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It is known that a uniformly accelerating detector gets excited in the inertial vacuum of a field, as

if it were immersed in a thermal bath. We study the effect that the choice of the quantum state has

on the response of the detector. The "correlation function" (4
~

P(x)P(x')
~

4) is computed in a

Fock state, in the coherent state, and in the thermal state. It is then shown that the response func-

tion is a sum of two terms —the first being the same as the response in the vacuum state and a
second term which is state dependent. The limit of the response function as A~O is discussed and

the response of the inertia1 and accelerated detectors compared in this limit. The response in the

large-nk limit of the Fock state is compared with the response in the coherent state. We conclude

that the thermal response of an accelerated detector in the inertial vacuum has interesting similari-

ties to its response in other states.

I. INTRODUCTION

R (co) cc
2'ircog

1

(2)

where to=(E, Eo)lfi —(Refs. I and 2). The detector
responds as if it were unaccelerated, but immersed in a
thermal bath of temperature T=ghl2n.

It is appropriate to choose the field in the inertial vacu-
um, if one simply wants to demonstrate that the response
of the detector depends on its world line. However, it is
of some interest to study response in other quantum
states of the field as well. For instance, one may ask the
following questions. (a) How does the detector respond if
the quantum state

i
4) of the field is chosen in such a

way that the expectation value (4
~ P ~

0') resembles a
classical field configuration? (

~

4) may be a coherent
state or a Fock-basis state

~
n„) with large n„.) Clearly

one expects that the response function of this "quantum
detector" should approach that of a classical detector, as
R~O. (By a classical detector we mean a classical system

The response of idealized detectors which couple to
fields is determined by the nature of the coupling, the
state of the field, and the state of motion of the detector.
One example is that of the idealized Unruh-Dewitt point
detector which is described by the interaction Harniltoni-
an

Ht ——ct f d r p(~)P[x (, r)],
where a is a small coupling constant, p(r) is a detector
variable, and the detector moves along the trajectory
x (r), ~ being the proper time of the detector. The quan-
tum field P(x) is usually chosen to be in the inertial vacu-
um

~

0)t. If the detector is initially in the ground state

i Ep ) it does not get excited to a higher state
i E, )

while moving along an inertial trajectory. For a detector
moving with a uniform acceleration g, the rate of excita-
tion is

interacting with a classical field —e.g. , a charged particle
in a Coulomb field. ) (b) How does the detector respond if

~

0) is chosen to be a thermal state, the classical analog
of which is a field at finite temperature? Is there a simple
relation between the temperature of the field and the ac-
celeration of the detector (in suitable units)? (c) Is the
Planckian response of the accelerated detector peculiar to
the Uacuum state, or a feature present in other quantum
states as well?

In this paper we investigate the response of the Unruh
detector in the various states mentioned above. The pur-
pose of such a study is twofold —(i) to understand the
limit of the response function as A'~0 (semiclassical lim-
it) and (ii) to find out how the response depends on the
motion of the detector, while letting

~

4 ) be as general as
possible.

We find that in a state
i
4 ) the response function typi-

cally splits into two parts. The first part is the Fourier
transform of the Wightman function (0

i
P(x)P(x')

i
0),

while the second part is essentially proportional to the
square of the Fourier transform of (4

~

P(x)
i

'It ). In the
semiclassical limit, the second term is expected to dom-
inate over the first; and as we shall demonstrate, in this
limit the response approaches that of a classical detector.

The contents of the paper are divided as follows. In
Sec. II we briefly review the construction of the Unruh
detector and the derivation of the response function. In
Sec. III we summarize the relevant properties of coherent
states. We then compute the correlation function
(%'

~

P(x)P(x')
i
4) for the various cases. In Sec. IV the

above correlation functions are used to compute the
response of detectors in various quantum states. The re-
sults for the different cases are compared in Sec. V.

II. DETECTOR MODEL AND RESPONSE FUNCTION

Suppose the Unruh detector, described by Eq. (I), was
in its ground state

~
Eo ) in the asymptotic past and the

field is in some quantum state
i
4 ). The probability am-
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plitude that the detector makes a transition to an excited
state

~
Ei ) (Ei & Eo) and the field makes a transition to

a state
~
4f ) is given by

A (co)=a(E,
~
p(0)

~
E, &

f" d«'" (+f ~
$(x)

~

0 & (3)

to first order in perturbation theory. Here, co = ( E
&

Eo—)/A' and we have assumed a Hamiltonian evolution

A. Coherent state

A coherent state
~

a) for the harmonic oscillator de-
scribed by the modes (ak, ak ) is an eigenstate of the an-
nihilation operator,

ak I
a& =a„l a&,

or, equivalently,

p(r) =e " p(0)e (4)
I
a&=exP(ak~k ak&k)

I
o&

for the detector variable, Hd being the Hamiltonian
operator for the detector. Since we are only interested in
the probability P(co) that the detector is excited to

~
E, ),

we sum
~

A (co)
~

over all final states to get

P(co)=E,O f dr f dr'e' ' exp P (akak —akak) 10
k

(13)

~

0) being the ground state of the harmonic oscillator.
For the field $(x), the coherent state can then be defined
as

where

XGs, [P(x(r)),P(x(r'))], (5)
The inertial vacuum is a special coherent state, in which
ak ——0 Vk.

To compute the two-point function

E,o
——a

i (E, iP(0)
i
Eo) i (6) G, (x,x') = ( ql,

~
$(x )P(x')

~
4, ) (14)

(7)

is the analog of the Wightman function. Clearly, P(ei)
depends on the trajectory assigned to the detector. If it
so happens that G+ is a function only of the interval
(r—r') (e.g. , when

~

4) is the vacuum), then P(co) is
infinite, and it is more appropriate to talk of the transi-
tion rate dP(co)/d(r+r), which is a constant. As it
turns out, for a general

~

4'), G+ is not invariant under
time translations.

To evaluate P(co), we need the explicit form of G+ in

Eq. (7). In the next section we calculate the correlation
function for different states.

III. CALCULATION OF CORRELATION FUNCTIONS

we write the field operator P(x) as

P(x) =P+(x)+P (x),
where

(x)= fd kakuk(x), P (x)=[/+(x)]

(15)

(16)

It is easily seen that

P+(x)
~
4, ) =f (x)

~
4, ),

where

f (x)= fd kakuk(x) .

(17)

Using (17) and the expansion of P(x) in (15), it can be
shown in a straightforward manner that

In the Introduction we outlined the reasons for study-
ing detector response in a state other than

~
0)t. The

specific quantum states we consider will be (i) a coherent
state, (ii) a one-particle state

~
ik ), (iii) an arbitrary Fock

state, and (iv) a thermal state. The computation of G~
for these states is straightforward in the Heisenberg pic-
ture.

A real massless scalar field can be expanded in basis
modes as

y(x)= f d'k[akuk(x) a+' ku( k)x]

with

uk(x)=[(2~)'&~k] —'"e' " """,

G, (x,x') =[f(x)+f '(x)][f(x')+f"(x')]

+[/+(x), P (x')]

and noting that the commutator

[P+(x),P (x')]=f d k uk(x)uk(x')

=G„„(x,x')

we get

G, (x,x') =G„,(x,x')+$(x)$(x') .

G„„(x,x') was defined in (10), and

$(x):—(4,
~
$(x)

~

ql, ) =f(x)+f*(x),

(20)

(21)

—1 1G„„(x,x') =
l 2 l 24rr (t —t —le) —(x—x )

Let us proceed to calculate G+ for other states.

(10)

where (x, t) are inertial coordinate labels. As usual the
inertial vacuum is defined by ak

~
0)z

——0. The Wightman
function z(0

~

P(x)P(x')
~
0)z can be shown to be

as may be easily verified using Eqs. (15)—(17). Thus the
correlation function in the coherent state is the sum of
the Wightman function and the PP term. It is reasonable
to think of G„„(x,x') as the quantum part, and the
second term as the "classical part, " which is expected to
survive as A'~0. The form of G, (x,x') makes an inter-
pretation of the detector response function quite simple.



38 RESPONSE OF ACCELERATED DETECTORS IN COHERENT. . . 2459

One should note that the coherent state defined in this
section is an eigenstate of a}„which acts on the inertial
vacuum

~
0)I. A coherent state defined with respect to,

say, the Rindler vacuum, will not, of course, be the same
as the above state.

G,},(x,x') —= t $(x)y(x')]

(E
~

y(x)y(x')
~

E )

—13E
e

(28)

B. Fock state

A general Fock-basis state may be written as

I'p&F
I

kl k2 (23)

(Curly brackets indicate thermal averages. ) G,h(x, x')
may be computed using the mode expansion in Eq. (8).
The thermal averages of the various combinations of az
and a& are

l
where "k, indicates that there are i„particles in the
mode k;. The correlation function can be computed us-

ing the mode expansion (8) and is given by

G

Falak

( xt x ) =F ( +
I (t (x ) I(}(x '

)
~

q )F

=G„„(x,x')

a},a„, I =0,

f~},u}, f=«
e

P „

Thus, G,h(x, x') can be written as

(29)

+2+ "k;Re[u},(x)uk(x')] . (24)

[Here, the summation index runs over all those modes
whose particles are present in the state

~
%F). The

correlation function in the one-particle state
~

1},) can be
easily read off from (24).]

C. Thermal state

which may be written using a density matrix
p:—exp( —pH) as

[ A I
=Tr( A p) /Trp . (26)

How does one compute detector response if the field is
at a finite temperature? Equation (5) gives the response
function when the initial state is

~

4 ). Suppose there is a
probability exp( pE ) that

~

}II) i—s the state
~

E ). The
response function P,h(cu) will then be equal to the weight-
ed sum of response functions for different initial states

ge P(cu; ~E ))
—PE

e

Strictly speaking, thermal state is a misnomer because
a quantum system in thermodynamic equilibrium is de-
scribed by a density matrix and not by a pure state. If

E ) are the energy eigenstates of the field P(x), we say
that it is at a finite temperature T =k 'p if the probabili-
ty for it to be in the state

~

Ea ) is exp( pE ). The-
thermal average of an operator A is defined to be

g exp( PE ) ( a
~

A —
~

a )

t~l=- (25)
+exp( PE )—

G,h(x, x') =G„„(x,x')

+ d k 2cosk(x, x')
(2m ) (2'},)

(30)

IV. THE RESPONSE FUNCTIONS
AND THEIR INTERPRETATION

The probability that the detector makes a transition to
an excited state can now be found by taking the Fourier
transform of the appropriate correlation function, as in
Eq. (5). We will consider each case separately.

A. Coherent state, inertial trajectory

Consider first a detector moving along the trajectory

It is convenient to work with the form in (30), without
carrying out the integration in (30).

Equations (21), (24), and (30) provide us with the re-

quired correlation functions. In the next section we use
these results to compute the response functions. Howev-

er, before we proceed to do so, let us recall why these
quantum states are of interest. The expectation value of
the field in the coherent state obeys a classical evolution
(mode by mode), while the dispersion (for every mode) is
a constant. So we expect that the response in the
coherent state will have a "quantum part" which is con-
stant, and a part which resembles the response in a classi-
cal field. This indeed turns out to be true. Second, it is
known that a state

~ n},) with large n„mimics a classical
oscillator, though in a sense different from a coherent
state (see, e.g., Ref. 4, Chap. 13). So it is of interest to
compare the response in a large-n & state with the
response in a coherent state. As regards a thermal state
at temperature T, one would like to know if the accelerat-
ed detector "sees" a Planckian of temperature T+gfi/2n.
(nothing so simple happens).

d~ d~'e'"' ''G,
h x,x' (27) x(t) =xo(t)+vt (31)

where the "thermal" correlation function is defined by interacting with the field, initially in a coherent state. As
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is evident from (21), P(to) is determined by a sum of two
terms:

P(~)=P)(oi)+P2(o)) . (32)

The first P, (co) is the Fourier transform of the Wightman
function G„,(x,x'). However, it can be easily shown
that P((co) vanishes along the inertial trajectory; inertial
detectors do not respond in the inertial vacuum state.
The second part P2(co) is the Fourier transform of the )t p
term [we shall adopt the notation of (32) for the
remainder of this paper]. Thus for inertial detectors we
have

(40)

with ))() as in (34). We need to express P in terms of the
detector's proper time r. Using (8), (9), and (37), ()()(x) can
be expressed along the accelerated trajectory as

p(x) = fd k[ahuk(r)+ak ui*, (r)], (41)

where

To find the P2(co) of (32) in the accelerated frame, we

proceed as follows. We have

P2(co)=E)o f dr f dg'e' ' "p(x)p(x')

=Eio
I P. I

'

(33) ig ( k coshgr —co),sinhgr)
—1

uh(& = (42)

where

(t) =f drei™~(t)(x). (34)

Equation (33) implies that the transition probability is
proportional to the power spectrum of the mean field,
evaluated at the frequency m. This is analogous to what
we expect in the classical limit. For example, the dipole
oscillator immersed in an electromagnetic field will ab-
sorb energy at a rate proportional to the power spectrum
of the field (see, for instance, Ref. 5, Sec. 13.2)

This can be seen more clearly by writing ()()(x) using the
mode expansion (8), so that

p= f d k[ahuk(x)+a)", ui', (x)] . (35)

(Recall that ah is the expectation value of the operator ah
in the coherent state. ) For the inertial trajectory (35)
gives

ah=—ak5(k, —k)5(k, )5(k» ) (44)

with a real ak (and k & 0). We get

y = f«e' 'a(, [uk(r)+ uk (r)] (45)

with oi& ——k. (We have chosen k & 0. ) The Fourier trans-
form of uk(r) can now be done. We get

[It should be recalled that ))I)(x) and hence a& are expecta-
tion values in the inertial coherent state. ] Fourier trans-
forming with respect to ~ we get

y.=fd'k f«e'"'[ahuh(r)+aku„(~)] . (43)

Clearly, the value of P depends on the choice made for
a&, the only free parameter in a coherent state. Consider
the simple case in which only one mode has a nonzero
amplitude, and it moves along the positive z axis; i.e.,

y„=fd'ka„N„fi[~ y( I
k k v)],

y=(1 —v ) ', N&
——[2coh(2m) ]

(36)

i~ g-'e-g'
N„ fdre'"~e

=Nkco'(, q g
' g 'e' ' g I ( incog ') .—(46)

That is, only those modes contribute to P„which are
"Doppler shifted" to the frequency co, and cx&N& is the
amplitude of the corresponding mode [for simplicity we
have set xo ——0 in (31)]. Thus the response of inertial
detectors in a coherent state is similar to the response in a
classical field.

[The above integration may be performed by substituting

p =e g' and by rotating the contour to the imaginary
axis; p~ip (see first citation in Ref. 1, Sec. 5.5).] The
Fourier transform of uk (r) can be performed similarly,
so that we finally get

(~g -)(n(~„/g)=e Nkg ak

B. Coherent state, accelerated detector; longitudinal mode

We now evaluate P(oi) for the more interesting case of
a uniformly accelerating detector. For a detector moving
along the z axis of Minkowski coordinates, the trajectory
is a hyperbola

and hence

f (&g i )(e(~/2)cog'+e —(n/2)~g

P2() =Elo
I N. I

'

=E)oakN„2~~ 'g 'coth(mao/2g) .

(47)

t =g 'sinhg~, z =g 'coshg~, x =y =0, (37)

where ~ is the proper time of the detector and g the mag-
nitude of the acceleration four-vector. As in (32), the
detector response has two parts. P (co(), which is deter-
mined by G„„(x,x'), is the well-known Planck spec-
trum�'

Equation (48) gives the response of the detector to the
"semiclassical" part of the correlation function, for a sin-
gle mode, i.e., when a& is given by (44).

The total response function is obtained by adding
P, (co) and P2(co) from (39) and (48):

P((co) =E)of dr dr'e' ' ' 'G„,[x (r),x(r')]

CO

=Ego d t
2 77ccpg —1 ]

(38)

(39)

P(oi)=E, () f dr"

+a(, N& 2rrm 'g 'coth(men/2g ) (49)
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At this stage, it is important to clarify the role of
Planck's constant, and the sense in which the Pi~0 limit
is called the semiclassical limit. It is generally assumed
that the first term, the Fourier transform of the Wight-
man function, has no classical analog essentially because
the vacuum state has no classical analog. How should
one take the classical limit of P&(co)? Clearly, if one does
this by considering P, (co) as a function of co, and takes
the limit R~O while keeping co constant, we do not get
what we expect:

lim P, (co)
~ „„„,„, :P, (co)—.

fr~0
(50)

The "correct" limit is expected to be obtained by realiz-
ing that co=6,E/A, and that while taking the limit, it is
AE, and not co, which should be kept constant:

lim exp 2~g ) hE
A~O

=0. (51)

Why should the classical limit be taken by keeping hE
constant? The usual justification is that the proportional-
ity AE ~ co is true for the quantum detector, but not for
the classical one (for which b,E ~ co ). Since the relevant
physical quantity is the energy absorbed by the detector
(classical or quantum), and since the relation between hE
and co is different for the two, it makes sense to take the
A —+0 limit in this way.

On the other hand, the term Pi(co) is the square of the
Fourier transform of the mean field P(x ). Since the mean
field corresponds to some classical configuration, this
term has a classical analog if co is interpreted as the natu-
ral frequency of oscillation of the dipole oscillator. The
correct classical limit is obtained by noting in (48) that as
iii~0, P2(co) behaves as

pp ( co):2gag E i o /k ak $/gE (52)

Moreover, it can be argued that if f (k) is the amplitude
of the classical wave mode, then it is related to the ampli-
tude ak as ak ——(const/iri)fk [Ref. 6, Eqs. (30) and (34)].
Then Pz(co) is finite as Pi~0

In summary, we can make the term P&(co) vanish in the
limit fi~0, keeping P2(co) finite. [In this limit P2(co) cor-
responds to the response of the c1assical oscillating dipole
at a finite acceleration g.] But this requires a fairly non-
trivial "rule" for taking the classical limit. Note that if
we take the limit A~O, co=const, neither term vanishes;
if we take A'~0, DE=const with ak and fi unrelated,
then both vanish. To eliminate the first term, retaining
the second needs akfi/f f,

=const and b E =const, iii~0.
We should also clarify the term "classical detector. "

The internal energy levels of the Unruh detector get ex-
cited by interaction with the field, whereas the "center-
of-mass" motion is not determined by the field. (The hy-
drogen atom in the Coulomb field could be one such sys-
tem. ) This allows one to assign an arbitrary motion to
the detector. One can also think of a difrerent kind of
classical detector in which the center-of-mass motion it-
self is determined by the field —for instance, an electric
charge in a Coulomb field. The classical analog of the
Unruh-type detector could be a dipole which absorbs en-

ergy from the field, while its external motion does not de-
pend on the field. Whenever we talk of the classical limit
of the response function, we have in mind the response of
such a detector with prescribed center-of-mass motion.

Let us next look' at the g~O limit of (48). Again,
P&(co) goes to zero (for co&0) as g~O. This matches
with the response P, (co) of the inertial detector. As can
be seen from (49), the second term [P2(co)) is divergent in
the g~0 limit. This divergence has no deep significance
and arises because of the choice of ak in (44) which
makes Pz(co) a square of 5 function. The corresponding
response function P2(co) for the inertial detector is also
divergent. This may be verified by substituting (44) in the
expression (36) for P„, which shows that the inertial
response function diverges as the square of a 5 function.
Thus the g ~0 divergence corresponds to a divergence of
the form [5(x)] .

Having noted this, we may interpret Pi(co) as follows.
Since P2 ( co )&0 for the inertial detector, the excess
response of the accelerated detector over the inertial one
may be obtained as

P,„„„=P2(co)—lim Pi(co)
g —+O

—1/ g (e~~& —1) (53)

( e 1Tci)g + 1 )2
(55)

As expected, R(co) goes to zero as g~O. Moreover,
R (co) vanishes in the limits co~0 and co~ ~. Thus, con-
sidered as a function of ~, the ratio of the quantum
response to the "classical response" is maximized when
co=g. From (55) we get R,„=TA&g . If we were to
take for T the natural time scale for the Rindler coordi-
nate system: T-cg ' (see, e.g., Ref. 7, Chap. 6) we get
R may —A keg

C. Coherent state, accelerated trajectory; arbitrary mode

In the previous section we evaluated P(co) for a single
mode, moving parallel to the detector. Let us also find
P(co) without constraining k. Of course, P, (co) is still as
in (39). To calculate Pi(co) reconsider (41). With the
substitution

k, =k TsinhO, co& ——k TcoshO,

kT =—cok —k,2 — 2 2
(56)

How does one compare Pi(co) and Pz(co) in (49)? The
major difficulty is that P, (co) is infinite —the rate is an

appropriate quantity to measure. However, what we are
interested in is the dependence of the ratio P, (co)/Pi(co)
on co. For this purpose we can think of the detector as
being adiabatically "switched off,"namely, in (39),

dw"= dw"= T, 54
—GC —T/2

where T~ ~. Then from (39) and (48) we get

pi (co ) coi, co2
R (co) =— =4irTg
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the uh in (42) can be rewritten as

ikTg sinh(0 —g~)
~ —1 .

Qk=e

and the Fourier transform

(57)
P(co)=E,ONh[5(co —y(

~

k
i

—k v))] (67)

analysis of Sec. IV A, the response in an inertial frame is
found to be

I(co,k)= fd7 e' 'u&(x)

becomes

g
—1I f e

—iax + ib sinhx

where

(58)

(59)

x =0—g~, It, ——N&e'"g

a =cog '~0, b =kTg 'y0 .
(60)

I(co,k) in (59) happens to be an integral representation of
the modified Bessel function (Ref. 8, p. 182), so that

I(co,k)=2g 'Ihe '/ K;, (b) . (61)

The Fourier transform of u& (r) can be found similarly,
so that P„of(41) is

p =2g 'f d kI&K i(kT. g ')

)( (a e 7I'QJ/2g+ ate
—acrJ/2g) (62)

which has a form similar to the P„of (47) with the Bessel
function replacing the y function.

In the case when only one mode is excited, i.e., if

ah ——ah 5(k —ko)
0

with ak real, (62) gives
0

P2(~) =4g 'E&Oaf Nh

X ( e acd/ g+ e
—acd/ g+ 2 )

(63)

(64)

we can show

[P2(co)],„„,g, 8m cog E,oa&N——hcoth(mco/2g), (66)

which has the same cu dependence as the response func-
tion for a longitudinal mode. There does not seem to be
any straightforward interpretation for this result.

This completes our analysis of response in the coherent
state. In Sec. V we will compare these results with those
of response in other states.

D. Response in a Fock state

Consider first the one-particle state
~
lk). Using the

correlation function from (24), and the by now familiar

Equation (64) gives the response function for an arbitrary
mode ko, and does not appear to have a simpler form. Of
course, in the limit that kT~O, one could show that the
result goes over to that of Eq. (49). It is interesting to
note that (64) has a simple limit in one special case. Sup-
pose the response function P2(co) is averaged over all the
transverse frequencies, while keeping co& and the ampli-
tude ah constant. Then, using the relation (Ref. 9, p. 49)

f d )K;„( )) = —,
'

(
I (1+! )[ (65)

This is essentially the same as the response of the detec-
tor to a plane-wave mode. It diverges as [5(x)]; the
divergence can be expressed as an infinite time integral
times a constant "rate." To do this, we note that
u&(r)u& (~') is a function (r r')—, so that Eq. (5) can be
written for the state

~
I& ) as

P(co)=E,ON& f dr"5(co —y( i
k

i

—k v)) .

Only
~

1& ) states with appropriate frequencies excite the
detector. Moreover, the response in an n-particle state

~
nh) is simply nh times the response in I&), and the

response in
~
q/)F„h of (23) is g; "k;P(co,

~

lh)).
In the accelerated frame, the response in the state

~
I„)

can be found by an analysis similar to that in Sec. IV B.
If k is along the positive z axis we get

P(co) =P, (co)+E,ON&2nco 'g 'coth(incog ') (69)

with P, (co) as in (39). By noting the identity
T

coth(n. cog ') = 1 1

2 1Tco/g 1 1
—2'fact) /g

+ (70)

we can conclude that the second term in P(co) is just a
superposition of the detector response to plane-wave
modes uh (x) and u„(x), respectively.

An expression similar to (69) may be found for the
state

~
I&) with an arbitrary k.

K. Response in a thermal state

(71)

Once again, only the right frequencies excite the detector,
and there is a corresponding thermodynamic weightage
[exp(Pcoh) —1] '. Along the accelerated trajectory, the
response function is given by

P(co) =P, (co)

+4g 'f d'kN-'„,
~

K. , (k,g-')
~

'

—I —I
X(e ' +e ' ) . (72)

Clearly, both in (71) and (72) the response function has a
basic difference from that in the coherent state. The am-
plitude n& is not for us to choose, it is fixed to be

( "—1)
We have now completed the calculation of response

functions, and interpreted the results in the various cases.
In the next section, we provide a comparison of these re-
sults.

Starting from G,h(x, x') in (30), the response along the
inertial trajectory can be calculated to be

P(co)=E,o fd'kN„' p„[5(co—(
I
k

I

—k v))1'.



38 RESPONSE OF ACCELERATED DETECTORS IN COHERENT. . . 2463

V. DISCUSSION AND CONCLUSIONS

P2(co)= fdre' 'ui', (r) (73)

is a Planckian (for k along the z axis). (A similar result
has been effectively used by Boyer to obtain a classical
interpretation of acceleration radiation. ) Moreover, the
response in the different states considered is typically a
superposition of the response Pz(to) of (73), over various
modes. Equation (73) suggests that the thermal response
is not peculiar to the vacuum

~
0)t—the central role ap-

pears to be played by the (accelerated) trajectory rather
than the quantum state.

Let us give a brief summary of the results (at the risk of
repetition). In the different states which we considered,
the response function is a sum of the response to the
Wightman function, and the response to a state-
dependent part. The inertial detector does not respond to
the vacuum correlation function. So the only contribu-
tion is picked up form the state-dependent part P2(co).
The excitation is caused by those modes which are ap-
propriately Doppler shifted. All these results for the
inertial detector are as expected and fairly trival.

With regards to the accelerated detector, one part of
the response is a Planckian, while the additional part

P2(co—), in general, has a complicated dependence on the
field configuration. However, the physics of P2(co) is
more transparent when written as a mode sum. Unlike
the inertial detector, the accelerated detector is excited
by all modes. This is simple to understand if we note that
as the detector accelerates, every mode appears Doppler
shifted to the detector frequency co at some instant or the
other.

It is interesting to note that the response of the ac-
celerated detector to a plane-wave mode

2

Consider next, the responses in the "single-mode"
coherent state, and the Fock state

~

n i, ), and for simplici-

ty restrict k along the z axis. From Eqs. (48) and (69) we
find that the functional forin of P2(to) is somewhat
different in the two cases. The ratio of P2(to) for the two
cases is

P2'"'"'"'(~) ak coth(~~/2g)
Pzo'"(co) nk coth(ttto/g)

(74)

For g ~0, it tends to ak /nk, and is independent of the
detector frequency ~; the same limiting form is obtained
as co~ ~. If the coherent state for mode k corresponds
to a classical state with amplitude a„, and the Fock state

ni, ) corresponds to the same classical state (for large
ni, } then one can show that ni, -ai, (see, e.g., Ref. 4,
Chap. 13}. [Note from (48) that a&N& corresponds to the
classical amplitude. ] This means the response of inertial
detectors matches in the coherent state and large-n Fock
state, but the response of accelerated detectors does not
(except as to~ ac ).

It does not seem possible to simplify the response func-
tion in a thermal state [Eq. (72)], essentially because the
amplitudes ak cannot be chosen arbitrarily. This makes
it diScult to compare it with response in other states.

Our analysis suggests that for any state
~

qt), the
response function splits into two parts —the response to
the vacuum and a part exclusively determined by the ex-
pectation value of the field in that state. Because of this,
it becomes particularly simple to study the classical limit
of the response. We conclude that there are interesting
similarities between the response of the accelerated detec-
tor to (i) the vacuum and (ii) the "classical" field. This
may provide a deeper understanding of the "thermal" na-
ture of the excitation in the inertial vacuum.
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