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%'e propose an invariant path-integral approach for the Einstein gravitation theory suitable to the

analysis of the associated covariant functional measure problem.

I. INTRODUCTION

The path integral for gravitational interactions has
been discussed several times in the past and most recently
the important problem of the gravitational path-integral
measure has been reexamined. '

In this paper we intend to propose an approach for the
quantization of Einstein's gravitational theory in the
framework of path integrals suitable to the analysis of the
above-mentioned problem of the path-covariant local
measure.

The basic idea in our discussion' is the introduction
of a Riemann structure into the functional manifold of
the metric field variables compatible with the invariance
group of the theory and consider the associated partition
functional as an infinite-dimensional version of an invari-
ant integral in a Riemann manifold. As a result we will
not need to introduce the ad hoc insertion of the
Faddeev-Popov unity resolution into the path-integral
measure in order to extract the gauge orbit volume,
since we will be able to implement this calculation in a
purely geometric way. So, in the proposed framework, it
is not necessary to use a posteriori a constraint Hamil-
tonian path integral to justify the Faddeev-Popov pro-
cedure; besides our approach leads to a natural and ade-
quate local covariant path measure.

II. INVARIANT INTEGRATION

We start our analysis by briefIy reviewing the basic re-
sults of the theory of invariant integrals in Riemann man-
ifolds.

Let T be a homomorphism of a compact Lie group 6
in the isometry group of a given Riemann manifold M.
Let us consider the integral

f f(x)[dp](x),

where f (x) is invariant under the action of G
[f(T(g)x ) =f (x), Vg E G] and [dp] is the measure in M
induced by its Riemann metric. The orbit of a point
x EM [the submanifold of M formed by all the points
[T(g)x ), g EG] will be denoted by O(x). The orbit quo-
tient space M/6 can be realized as a submanifold of M
formed by all those points of M which are not related by
a group element. The measure induced by the M-
Riemann metric in M/G is denoted by [dp] and that in-

X, =Ri(zt) (4)

with t z& ) (1 & zI & k; k & N) belonging to a domain D
(coordinate domain for H). Assuming that the matrix
[A]~k(z&)=BR /dzk(z&) has maximal characteristic k in

D, the metric [gh, (x) I induces the following metric in H:

g„'""(z )=(g„&"'&")(,) (5)

with the volume element given by

[dp](z& ) = [detg"" '(zz )]' dz ' dz" .

After having displayed the basic results of invariant in-
tegration we pass to the problem of the path-integral
quantization for the Einstein theory.

III. A QUANTUM PATH MEASURE
FOR EINSTEIN THEORY

Let us start our analysis writing the Einstein-Hilbert
action for the theory of gravitation defined in a d-
dimensional Minkowski space-time manifold E with fixed

topology and without boundary (see Ref. 8 for the case of
an open space-time}:

S[Ig &(x))]= f (&—gR)(x)d x,16~6 E

duced in O(x) by [dv]. Now we can state the basic result
of the theory. We have the following relationship be-
tween the integral (1) and an integral defined only over
the orbit quotient space M/6:

f f(x)[dp](x)= f f(x)[dp](x)u(x) (2)
M M/G

with

u(x)= f [dv](x) . (3)
0(x)

We remark that [dv](x) is a G-invariant measure over
the group G, since 0 (x) can be realized as a "copy" man-
ifold of G.

This result is fundamental for our analysis.
Another result of differential geometry which we will

use is the coordinate expression for the induced metric in
a given submanifold of M. Let [gl,~(x)I denote the ma-
trix of the metric tensor in M with 1 & h,j &N (N being
the dimension of M). Here, x belongs to an M coordinate
domain. Let 0 be a submanifold of M described by the
parametric equations
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where the field variables are given by those metric tensors
Ig~&(x) I that can be defined in E, i.e., compatible with its
topological structure, —g (x) =det tg„„(x)I, R (x) being
the scalar of curvature induced by g„ in M and 6 the
Newton gravitational constant.

The starting point of the Feynman path-integral quant-
ization for the Einstein theory is the formal continuous
sum over Ig„,(x) I histories:

Z= J [dV][g.p(x)]e"p ~S[g p(x)] (9)

The fundamental problem in Eq. (9) is to define ap-
propriately the path measure since the Einstein action
possesses the physical invariance under the action of the
group of the coordinate transformations in M (the Ein-
stein general-relativity principle) denoted by G ' (E):

x "~l"(x ),

g„,(x)~ g (l"(x'))
al~(x ) „.at "(x )

9x ~ Bx

(10)

Z = g exp —S[Ig„,(x) I ]
IN, (&) I

The precise meaning for the continuous sum (8) is
achieved by introducing a path measure in the functional
space of all possible field configurations (denoted by M);
[dp][g &(x)], such that (8) can be written as

r

X(g" g "~+cg""g ~)(x) (15)

and (5g &)(x) denotes the functional infinitesimal dis-
placements on M.

After introducing a Riemann structure on the path
functional manifold M we can use the basic relationship,
Eqs. (2) and (3), to give a precise meaning for the path in-
tegral:

Z= f [dp][g p(x)]exp &S[tg p(x)]] (16)

As a first step, we have to realize the abstract orbit
quotient space M/G ' (E) in M. For this task we consid-
er a set of D functionals f"(g (x)) defined in M and in

such a way that the equations [see Eq. (11)]in G ' (E),

f"((Lg &)(x))=0, p, =l, . . . , D,
have only the identity solution for a given Ig~&(x) I; i.e.,
we have fixed our gauge. In order to simplify the discus-
sion below we restrict our analysis to the class of the
linear functionals f (g (x) ) satisfying the following
condition:

where the ultralocal tensor density y'""' ~'[g~ ](x,x') is
explicitly given by (c&—2/D)

5'D' x —x'y'" ' ~'[g ](x,x'}=
&2 —g(x')

:—(Lg p)„„(x') 5fI'(g &(x))/5g„, , (x') is a functional independent

of the field variables [g &(x)j . (18)
and which in its infinitesimal version [G ' (E)] is given
by

5x"=e"(x ),
5g„„(x ) = ( V„e,+ V,E„)(x ),

(12)

(13)

where V' is the usual covariant derivative defined by the
metric tg,p(x) ).

This invariance property leads us to treat the above
path integral as an infinite-dimensional version
G ' (E)—invariant integral in M [see Eq. (1)].

So, we intend to use the fundamental relation Eqs. (2)
and (3} in its functional version in order to get its expres-
sion in the physical path manifold M/G ' (E). As a first
step to implement the invariant integration theory we
have to introduce a metric structure in M compatible
with the group G ' (E) By following D. eWitt's anal-
ysis' we introduce a metric (functional) tensor
y'~" ~'[g ](x,x') on the functional path space 1% for
which the actions of G ' (E) are isometrics.

The unique (ultralocal) functional metric satisfying the
above condition is given by the following expression'
(the well-known "DeWitt functional metric"):

ds = J d x& —g(x) f d x'V —g(x')5g„(x)

X yI" ~'[g ](x,x')5g &(x'),

(14)

For instance, the well-known harmonic gauge
8 g„(x)=f"(g,f3(x)) belongs to the above-cited class.

Thus, we can realize the orbit quotient space
M/G ' (E) in M as the path inequivalent manifold solu-
tion of Eq. (17) in M:

g &(x)EM/G ' (E) f"(g,&(x)}=0 . (19)

x5F(f"(g p(x))), (20)

where

detI y'""'~'(x, x')
) =( —1) ' 1+ cD

2

X ( Q )(D —4)(D+ 1)/4 (21)

and the functional delta 5F(f"(g (x))) in the functional
measure (20) restricts its support to the manifold of ine-
quivalent metrics [Eq. (19)].

Now we have to evaluate the orbit (functional) volume
defined by a given inequivalent configuration

With this implicit M/G ' (E) parametrization the in-
duced path measure is, thus, given by the well-known
DeWitt result [see Ref. 9, Eq. (14.52}]

[dP)[g p(x)]= g [dg p(x)]det[y'""' ~'(x, x'))
(x EE)
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[g &(x)EM/G ' (E)j. For this purpose we need an ex-
plicit parametrization of the orbit submanifold
O(g &(x)). Such an expression is given explicitly by the
path integral:

Y„[L;g &]=f Q dg (x) g„,(x)
x&E

X5F(f4(g~ )(x)—f"((L g) (x))) .

(22)

We remark that the tg (x) j functional integration in

Eq. (22) is defined over the whole functional manifold M
and the group G ' (E) is the parameter domain for the
orbit manifold O(g &(x)).

The functional integration over M gives straightfor-
wardly the result

are g &(x) independent by the condition (18) we find that
Y„„[L;g&(x)] is an explicit parametrization of the orbit
O(g &(x)); i.e., the image of I(' under Y„„[L;g&(x)]
coincides with the orbit associated with the inequivalent
metric [g Ii(x) j.

In order to evaluate the induced metric in O(g &(x))
by the DeWitt metric Eq. (14) we use the functional ver-
sion of Eq. (5) with Eq. (22) playing the role of Eq. (4).
So, the differential line element in O(g &(x)) is given by

ds;„d =f d x d x' Y„„[er,g &] 5e (x)
cp x

L

X+—g(x)y'"" ~'(g &)(x,x')+ —g(x')

Y„„[L;g&(x)]=(Lg)„„(x)
X , Y,&[@ rg &] 5e (x'),

E~ x (24)

D

X p detF
5f"(g p)

(x)
5g

(23)

and since the functional determinants involved in Eq. (23)

where we have considered the group transformation
I.EG ' (E) being infinitesimal and characterized by the
infinitesimal generators I er(x) j [see Eqs. (12) and (13)].

Evaluating the functional derivatives in Eq. (24),

Y„.[ ',g. ]=f Q dg .( ) g„,( )
5

[5 (f"(g, ) —f"((L g), ))]
(p, o)

(a', p')
f II dgf-(x) g,.(x} — [5.(f"(g ) f"«L g) ))]-

M „EE
"" 5g,g(x)

(p, a)

D

X g detF
5f"((L g) )

5e (x)
(2&)

and using the functional version of the usual relation
I

f g(x) 5(f(x))=-
(xo) cs x =xo

[where S denotes the set of zeros off (x)] to evaluate the above functional integral; we get the (formal) result

(26a)

5, Y„.[~';g.ii]= &
5 r 5

p (a', p') g a'p'

D

g„, g «t 5f ((L g)rc)
5e

(a', p') a=1

D

g 5„5„g
5f ((L g)rg)

5e
(26b)

where we have used that 5f"(g &}/5g (x) is a functional independent of the metric Ig &(x}j and 5/5g ~f"(L.g)=—0
since Ig &(x) j is a fixed metric.

By substituting Eq. (26) into Eq. (24) we thus obtain

ds', „d=f d x dDx'+ —g(x)det [5ep(x)]
5 "(L g)

5m~(x )

XTr[y'"" ~I(g)]+—g(x')5' '(x —x')det, [5& (x'}]5 "(L g)
5e (x') (27)
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where

Tr[y '""'(g )]=
(o &, a2, a3 cT4j

I [5„'5,'(g " g
' +cg "'g )5 '5&']

I (28)

is the trace of the DeWitt metric defined by the fixed metric g &(x).
The functional measure induced by Eq. (25) in O(g„„(x)) is then given by [see Eqs. (3)—(6)]

[dv][g &(x)]=I g (+ gd—E )(x)[Tr[y '"" ~'(g)]I ' det[5f"((L g) &)/5e ] .
xGE

(29)

Since we are considering the infinitesimal group transformations in Eq. (29) we can use the Taylor expansion for the
functional 5f"(L g )/5e, i.e.,

5f"((L g) )

5e

5f"((L g),tt) (x)+0(
i
e

i
(x))

5e e =:0
P

(30)

and, as a consequence of Eq. (30), we get the result where the invariant group volume is covariantly factorized from the
path integral:

[dv][g (x)]= tTr[y'""' ~'(g)]I't2det 5 "(L g) —gx dd' x
xEE

(31)

Finally by grouping together the obtained results Eqs. (20) and (31) [see Eqs. (2) and (16)] we obtain our proposed
path measure for Einstein gravitation theory:

[dp](g tt)= g [dg,ttdety""' ~'5F(f"(g))Tr(y'""' ~')' ](x)det
5 "(L g)

x E'E 'p e =0
P

(32)

At this point of our study it is instructive to point out that the above written measure differs from the original De-
Witt measure by the factor Tr(y'""' @) [see Eq. (28)] which in our framework takes into account the contribution from
the geometric intersection between the orbit submanifold O(g tt(x)) [see Eq. (23)] with the quotient space M/G ' (E)
in M [see Eqs. (24) —(29)]. However, we can see that this factor is irrelevant in the physical space-time D =4, since the
functional measure

g (dg ttdetyI""' ~')(x)
xGE

becomes "flat" [see Eq. (21)]. So, we can now safely use the dimensional regularization scheme to vanish the "tadpole"
contribution Tr(y '""' ~'). This result in turn coincides with that proposed in Ref. 9 by DeWitt in D =4.

Another point worth remarking is that our functional measure naturally differs from those proposed in Refs. 2 and 3
since their results do not coincide with the DeWitt results.
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