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The spacetime slicings associated with a harmonic time coordinate (harmonic synchronizations)
are considered and their usefulness in the field of numerical relativity is studied. Harmonic synch-
ronizations are shown to avoid singularities in the same way that the widely used maximal slicings
do. Both kinds of slicing are compared in stationary axisymmetric spacetimes, homogeneous
cosmological models, and Kerr-Newman black holes.

I. INTRODUCTION

The study of the initial-value problem in general rela-
tivity requires slicing spacetime by a family of spacelike
hypersurfaces. This can be performed by choosing a time
coordinate ¢ such that every slice is a z=const hypersur-
face. In a generic local coordinate system, this amounts
to choosing a single function ¢:

d(x4)=t (4=0,1,2,3) (1)

so that d¢ is temporal. The parametrized slicing defined
by (1) will be called synchronization for short.

The choice of a synchronization is crucial when one at-
tempts to construct a spacetime by evolving a given set of
initial data in the framework of numerical relativity.! In
that context, the “maximal slicing” condition has been
widely used,? % its success being due in part to its “singu-
larity avoidance” properties.>* Other authors”® have
proposed a different condition to ensure the hyperbolicity
of the (appropriately written) system of Einstein field
equations: we shall call it “harmonic synchronization”
(the term will be justified later).

The purpose of this work is to study the singularity
avoidance properties of the harmonic synchronization
and to compare it with maximal time slicing in many im-
portant cases: stationary and axisymmetric spacetimes,
homogeneous cosmological models and black holes. This
is a very preliminary step in the way of constructing a
general-relativistic numerical code with harmonic synch-
ronization.

II. SPACETIME SYNCHRONIZATIONS

Let us consider the field n 4 of unit normals to every
slice of a synchronization (1). One can interpret n4 as
the field of velocities of a system of observers (Eulerian
observers) whose local three-spaces are tangent to every
slice. One can choose the space coordinates x’ in one
slice 'and propagate this coordinate system to the other
slices along the integral curves of n 4. In the resulting
Eulerian coordinate system, the spacetime line element
can be written as

—a(t,x)dt +y y(t,x)dxTdx 2)
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where y;; is the three-dimensional metric induced on
every slice and a is the lapse function.

The lapse function a measures the metric interval be-
tween two slices corresponding to two infinitesimally
close values of the time parameter ¢. It can be defined in
a covariant way from ¢: note that, in our coordinate sys-
tem,

é=t, d, =358 (3)
so that
a=|g48d pdgd| 1. (4)

Let us consider the effect of a reparametrization of the
slicing: that is,

t=f(t"). (5)
The lapse function will now be
a=alf|

and the field of unit normals n 4 will remain unchanged.
The Eulerian observers by themselves determine the slic-
ing, but a synchronization (a time coordinate) requires
the complete specification of the lapse function also.

The maximal time slicing® is obtained when one
demands the Eulerian observers to be expansion-free:
that is,

V,n1=0, (6)

where V stands for the four-dimensional covariant
derivative. In the local coordinate system (2), it can be
written

9,y=0, 7

where y stands for the determinant of the space metric
Yu-

The compatibility of (6) with the Einstein field equa-
tions leads to a linear elliptic equation on the lapse func-
tion on every slice:>

Aa=Aa , (8)

where A is the Laplace operator associated with the
three-dimensional metric and A depends both on the
geometry of the slice and the energy content of the space-
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time. When supplemented with suitable boundary condi-
tions, (8) completely determines the lapse function. Let
us note that (8) is invariant under (5) so that the bound-
ary condition provides the parametrization of the slicing
given by (7) and (8).

Harmonic synchronizations are obtained when one
demands the time coordinate be given by a harmonic
function,

O¢=g *2V 4dp$=0, ©)
which can also be written in a form similar to (6),

V,(n?/a)=0 (10)
and in the local coordinate system (2),

3,(Vy/a)=0. 1

Equation (9) is a strictly kinematical condition on a in
the sense that it is always compatible with Einstein’s field
equations. The form (11) is just the one proposed by
Choquet-Bruhat and Ruggeri,”® but the same choice of
time coordinate is explicitly contained in well-known har-
monic coordinate systems, as it follows from (9). The
time lines in harmonic coordinate systems are not chosen
to be normal to the slices, but this depends only on the
choice of the space coordinates in every slice and does
not affect the properties of the time slicing itself.

III. SINGULARITY AVOIDANCE

As we have restricted ourselves to Eulerian coordinate
systems, it is evident that the singularities of the slicing
must correspond to singularities in the congruence of
time lines and vice versa. This is so because the three-
dimensional metric ¥;; induced on every slice coincides
with the space (quotient) metric of the normal observers.

Let us consider for instance the time line with local
equation x'=x/ and let us use the proper time 7 to label
points along this line. Let us suppose now that the
three-dimensional volume element V'y vanishes at a
given value 7¢ of 7 (Ref. 9),

(Vy)rg)=0 . (12)

This is a singularity of both the time lines'® and the slic-
ing because the induced metric y,; on the slice passing
through that point stops being invertible there. This is
fatal for the numerical construction of the spacetime be-
cause the numerical algorithm stops and one cannot
proceed to the next slice.

In order to be more precise, we will say that the line
x'=x} has a “focusing singularity”!! at r=rg if Eq. (12)
holds and the proper-time derivative of the three-
dimensional volume element V'y remains bounded at
T=7g so that there exists a constant B such that

[(3;VY)rs)| <B . (13)

Condition (13) is adopted in order to exclude from our
consideration singularities accompanied with sudden
variations of the spatial volume element.

Let us now consider a harmonic synchronization start-
ing from a regular set of initial data on the t=¢, slice.
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Equation (11) then gives
a=C(x'WVy, (14)

where we have noted C(x')=a,/V y,. If we choose any
normal line x‘=x/ parametrized by its proper time 7 (by
choosing the t =t slice as the origin), we will find along
such a line

alr,xb)=C(xiVy (15)
and then
3.a=C(x5)3,V7y . (16)

Allowing for (15) and (16) we see that one can replace V'y
by a in Egs. (12) and (13) defining a focusing singularity.
It can be reformulated as

lim (r—71g5)/a5:0, (17)
T—»TS
where the limit is taken along the line x'=x}.
The coordinate time interval At elapsed along that line
between the points where 7=0 (1 =t;) and 7=7g is given
by the improper integral

At:fosa‘l(r,xé)df (18)

and it follows from (17) that this integral cannot con-
verge. This means that focusing singularities, as defined
by (12) and (13), cannot be reached by harmonic synch-
ronizations in a finite number of timesteps.

The same thing is known to be true for maximal slic-
ing: if one compares Egs. (7) and (12), it is clear that the
Eulerian observers in a maximal time slicing never focus.’
In fact, condition (13) is not needed in this case: maximal
slicing can avoid stronger singularities than harmonic
synchronizations. In what follows, we shall give an expli-
cit comparison between both synchronization conditions
in many important cases.

IV. STATIONARY AXISYMMETRIC
SPACETIMES

Let us consider the usual stationary axisymmetric line
element, written in the Lewis-Papapetrou form:

8,dt’+28,,dt dp+g,,de*+8,dr’+g4d 0", (19)

where the metric coefficients are independent of the ¢ and
@ variables. Let £/=8 and 7”=8/ be the two com-
muting Killing vectors of (19). It can be easily verified!?
that, in this case,

040=8" =8l 4 +80:M 4 )(8:)* —8 081 17"
(20)
and the lapse function can be computed from (19):
a=[(g,,)*/84p—8u1"* . 21

It is well known? that the Eulerian observers associated
with (20) (Bardeen observers) verify the maximal condi-
tion (6). It follows from (20) and (21) that the harmonic
condition (10) is also verified. The synchronization asso-
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ciated with the Lewis-Papapetrou form (19) of the line
element in a stationary and axisymmetric spacetime is
both maximal and harmonic. The only trouble is the ap-
pearance of Cauchy horizons* at the points where the
lapse function (21) vanishes: we will discuss this point in
Sec. VI.

V. HOMOGENEOUS COSMOLOGIES

In the case of homogeneous cosmological models, one
has a symmetry group acting on three-dimensional space-
like orbits. These orbits provide a preferred time slicing
of the spacetime so that the line element may be written

—dP? 4y, (r,xK)dxdx? | 22)

where 7 ;; is a homogeneous three-dimensional metric.
It is well known?® that the three-dimensional volume
element is then of the form

Vy=g(rW7,, (23)

where v, stands for y(7g,xX). This means that the slic-
ing (22) is not maximal in the generic case. In fact, Eq.
(23) corresponds to a generalization of the maximal con-
dition: the constant mean curvature slicing.’

The time slicing (22) can be reparametrized however in

order to obtain a harmonic synchronization: let us
choose a time coordinate ¢ such that
dt=dr/|g(7)] (24)

and the harmonic condition (11) is satisfied. The pre-
ferred slicing (22) admits a harmonic parametrization but
it is not maximal in the generic case.

To be more specific, let us consider the Einstein—de
Sitter particular case of (22),

Yu=7"8;, (25)

which can be thought of as describing the collapse of a
homogeneous distribution of dust, starting at 7=7, (<0),
up to a singularity at 7=0. In this case,

gir)="r (26)
so that (24) gives
t=—1/7 (>0) (27

and the 7=0 singularity corresponds to ¢ — oo.

Note that the asymptotic past singularity (71— — ) in
(25) appears at a finite value of the time coordinate
(t=0). This effect is a predictable consequence' of the
harmonic condition (11). In fact #=0 is a spacetime
boundary and the stopping of the (backwards) numerical
algorithm there would mean that the whole past of the
initial slice has been constructed. One does not expect
this kind of singularity to occur in the future time de-
velopment of regular initial data for collapsing systems.

VI. BLACK HOLES

Let us consider the Kerr-Newman line element.!® It
can be written in the form (19) with the metric
coefficients given by
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8u=—[1+(e*—2mr)/2],

gp,=asin’6(e*—2mr)/Z ,
s 207,24 22 20200 2 (28)
8pp=sIn"0[r"+a”—a’sin“6(e’—2mr)/Z],

grrzz/(r2+az+e2—2mr), g0¢9=2 ’

where m, a, and e are constants and we have taken for
short ==r2+a2cos?f. The particular case when e =0
(vacuum spacetime) corresponds to the Kerr metric. The
spherically symmetric cases (@ =0) are the Reissner-
Nordstrom metrics, the Schwarzschild case being
recovered when both a and e vanish.
Let us compute the lapse function from Eq. (21):
172
r’+a’+e’—2mr

r’+a*—a%in*0(e?—2mr) /=

a= (29)

so that, in the case of m?> a?+e?, Cauchy horizons* ap-
pear at the surfaces given by

r=ry=m+[m2—(a*+¢?]"%. (30

The slices are spacelike where r >r_ or r <r_, but be-
come timelike in the region where r _ <r <r . Note that
no physical singularity appears there: it is only the coor-
dinate system (19) which becomes ill defined in that re-
gion.

To study the zone between r_ and r_, alternative
maximal slicings have been proposed. All of them

present a boundary at r=r; (r_<ry<r,). In the
Schwarzschild case®!* one has
rp=3m/2 . 31)

The same thing occurs with the Reissner-Nordstrom
metrics at a value*

rp=3m/4+(9m?/16—e?/2)!/% . (32)

In the Kerr case, a lower bound for the value of r; is
given in Ref. 4.

Let us look for alternative harmonic synchronizations
by solving the wave equation (9), that is

9,V —ggi8dz¢)=0, (33)

where g stands for the determinant of the metric g 5.
Note that the Cauchy horizons (30) are independent of
the angular variables 8, ¢. We shall then limit ourselves
to spherically symmetric solutions ¢(¢,7) of (33) satisfy-
ing the following asymptotic conditions:

lim$=t, (34)
lim g 48d ,¢dpd <0, (35)

where uniform convergence is demanded in (35) to ensure
that it holds even in the limit when ¢ — o, independently
of the order in which the two limiting processes are per-
formed.

These conditions lead to the following form of the har-
monic function ¢:

¢=t+f(r) (36)
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with f(r) being a solution of the wave equation (33), so
that
vV _gg"f'(r)=C, (37
where C is a constant. This can be easily integrated to
give
C

=t 1
¢ +’+ —ln

r—r_

, (38)

r—r_

where (34) has been taken into account. Note that the
original synchronization (20) corresponds to C =0.

The lapse function corresponding to the new time
coordinate ¢ can be computed from its invariant
definition (4). Allowing for (38), one gets

(r—r Nr—r_)Z 172
a= - (39)
(r’4+a??—C?—a¥(r—r, Nr—r_)sin’6
and any of the two choices
C==t(r% +a?) (40)

ensures that no Cauchy horizon appears for r > r_.
The harmonic synchronizations of a generic Kerr-

Newman metric (28) given by
ri +a 2 r—r,
In

=t 41)

ro—r_ |r—r_

are then well defined in the whole region r > r_. The sur-
face r=r_ is a Cauchy horizon. Note that the expres-
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sion (41) is similar to the one appearing in the
Eddington-Finkelstein  transformation!®>  for  the
Schwarzschild metric; the double sign in (41) can then be
interpreted as in that case.

VII. CONCLUSIONS

The singularity avoidance behavior of harmonic synch-
ronizations has been studied in Sec. III, where focusing
singularities have been precisely defined. The numerical
development of initial data will avoid focusing singulari-
ties in the sense that they are not reached in a finite num-
ber of time steps. It is also clear that maximal slicing can
avoid stronger singularities than harmonic synchroniza-
tions. This may be connected with the fact that maximal
slicing usually stops by the vanishing of a (collapse of the
lapse) before getting very close to the singularities,*
whereas it follows from (14) that harmonic synchroniza-
tions can get arbitrarily close to focusing singularities
without actually reaching them.

In Secs. IV-VI we give, for many important cases, ex-
plicit choices of harmonic synchronizations providing a
more complete (or the same) time development than the
one arising from the optimal choice of maximal slicing in
every case.*
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