19) and (3.20) can be rewritten in a more compact
form as

~ (a„a@~")=a,(IV"a„ay~"—g ~ a„a„lv'}, (4.1)
AvI = fd x a&v Vg (R +V incog ) .

48m
(4.10)

s (a~" ay~ g.,)= a„[IV'(ag" ay~'g. , )]

+2a~ ~"a„a,w' —2ag~ a„a„w'

+2g ~"g "a„a,IV'a~,. (4.2)

and

vr= — d2x x 8'P
p ~V

b, ~(g ""ag' ag, )= az( w g ""a~ ' ag, )

+4g ~"ag "g,,a„a.w' .(4.3)

Therefore, from Eqs. (3.19), (4.1), (4.2), and (4.3) it fol-
lows that

One easily recognizes that the result (4.10) is a particu-
lar case of the one-parameter family of functionals satis-
fying the combined consistency conditions for the Diff
and Weyl transformations found by Bonora, Bregola, and
Pasti with a different method. How the trace anomaly is
related to the Diff anomaly is discussed in the next sec-
tion.

Let us consider now the consequences of the anomaly
on the energy-momentum tensor. As is well known, if a
symmetry of the theory is anomalous, then the diver-
gence of the associated current is nonvanishing. In our
case, the Diff anomaly (4.10) means that the energy-
momentum tensor 6„„is not conserved.

If one defines

+a„a„v'g ~"a,a.w. ] . (4.4) e„„= =a„y'a„y' ——,'g„,g~ a,y'a. y', (4.11)

Finally, from Eq. (4.4) one gets

(a a, —a,a )r= fd' xa„Y( xW( x),w v v w 48
(4.5)

e„„=e„,(g } . (4.12}

then 6„„is traceless, symmetric, and depends on the clas-
sical metric g„,:

where Y" is given in Eq. (2.16). Equation (4.5) compared
with Eq. (3.19) shows that the consistency conditions are
indeed satisfied.

It remains to be seen that expression (3.19}represents a
true anomaly. Since a&v" is dimensionless ( V has the
dimensions of a length), one must consider the most gen-
eral local functional of g ""with two derivatives and in-
variant under global rotations of the two-dimensional
space-time:

p= fd x Ba„ag""+Cap" ag"'g,

Under a Diff transformation, one has

~,r=)'d'*~,g"( '
)

fd'x—&g V "V~(e„„)

=f d'x&g V~V &e„„& . (4.13)

Therefore, because of the anomaly (4.10), the energy-
momentum tensor in general is not conserved.

+Eg ~ ag "ay,.+Gag~'a~" g,.
(4.6)

Terms with an odd number of antisymmetric tensors
e„are excluded, of course. Also, is should be noted that

g "'(x)a@„„(x)=0, (4.7)

7=2f d x[(C 2E)g" g
' a„a V"a~, —

+Gg ~ g "a„a„v'a.g„] . (4.8)

Clearly, regardless of the choice of the coefficients
[B,C, E,GJ, E~P is never equal to the expression (3.19).
So, Eq. (3.19) represents an anomaly.

By using the explicit form of the scalar curvature R,

because g "'(x) has determinant 1 for every value of x".
Under a Diff transformation (2.7), one obtains

V. TRACE-ANOMALY CONNECTION

b, vln&g = V azln&g + az V (5.1)

Similarly to the variation of a scalar quantity, h~ln&g
contains the first term V"azln&g. In addition, a second
term is present in Eq. (5.1), a&v, which coincides with
the transformation parameter factor appearing in the

We have seen in the previous sections that the generat-
ing functional I [g &"] is not Diff invariant. As shown in
Eq. (4.10), the group of general coordinate transforma-
tions has an anomaly. This means, by definition of anom-
aly, that whatever local functional of g"" we add to I
general covariance will never be exactly realized.

On the contrary, a local functional of the entire metric
g„„can be found such that, under a transformation (2.2),
it gives exactly the anomaly expression (4.10). The key
property one has to note is the transformation law
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I wz
—— f d x&g (In&gR —

—,'g""a„ln&g aPn&g )

(5.2)

with

4&rwz —— f d x a&V"&g (R +V lnv'g ) . (5.3)
48m.

So, at the price of introducing a new field, the deter-
minant of the metric, in addition to g "",one can define a
DifF-invariant generating functional I":

r'[g„.]=r[f""]—r lg ""gl

with

(5.4)

anomaly. Because of the inhomogeneous term in the
transformation law (5.1), ln&g plays a role similar to
that of the "pion" field in the construction of the Wess-
Zumino term for the chiral anomaly. '

By using Eqs. (5.1) and (2.7), the anomaly (4.10) can be
easily integrated. One obtains

the associated Virasoro algebra. ' ' The commutator
of two Virasoro generators 3 and 8 is proportional to a
third Virasoro generator C plus a term proportional to
the identity operator. The properly normalized
coeScient which multiplies the identity operator in the
commutator algebra is called the central charge of the
Virasoro algebra.

The existence of a nontrivial central charge in the
Virasoro algebra means that the commutator of two com-
ponents of the energy-momentum tensor contains, in ad-
dition to a canonical term, a Schwinger term. ' ' In
this section the connection between the central charge
and the Diff anomaly is considered. In particular, I will
show that expression (4.10) of the Diff anomaly implies
that the commutator of two components of the energy-
momentum tensor contains a Schwinger term which cor-
responds exactly to the well-known value of the central
charge for a free bosonic model.

Let us introduce first some useful notations. The ac-
tion of a free bosonic model in fiat space-time [we use the
Minkowski signature here, rl„„=diag(+, —)] is

a,r'=o. (5.5)
S =f d x —,'(a y'a, y' —a,y'a, y'), (6.1)

However, I" is no longer invariant under Weyl transfor-
mations (2.3). In fact, one has

and the equations of motion are

a a,y=o. (6.2)

(5.6) The light-cone coordinates are defined by

which is the well-known expression of the trace anomaly.
I shall not elaborate here on the interplay between the
trace and the Diff anomalies; a detailed discussion on this
subject can be found in Refs. 7, 8, and 11.

The basic difference between the trace anomaly (5.6)
and the Diff anomaly (4.10) should be noted. The expres-
sion (5.6) is meaningful only because it is related, through
I wz, to the expression (4.10), which is the "true" anoma-

ly of the theory.
Clearly, I wz[g ~",g] is not uniquely determined. One

could add to the expression (5.2) any local Diff-invariant
functional of g„„without spoiling the validity of Eq. (5.3).
On the contrary, Eq. (5.6) would be accordingly tnodified.

Finally, if one sets

d x=2dx dx

8
a —= , =-,'(a,+a, ).ax*

(6.3)

The traceless and symmetric energy-momentum tensor is

e„„(q,.) =a„(})'a,y' ——,'q„„a'y'a, y'. (6.4)

e,=-,'(e +e„+2e„),
of the energy-momentum tensor can be written as

(6.5)

From now on, 8„„(g ) will be denoted simply by 8„,.
The two independent components e+,

g„(x)=e~'"'h„„(x), (5.7) e =2a y'a, y'. (6.6)

where h„„ is a reference metric, then from Eqs. (5.4) and
(5.2) it follows that

I"[e~h„„]= I"[h„„]

Regardless of the (infinite) constant which has to be
subtracted from the classical expression (6.6) in order to
get a regularized energy-momentum tensor, the equations
of motion (6.2) imply that 8„„is conserved, i.e.,

f d x&h [ ,'h""a+a+ PR (h—)], —a e,=a,e =o. (6.7)

(5.8)

where R (h) is the scalar curvature of the metric h„.

VI. CENTRAL CHARGE CONNECTION

Given a traceless, symmetric, and conserved energy-
momentum tensor 8„ in two dimensions, one can define

Note that Eq. (6.7) is not in contradiction with the con-
clusion drawn in Sec. IV on the effects of the Diff anoma-
ly on the conservation of the energy-momentum tensor
because here we are in flat space-time.

Having a traceless, symmetric, and conserved energy-
momentum tensor, it makes sense to speak about the cen-
tral charge of the Virasoro algebra. Equivalently, one is
interested in the equal-time commutation relations (we
concentrate on the left-moving sector)
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[8 (x),8 (y)] = 2iB 8 (x)5(x' —y')

+4i 8 (x)5'(x ' —y ')

(6.8)

and

[8 P'(x + ),8 P(y+ ) ]=—5"5'(x + —y +
)

2

[8 (x+),8 (y+)]= 2i8' (x+)5(x+—y+)

(6.13)

The first two terms on the RHS of Eq. (6.8) follow from
the canonical commutation relations:

[&+/'(x), &+/'(y)]ET ———5"5'(x ' —y ') .
2

(6.9)

The structure of the additional Schwinger term in the
commutator (6.8) is fixed by dimensional reasons.

How to compute A, is not obvious a priori. Some care is
needed in finding a consistent definition of the regularized
energy-momentum tensor. Our strategy will be to deter-
mine A. by using the already computed expression of the
Diff anomaly.

It is convenient first to extend the commutation rela-
tions (6.8) and (6.9) to any time. This can be done by us-
ing a "canonical" formalism in which x is interpreted
as the "time" variable and x+ as a "space" variable. ' In
fact, since 8+ and 8+/' only depend on x+ [see Eqs. (6.2)
and (6.7)], in this new formalism the extended commuta-
tion relations can be interpreted just as equal-"time"
commutators.

In the light-cone basis (6.3), the variation of the action
1s

5S,=f dx+dx 5$'( 25; 8 —)5 (6.10)

According to Ref. 17, the symplectic matrix F"(x+,y+)
is given by

+4i 8+(x+ )5'(x+ —y+ )

l Ar gag5"'(x+ —y+ )
6m.

(6.14)

1 —a(x)
a(x)

a(x)
—1 —a(x) (6.15)

Then, the action takes the form

S=S0+ xa x + x (6.16)

For small a(x), the metric (6.15) describes a small fluc-
tuation around the flat space-time. The particular form
of the metric has been chosen in such a way to select in
Eq. (6.16) the expression 8+(x) of the energy-momentum
tensor with respect to the flat space-time.

Let us consider now a Diff transformation on I:

Note that, if one sets x =y, then Eqs. (6.13) and (6.14}
coincide with the Eqs. (6.9) and (6.8), respectively, as it
should be.

The connection between the Diff anomaly and the
Schwinger term in Eq. (6.14) can be understood in the fol-
lowing way.

Let us consider the bosonic model in the presence of a
nontrivial gravitational background specified by the clas-
sial metric

F'~(x+,y+ ) =( —25,,a, )-' a, I =-
. . 'e'a, s .
le lS

(6.17)

= —
—,'5"8(x+—y+) . (6.11)

Then, the commutator of two operators X and Y (which
do not contain derivatives in x ) is defined to be'

V (x)= V'(x) = —,
' u (x) (6.18)

If one chooses the parameters V"(x) of the transforma-
tion to be

[X,Y]=if dx+dy F"(x+,y+)
5p'( +) 5$'( +)

(6.12)

then, to first order in a(x), one has

b, vS =f d x [ —8+8 u+(uB+a —aB~u)8+] . (6.19)

By using the rules (6.12) and (6.11) of the light-cone for-
malism, the commutation relations (6.8) and (6.9) take the
covariant form

By using Eqs. (6.16), (6.17), and (6.19), one finds (to first
order in a )

b i,I = ,' f dx+d—x [u(B 8 )+(uB+a aB+u)(8+—)]——f dx+dx u(x)(B 8 (x))f dy+dy a(y)(8+(y))

——fdx+dx dy+dy T ([8 u(x)8+(x)][a(y)8+(y)]), (6.20)

where the expectation values have to be computed with
respect to the flat space-time vacuum and T means (in
the light-cone formalism) the "time" ordering with
respect to x . By integrating by parts of the last term in
Eq. (6.20) and by using the commutation relations (6.14)
together with Eq. (6.7), one obtains, finally,

I = dx+dx (uB' a —aB u) .
48m

(6.21)

On the other hand, we have already computed 5VI for
any arbitrary background, Eqs. (3.19) and (3.20). By in-
serting the explicit form of the metric (6.15} and of the
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parameters (6.18) in Eq. (3.19), one finds, to first order in

a (see also Ref. 18)

b, i,I = dx+dx (vt)+a —at)+v) .
48m

Equation (6.22) compared with Eq. (6.21) gives

A, =D,

(6.22)

(6.23)

which corresponds precisely to the standard value of the
central charge for a free bosonic model.

VII. CONCLUSIONS

In this paper, the problem of the origin of the trace
anomaly and of the central charge for a bosonic two-
dimensional model has been considered. Beyond the
different aspects of the conformal breakdown there is an
essential fact: the bosonic model in gravitational back-
ground has a gravitational (Diff) anomaly.

The relation between the trace and the Diff anomalies
is the following. The generating functional I is Weyl in-
variant because the action (1.1) of the two-dimensional
bosonic model does not know about the determinant of
the external metric g„. This is also the reason why the
Diff anomaly is actually an anomaly.

In fact, one can introduce a new field and declare that
it corresponds precisely to the determinant of g„,. In
terms of this new field, it becomes possible then to define
a new Diff-invariant generating functional I '

by adding
to I an approriate local counterterm, Eq. (5.2). In this
way, there is not a Diff anomaly, but the invariance under
Weyl transformations is lost, and one has the trace anom-
aly.

The existence of a nontrivial central charge in the
Virasoro algebra associated with the energy-momentum

tensor is also an effect of the Diff anomaly. The Diff
anomaly implies that the traceless and symmetric
energy-momentum tensor of the model in gravitational
background is not conserved. However, in flat space-
time the energy-momentum tensor is conserved. Still, the
theory in flat space-time knows the Diff anomaly.

In fact, the commutator of two components of the
energy-momentum tensor contains a nontrivial
Schwinger term. On one side, this Schwinger term must
necessarily be present in order to reproduce the Diff
anomaly in the presence of a nontrivial background. On
the other side, the Schwinger term originates precisely
the central charge in the Virasoro algebra.

All that is nice; even in the simple bosonic model con-
sidered in this paper the conformal anomalies show an in-
teresting structure. But, what conclusions can be drawn
in view of the open problems mentioned in the Introduc-
tion? The analysis of this paper suggests that if there are
topological reasons for the existence of the trace anoma-
ly, then these reasons have to be found in the group of
the Diff transforrnations (2.7).

Finally, let us consider the case of an interacting scale-
invariant model. Now it is clear what one has to do to
find the trace anomaly and the central charge. One has
to compute first the Diff anomaly. Perhaps, it is not easy
to find a closed form of the Diff anomaly for a generic
model. However, this is a well-defined problem and can
be solved, for instance, order by order in perturbation
theory.

ACKNOWLEDGMENTS

I wish to thank P. Menotti, M. Mintchev, and E.
Vesentini for useful discussions.

'A. M. Polyakov, Phys. Lett. 103B,207 (1981).
2S. Fubini, A. J. Hanson, and R. Jackiw, Phys. Rev. D 7, 1732

(1973).
D. H. Friedan, in Recent Advances in Field Theory and Statisti-

cal Mechanics, proceedings of the Les Houches Summer
School in Theoretical Physics, Les Houches, France, 1982,
edited by J. B. Zuber and R. Stora (Les Houches Summer
School Proceedings, Vol. 39) (North-Holland, Amsterdam,
1984), p. 839.

4L. Bonora, P. Cotta-Ramusino, and C. Reina, Phys. Lett.
126B, 305 (1983).

~O. Alvarez, Nucl. Phys. B286, 175 (1987).
L. Alvarez-Gaume and E. Witten, Nucl. Phys. B234, 269

(1983).
7L. Bonora, P. Pasti, and M. Tonin, Phys. Lett. 149B, 346

(1984).
sL. Bonora, P. Pasti, and M. Bregola, Class. Quantum Gravit. 3,

635 (1986).

J. Schwinger, Phys. Rev. 82, 664 (1951).
' J. Wess and B.Zumino, Phys. Lett. 37B, 95 (1971).
'L. Baulieu, C. Becchi, and R. Stora, Phys. Lett. B 180, 55

(1986).
' M. A. Virasoro, Phys. Rev. D 1, 2933 (1970); and L. N. Chang

and F. Mansouri, ibid. 5, 2535 (1972).
' S. Ferrara, A. F. Grillo, and R. Gatto, Nuovo Cimento 12A,

959 (1972).
'4P. Goddard and D. Olive, Nucl. Phys. B257 [FS14], 226

(1985)~

' D. G. Boulware and S. Deser, J. Math. Phys. 8, 1468 (1967).
R. Floreanini and R. Jackiw, Phys. Lett. B 175, 428 (1986).

' E. Witten, Commun. Math. Phys. 92, 455 (1984).
P. Mansfield, Ann. Phys. (N.Y.) 180, 330 (1987); C. Becchi,
Nucl. Phys. (to be published); R. Stora, Talk at Second Sum-
mer Meeting on Quantum Mechanics of Fundamental Sys-
tems, 1987, Santiago, Chile (unpublished).


