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Solution of the Einstein-Strauss problem with a A term
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The conditions for a continuous matching between the Schwarzschild-de Sitter line element and

the one corresponding to a cosmological solution with a A term are given under the hypothesis that
the cosmological Auid has zero pressure. In the limiting case of A=O Schucking s results are
recovered.

I. INTRODUCTION V or V+ we will have to demand

The problem of embedding a Schwarzschild mass into
cosmology has been extensively studied. Classical refer-
ences are the work of Einstein and Strauss, ' Mc Vittie,
and Dirac.

The physical model proposed by Einstein and Strauss,
which we shall adopt, assumes that inside a cosmological
fluid with zero pressure a spherical vacuum region is cut
out and a Schwarzschild mass is placed in it. Then one
works out the relationships for the vacuum
Schwarzschild metric to join smoothly to the cosmologi-
cal metric.

When the cosmological constant A is zero, the explicit
solution of this problem was obtained by Schucking
working in curvature coordinates. In this paper the
matching condition will be given for a case in which the
cosmological constant is not vanishing.

It is worthwhile to mention that recently Gautreau
has developed a quite different approach to the problem
of embedding a Schwarzschild mass into a given cosmolo-
gy. In his physical model no vacuum region of space-
time exists: the cosmological fluid is now in contact with
the central mass.

(ds )z=(ds+ )z=dsz (2.3)

where ( )z signifies the limits of the relevant functions as

X is approached. If one introduces E;~, the extrinsic cur-
vature of X in terms of the unit spacelike normal vector
to X, g*, as

(2.4}

One can further show that the continuity conditions (2.3)
and (2.5) are equivalent to the Lichnerowicz and
0 Brien-Synge function conditions. These latter require
the discontinuity in the Einstein tensor of V—to satisfy

(Cpri )=0 . (2.6)

In the case of spherical symmetry, that will concern us,
the relevant metrics in V+—will be of the form

one can obtain from the second continuity condition im-

posed on X the relation

(2.&)

II. JUNCTION CONDITION
ds =D dr Adr r(—d8 +sin —Ody ) (2.7)

To properly match two different metrics along a
boundary surface characterized by jumps in the energy-
momentum tensor various equivalent approaches can be
used.

Following Israel one can consider a timelike three-
space X which describes the motion of the discontinuity
surface, which separates the Riemannian space-time into
two distinct four-dimensional manifolds V and V+ of
class C, each containing X as its boundary. Let

r = po(7

be the equation of X. With

Qfp
, —1,0,0l7

(2.8)

(2.9}

we obtain from Eqs. (2.6) the two equations

with obvious significance of the coordinates used. A (~, r}
and D (w, r) are C functions on X. Let

ds =g; dg, dg, (i =1,2, 3)

be the intrinsic metric on X and

ds =g &dx dx~ (a=0, 1,2, 3)

(2.1)

(2.2}

2
Qrp

D d~
(2.10a)

(2.10b)
be the relevant metrics in V—. Now approaching X in
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where T& is the stress-energy tensor and use of the Ein-
stein field equations has been made. In this paper we
shall extend the matching proposed by Schucking to the
case when a nonvanishing cosmological constant is al-
lowed in the field equations and show that the O' Brien-
Synge conditions, Eqs. (2.10), are automatically satisfied.

III. THE COSMOLOGICAL LINE ELEMENT

Our first task, in order to apply the O' Brien-Synge con-
ditions method, is to write the cosmological metric in a
form in which the rotational symmetry is more evident.
Indeed the cosmological line element for a homogeneous
and isotropic model of the Universe can be written as
( G =c = 1 units are hereafter used)

tor R (t) and the radial coordinate p entering the cosmo-
logical line element by

r =R(r)p . (3.6)

One can therefore, in virtue in Eq. (3.6), write the cosmo-
logical line element in terms of the set (t, r, 8, y) of coordi-
nates as

(R dr rh dt—) z zds =dt- —T dco
R —er2 2

(3 7)

Here h (t) is defined by h (t) =dR (t)/dt and is given by
Einstein field equations. In the case that the stress tensor
for the cosmological fluid corresponds to a "pure dust"
we have

ds =dt R(t)—dx +dy +dz
(1+el /4)

(3.1)

' 1/2
dR (t) XA —eR +AR'

(3.&)

d 2

ds =dt R(t)— +p dc@
1 —ep

(3.2)

where the radial distance p is given in function of 1 by

where e is the curvature constant (0, +1), x, y, and z are
Cartesian coordinates, I =x +y +z, R (t) is the scale
factor, and the velocity of light c has been set equal to
one. It is easy, introducing spherical polar coordinates,
to get from Eq. (2.1}the line element in the form

X=8m. and A:——,'pR are two constants and p, is the
mean mass density of the Universe.

Now in Eq. (3.7) the radical coordinate is the same ra-
dial curvature coordinate as defined in the Schwarzschild
line element. However the cosmological metric in this
form is no longer diagonal. To get rid of the nondiagonal
term in Eq. (3.7) we introduce a "time curvature coordi-
nate" v as follows: first we invert the dependence of R
from t, i.e., t =t(R), then we transform R according to
the equation

and

l

1+el /4

de =d8 +sin 8dqP,

(3.3)

(3.4)

R =P(r, r) . (3.9)

Now the scale factor is a function of both curvature coor-
dinates (r, rJ; the same will hold for the cosmological
time t:

8 and g are the usual angular coordinates of a spherically
symmetric polar coordinate system. As is known the
cosmological metric Eq. (3.1) is hypersurface-
homogeneous and admits an isometry group transitive on
spacelike orbit. Following the classification of Kramer,
Stephani, Herlt, and MacCallum the group of motion al-
lowed by this metric is a G6 on a S(3) Now a subgroup
of G6 is the group of space rotation H, . The rotational
invariance of the cosmological line element is evident in
Eq. (3.2). The spherically symmetric line element corre-
sponding to the empty field solution of Einstein's equa-
tions with a cosmological constant A describing the
space-time outside a central body of mass m is given by
the Schwarzschild-de Sitter metric

t =T(r, r) . (3.10)

Of course now the curvature time coordinate r is not
more simply defined in terms of comoving observers as it
was for t.

One can easily check that if the transformation (3.10)
satisfies

BT T.=——
r

QHr

er rH— —2 2 2 2
(3.1 1)

where H(r, r) is obtained by h(t)=h(T(r, r))=H(r, r),
then the cosmological line element in curvature coordi-
nates ( r, r, 8, tp) becomes diagonal:

f2H2
ds — 1 ( T )2dr

P2 ~r2

ds =f(r) 1 — Ar dv—
d2 2d 2

r(e+H )— (3.12)

/~2
r

d7 7 (3.5) One can make use of the expression of H given by the
field equation and rewrite Eq. (3.12) as

where P(r) is an arbitrary function of the "Schwarzschild
time" ~ and A. =A/3.

This line element allows a G3 group of motion on a S~2~
which again admits as a subgroup the group of space ro-
tation H3. It is evident that the radial coordinate r of the
Schwarzschild line element is connected to the scale fac-

2

p3

1 — —A,r+Ar 2

(T, ) dr
p2

P2 ~r2

dl —7 d CO (3.13}
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where

T2 (g )& & (g )2
H ' ~ A —eP+ A.P3

(3.14)

The diagonalization condition Eq. (3.11), or, after ex-
pressing H as a function of P,

2rP r—P „
(3.15)

X A —eP —AP P er—
can be integrated and the general solution has the form

(P' cr—')(X A —eP+ kP')(g, )'
'(r) = 2

2
z XAr

3

(4.4)

which follows from Eqs. (3.6) and (3.8).
Being the angular part of metrics already identical by

construction, we need only, in order to complete the
matching, to impose the continuity of the g„coefficient.

We have at the boundary r =ro(r) that the continuity
of g„requires

F(ttp)+ f (P, r )=G(w), (3.16)
r =rp(v)

where F (ttp) is the function tabulated in the Appendix and
' 1/e

f(P, r )=ln 1— (3.17)

G is an arbitrary function of ~.
Partial differentiation of Eq. (3.15) gives directly P,

which enters the cosmological line element

dF ~"0 d"0
g, ~= dg„dro dr

where

2roK
(4.5)

XA eK—ro A,K ro—

The only term so far undetermined is g „but using Eq.
(3.15) and the matching condition Eq. (4.2), one has that
f(ro(r), r) is a constant and that

1 (XA eP+—AQ)(P . er )—P (3.18)

1/3
XA
2m

(4.6)

where g (r) =dG/d t.—
huss the cosmological line element can be expressed in

its final form in terms of curvature coordinates as

)(XA 's'(()+ ~~

XAr
4/2 1 — A,r—

and ro=droldr
Now substitution of Eq. (4.5) in Eq. (4.4) gives the ex-

plicit expression of the arbitrary function g(r) entering
the Schwarzschild —de Sitter metric. In order that the
matching be continuous across the surface r =ro(r) one
must have

2
' —1

1 —tt Ar dr —rdco-Ar
3

(3.19)
g(r) = K ro(ro) (1 EK —)

r

(XA pro A,K—ro) 1 —— —A,ro
rp

(4.7)

IV. THE MATCHING

To match the line elements Eqs. (3.19) and (3.5) we first
require the continuity of the metric coefficient across the
spherical surface which separate the empty space-time
spherical region around the Schwarzschild mass from the
cosmological Quid which pervade the remaining space-
time.

Let us call ro(r) the radius of this discontinuity surface
and P„ the value of the function P(r, r) evaluated along

0

this surface. Both ro(r) and P„(r) are functions only of
0

the time parameter ~.
We shall first examine the continuity of the g,r

coefficient. Looking at Eqs. (3.19) and (3.5) one immedi-
ately derives

~"o 2mx, '=' (4.1)

In the limiting case A, =0 one obviously recovers
Schucking's results.

It is now straightforward to verify that with the above
conditions on the metric coefficients the 0 Brien-Synge
conditions are automatically satisfied. In fact, stress ten-
sor being identically null in the interior region, Eqs. (2.10)
become simple identities once the cosmological stress ten-
sor for the pure dust is expressed in curvature coordi-
nates I r, rj.

As a last comment one should note that the matching
takes place along the world line of a typical comoving ob-
server, Eq. (4.3). Such a trajectory is free falling in both
cosmological and Schwarzschild coordinate systems as
can be seen from Eq. (3.8) which, taking into account the
condition (4.3), becomes the equation for radial geodesics
in the Schwarzschild —de Sitter metric, since t coincides
with the proper time along the boundary.

from which it follows

fp

1/3
gA

ro
2m

or, in our original coordinate system (p, t),
—1/3

gAp=const=
2m

(4.2)

(4.3)

APPENDIX

The explicit form for F(P) in Eq. (3.16) is

1
1

(P —M)
2(N+M') P'+MP+N

3M 3Mg(P)
2(N +2M) 2(N +2M)

(A1)
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where

M =S+T, X =S'+ T' —ST,
and

—2
arctanh —,b &0,M +2/

(A2)

5&0. %hen e= —1 we have

4
Q &0 if — &A &0,

9+2A 2

6=0 if A=— 4
9X A

g(p)= 2 6=0,
M+2/ '

—arctan, b, y 02 M+2/

6)0 if A)0 or A&-
97 A

(A3)
Finally when a=1 we have

6(0 if 0&A&
9X A

and

5=4% —M =3(S—T)

From the definition of S and T it follows that for e =0,

6=0 if A= 4
9+2A 2

4
A&Q if A&0 or A&

9g A
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