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The Henneaux-Gibbons-Hawking-Stewart canonical measure is calculated for spatially flat but
anisotropically expanding universes (diagonal Bianchi type I) minimally coupled to a homogenous
massive scalar field. Both inflationary and noninflationary solutions have infinite measure, giving an

ambiguous classical probability for inflation in these models. A one-parameter family of methods
for taking the ratio is described, and it is shown how it can give a probability ranging from zero to
unity.

I. INTRODUCTION

Our present Universe is highly isotropic on the largest
observed distance scales. One goal of quantum cosmolo-

gy is to explain this fact, ' but it is often hoped that a
purely classical explanation can be found, thus avoiding
our present uncertainties concerning the correct theory
of quantum gravity, needed for the very early Universe.

Probably the most popular explanation today for the
isotropy of the Universe is the inflationary cosmological
scenario. Since inflation is generally assumed to occur
when the curvature is at least a few orders of magnitude
less extreme than the Planck values, one might ask
whether infiation can provide a purely classical explana-
tion of isotropy. This would be the case if almost all of
the solutions of the classical dynamical equations of
cosmology had enough inflation to make the Universe
highly isotropic today.

In this paper we consider a simple cosmological model
allowing both anisotropy and inflation, namely, a diago-
nal Bianchi type-I homogenous spacetime geometry
minimally coupled to a homogenous massive scalar field,
which can drive Linde's so-called "chaotic" inflation. '

We find approximate solutions to the resulting dynamical
equations, some of which have a period of inflation and
others of which do not. In order to determine whether or
not almost all solutions have sufficient inflation to lead
isotropy we calculate the Henneaux-Gibbons-Hawking-
Stewart measure ' for the solutions.

Just as in the Friedmann-Robertson-Walker (FRW)
models with a massive scalar field, or with an R +eR
Lagrangian we find that both the inflationary and the
noninflationary solutions have infinite measure, so nor-
malizing the total measure to unity gives an undeter-
mined probability of inflation. If one restricts considera-
tions to a finite range of the parameters governing the
size and anisotropy of the Universe at an initial data sur-
face of fixed logarithmic expansion rate for the volume,
then both kinds of solutions have finite measure, so one
can try to define the probability of inflation for this re-
stricted set of solutions. However, the result depends
upon the initial data surface at which the restriction is
applied. Applying it at very early times, when the expan-
sion rate is much greater than the natural frequency of

the scalar field (i.e., the mass), gives the probability of
inflation near unity. The same restriction, applied at late
times, when the expansion rate is much less than the sca-
lar field frequency, gives a very small probability for the
occurrence of inflation at any time along a randomly
chosen solution from the restricted set. Thus one can ex-

plicitly calculate the probability of inflation to be either
large or small, depending upon the procedure used to
define an inherently ambiguous ratio of infinite quantities.

II. FIELD EQUATIONS
AND THEIR APPROXIMATE SOLUTIONS

In this paper we consider the diagonal Bianchi type-I
metric

ds = Xdt +(e~dx) —+(eddy) +( edsz) 2, (2. 1)

P=a+P++ &3P

y =a+P —&3P

5=a —2P+ .

Now the Lagrangian becomes

1 Q —le 3a( a 2+p 2 +p 2 +p
2 +2m 2/2)

(2.3)

(2.4)

(2.5)

(2.6)

Varying the action with respect to the lapse function N
gives the constraint

2 p2 +p2 +p2++2m2$2 (2.7)

where N, p, y, and 5 are functions of time t only. We as-
sume that this metric is minimally coupled to a real sca-
lar field P of mass m.

We use units such that 4n.G /3 = l. One can rescale the
classical action for that system, S = jL dt, by the

comoving volume of the three-dimensional spacelike sec-
tions. Then the Lagrangian is

~ ~

L= e~+r+ +P —X m P g2)
2% 3

Following Misner, ' instead of using variables p, y, and 5
we use auxiliary functions a, P+, and P such that
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+m 2$2e 3a (2.8)

one gets a timelike geodesic, with proper time t, in the
following conformally flat pseudo-Euclidean metric:

Once this constraint is imposed we may choose the lapse
function arbitrarily before solving the other equations of
motion. If one sets

Another way to classify the stages of the solution is to
categorize them by the behavior of the scalar field P,
which gives the stress energy tensor of a perfect fluid at
rest with respect to our coordinate frame with the follow-
ing density p and pressure P:

(2.23)

dg2 m 2$2e —6a( d~2+dp2 +dp2 +dy2) (2.9)
(2.24)

However, for simplicity we shall instead set N =m
Varying the action with respect to n, P+, P, and P and
using the constraint equation (2.7), one gets the following
equations of motion:

The scalar field P can be either strongly overdamped or
weakly damped, depending basically on the value of the
density p.

The first case, i.e.,

a+3a —3P =0,
P++3aP+ =0,
P +3aP =0,

(2.10)

(2.11)

(2.12)

p»9 (2.25)

we can divide into two subcases, depending on whether
the kinetic or the potential energy dominates. (1) If the
kinetic energy dominates,

jk+3af+P =0 . (2.13) pj»py ~ (2.26)

g2 e6a( j2 +j2 ) 1 e6a& ~pv (2.14)

where cr„„is the shear of the anisotropic metric (2.1).
Let us define the potential energy density p& of the sca-

lar field P as

2 (2.15)

the kinetic energy density p& as

Only three of these are independent of each other and of
the constraint (2.7). Equations (2.11) and (2.12) give con-
stants of motion which may be combined into one con-
stant:

then P =p and we are in the stiff regime. (2) If the po-
tential energy dominates,

pj&&py ~ (2.27)

H
H

pr+pj,
(2.28)

which is the inflationary regime.
The second case, in which,

then P = —p and we are in a "false vacuum" regime. If
the Universe is also matter dominated at this time one
gets

(2.16) p&&9 (2.29)

and the shear or anisotropy energy density as

p&
———,X e2 —6a (2.17)

Then the constraint, Eq. (2.7), can be rewritten in the
form

2 +2e —6a+p 2+$2

or, equivalently,

p=pr+py+pj ~

(2.18)

(2.19)

where p, referred to as the total density, is defined to be

p= —a1 (2.20)

py+p j»pr
and shear or anisotropy dominated if

py+ pp ((py„~

(2.21)

(2.22)

We will also use the Hubble parameter H =a and the
scale factor of the Universe a =e .

Our classical analysis of the time evolution of the mod-
el is generally based on Ref. 8. We say that the Universe
is matter dominated if

is called the dustlike regime. The scalar field P is weakly
damped and oscillates with a period roughly equal to 2m.
The pressure averaged over the period vanishes and the
average stress-energy tensor has e6'ectively the form of
perfect dust.

In our analysis of the solutions of the system of Eqs.
(2.10), (2.13), and (2.18), we first obtain approximate solu-
tions valid during the inflationary regime. Those generic
solutions depend on two parameters. Then we show that
any general solution can be approximated in the over-
damping regime by our formulas (possibly with a
different range of parameters), even if the solution never
undergoes inflation. Thus our approximations are valid
for any general solution until it enters into the dustlike
regime. Finally we investigate the dustlike region.

We assume that a & 0 so that the Universe is expand-
ing. Of course, Eqs. (2.10), (2.13), and (2.18) exhibit
time-reversal symmetry. If a is greater than zero at any
time it will always remain positive due to Eq. (2.18).

Only one of the two equations (2.10) and (2.13) is in-
dependent providing Eq. (2.18) is satisfied. If 2&0 we
can rescale that quantity to have any value by a constant
shift of a, which is a symmetry of the equations of
motion. Given an arbitrary X one can always shift the
time so that t =0 at the singularity, which will be as-
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sumed henceforth. Thus any general solution of the sys-
tem of independent equations (2.13) and (2.18), being a
system of coupled first- and second-order differential
equations, can depend on two parameters, in addition to
X.

Next we derive the approximate general solutions. The
asymptotic form of the solutions of Eqs. (2.10) and (2.13)
for small t is

a+3a =3go

has the solution

(2.33}

a=
I ko I

coth(3
I Po I

t) . (2.34)

to the other terms. If we include the —3P term in Eq.
(2.10) but assume for the moment that its variation has a
negligible effect, then

a =—,'lnt+ a&,

/=28 lnt+C,

(2.30)

(2.31)

When this "first improved" form of a is inserted into the
wave equation (2.13}, that equation has the exact hyper-
geometric solution

where a&, 8, and C are constants. The constraint equa-
tion (2.18) implies that

P(t) = A P, (t)+BP,(t), (2.35)

X =(—,
' —48 )exp(6a, ) .

where
2.32

This asymptotic form becomes invalid when the P and P
terms in Eqs. (2.10), (2.13), and (2.18) become comparable

I

and

P, (t)=(1 x)"F(—p, p; I;x ) (2.36)

„(I )'k

$2(t}=(l—x)" F(p,p;1;x)lnx+2 g x"
2 [P(p+k) P(p) —g(k+1—)+$(1)]

k=i
(2.37)

In these equations

x =tanh ( —,'Ppt),
1/2

p= — 1 — 1—
2 90o

(2.38)

(2.39) 3
I 4'p I I do I

(2.43)

« 3
I Pp I

(3
I Pp I

1 ) one gets the following approxima-
tion of Eq. (2.35):

and P is the Euler digamma function

d lnl (z)
z

dz
(2.40)

For real A and 8 the solution given by Eq. (2.35) is real
even if go&~4.

For 3
I Po I

t « 1 Eqs. (2.34) and (2.35) give the asymp-
totic forms (2.30} and (2.31), where the constant 8 is the
same as in Eq. (2.31), if

C = A +28 ln(3
I Pp I

) —28 ln2 . (2.41)

1

9/2
(2.42}

Then a and/or 3a wi11 become and remain compar-
able to 3go for 3 I/pl t)1. For 1«3 I/pit

Since P is not constant, it is not strictly correct to as-
sume P=Pp in Eq. (2.10) as was done to get Eq. (2.34).
As t~0 Eq. (2.35) gives P(t) diverging logarithmically
for the generic case of 8+0, which we shall assume un-
less explicitly stated otherwise. However, each of the
other terms in Eq. (2.10) diverges as (3t), so the loga-
rithmic divergence of P away from Pp has a negligible
effect on a(t) at t =0. In order that Eq. (2.33) remain ap-
proximately valid when the first two terms have de-
creased in magnitude to become comparable to 3gp, we
want Po to be chosen to be closely equal to P at that time.
Hence we must examine the behavior of the hyper-
geometric solution (2.35).

For the time being assume
I Po I

» 1 so

We have used the fact that Eq. (2.32) implies
I
8

I
& —,

'

and that $2(t)=O(
I Po I

') in this range of t. Since we
assumed that P =go, then A =go and

1
P(t) =go —

—,'sgn(Po)t+0
14o I

(2.44)

+—,'ln
g2

pp(1 —368 )
(2.45)

—1/3

a(t)=(sinh3
I Po I

t)' e '' " 1—
3

I 4'o
I

1/6

Po(1 —368 )

P(t)=PoP, (t)+8/, (t) .

(2.46)

(2.47)

This approximation is valid until t ) 3
I Po I

—1, when the
solution enters the dustlike regime, which is the sole final

This is the generic behavior of the scalar field during the

inflationary regime.
The solutions given by Eqs. (2.35}or (2.44) are obtained

under the assumption that a is given by Eq. (2.34) and
therefore are only approximate ones. Now that the be-
havior of P is better known, we use it to get corrections in
a. Assuming 1 «3 Po I

t «3
I Po I

(3
I Po I

—1) one gets
the following approximate solutions of Eqs. (2.10) and
(2.13):

a(t }= —' ln sinh(3
I Po I

t) ——' t ——' ln 1—
314o I
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a= —,'lnt+a& . (2.48)

With that substitution the wave equation (2.13) becomes
the Bessel equation of the zeroth order:

stage.
Now we discuss the generic behavior of those solutions

in the stiff regime. For early time t «
I Po I

' Eq. (2.45)
yields

For both I8 I
and I((}ol small this occurs late after the

scalar field begins oscillating (at t =1). In this case one
can use the WKB method to get an approximate solution
valid in the dust regime and match it to the asymptotic
behavior of the Bessel solutions (2.50) in the overlap re-
gion, where both approximations are valid, and get, in
the dust regime,

t) 2[ I t2+t2(t +t )2] I 4

0+ —,((+0 =0 . (2.49) 1 1icos t —80—————
4 8t 8(t+t )

For small arguments of the Bessel functions the right
choice of solution, namely,

$(t) =[go+28 ln(3
I Po I

) 2B—C ]Jo(t)+mBNo(t)

t+to
+ ln

4to
(2.57)

DJ, (t—)+n BNo(t), (2 50) where

where 8=0.577. . . is the Euler constant, gives the same
approximation as Eq. (2.47), up to terms of order of uni-
ty.

Any solution near the singularity has the generic form
and

2m'

9(D+nB )

m8
taneo=

(2.58)

(2.59)

a(t) =-,'ln, +O(t'ln't),
+1—368

(2.51)

P(t)=28 ln —+28 ln(3
I Po I

)+go+0(t ln t) .
2

(2.52)

In this approximation neither a nor P depend on Po. At
this stage the shear density px and the kinetic energy den-
sity p& are roughly proportional to each other:

This approximation can be used for t && to.
(2} For the solutions that undergo inflation a similar

reasoning is not applicable since the assumption p& «p&
that leads to Eq. (2.35) and therefore to Eqs. (2.45) and
(2.47} is no longer satisfied near the end of inflation.
There are many different reasons ' "" to desire a large
amount of inflation, corresponding to large

I Po I
. There-

fore we consider the case
1 —368

18
(2.53) 1

3I~ I

« lkol— (2.60)

28
pj, =

whereas the potential density p& is equal to
I

(2.54) or, equivalently
I Po I » —,'(1+~5). Assume for the mo-

ment that the solution is matter dominated. Then the
Universe begins to inflate at a time t] that can be very
roughly estimated by

p&= —,
' 28 ln —+28 ln(3

I Po I )+((}o (2.55)
1

31((}oI

(2.61}

which is negligible by comparison during this stiff regime.
As the time goes by both shear and kinetic energy de-
crease simultaneously with a and finally lead to a stage
when the stiff regime ends. For our solutions the choice
between the two possible consequent ways of evolution
depends on the parameter

I Po I
.

(1) If
I Po I

is small, namely,

-3I@ol —1
1

0
(2.56}

the scalar field starts oscillating with a period roughly
equal to 2m. before the Universe could have undergone
inflation. In general, we have two subcases. If the solu-
tion starts as a matter-dominated one, it exhibits the
same basic properties as the flat FRW models discussed
in Ref. 8. If the opposite, i.e., if the solution starts as an
anisotropy-dominated one (8 « —,'), then one can use Eqs.
(2.51) and (2.52) until px=p&.

The solution ceases to be anisotropy dominated at time
t =(2m. l9)(HB +D ) ', where D is given in Eq. (2.50).

and undergoes inflation until approximately

t2 =3
I

(('o
I

—1 (2.62)

Here the inflationary regime is defined as a stage at
which the size factor increases roughly exponentially,
that is, for our case, equivalent to the condition
—H &&H . This condition requires that the solution be
matter dominated during the inflationary regime.

Even if the solution starts as an anisotropy-dominated
one (8 «—'), one can still use Eqs. (2.45) and (2.47) in
those regimes where the variation of P is small compared
to P. Then the solution is valid during the stiff regime,
which ends at a time approximately equal to
t =2

I Bgo '
I
«(3

I Po I
) '. At that time the anisotropy

density still dominates, p&=8 p, so we enter the
"false vacuum" regime but not quite yet the inflationary
regime. The solutions given by Eqs. (2.51) and (2.52) are
still valid until the matter dominates. This happens at a
time roughly equal to t =(3

I Po I
) ', when the solutions
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become invalid. During the short transition period be-
fore the onset of inflation the solution must become
matter dominated, since from Eqs. (2.45) and (2.47), we
have in the inflationary regime (in which both equations
are again highly accurate)

pr+pj—3 (2.63)

Q2

a&
=

I do I
'"exp(-,'0'o» (2.64)

to within factors of order unity. This result is the same
as for the FR%' models.

Another way to describe the behavior of the solutions
is to use new dimensionless variables x, y, and z defined as

During inflation the ratio pxlp& decreases exponentially,
and any solution must remain matter dominated at that
stage. Therefore after inflation ends the model should ex-
hibit the same properties as the flat FRW model present-
ed in Ref. 8. If

I Po I
»1, then Eq. (2.47) gives the in-

crease of the size factor from a& at the beginning of
inflation, at time t

&
defined by Eq. (2.61), to az at the end

of inflation, at time tz given by Eq. (2.62), as

FIG. l. The trajectories of the solutions in the variables x
and y.

where p= —,'a is the total energy density and po is its
value at the end of inflation. The value of po is of order of
—, and depends on the precise criterion for the inflation.
From our definitions of the inflationary and dustlike re-
gimes, inflation ends at, approximately, t =3

I Po I

—1

and po is —',. Thus for
I Po I

»1 one has
(2.65)

z(po)=9+1 —368 exp( —9tI}o) . (2.74)

(2.66)

—3Q

(2.67)

The system of Eqs. (2.10), (2.13), and (2.18) now becomes

Let us assume that the solution undergoes a large
amount of inflation, i.e., I Po I

»1. From the preceding
considerations the Universe is very nearly isotropic at the
end of inflation. Then it is well motivated to use the
analysis of the dustlike region for the flat FRW metric
given in Ref. 8. If we define 8 by

x =y —3ax (x —1),
y = —x (1+3axy),
z= —3Qx z

(2.68)

(2.69)

(2.70)

tan8= —,
x

the result of that analysis is that

(2.75}

provided O=t3 —t+0 7t —t3
(2.76)

ey2 —6a
Q

2

x +y +z =1.

(2.71)

(2.72)

and

p = —,
' (83—8+ —,

' sin28)

1/3

a, (r r, )'~ . —
4

(2.77)

(2.78)

' 1/2

z (P }=z (Po)
Po

(2.73}

Some sample trajectories for that system are presented in

Fig. 1 which is a projection of the unit hemisphere onto
the xy plane. Except for a set of measure zero, each solu-
tion starts at x =0 and ends circling around and getting
closer and closer to the equator. The inflationary solu-
tions pass through a small region near the points x =+1,
y =0. In those regions, at which

I
x

I
«1, Iy I «1, the

solution spends a long time being in the inflationary re-
gime. After the inflation ends the scalar field starts oscil-
lating making the trajectory circle round the sphere near-
ly at the equator. At this stage (9/2)$0

83(go) —8,(~)=argo e
a&

(2.79)

where v is a constant to be obtained numerica11y. Similar
considerations for the Po of the opposite sign give the op-

The parameters t3, 03, and A, are discussed in Ref. 8. It is
argued that although t3 diverges as

I Po I
is taken to

infinity, the remaining parameters, A, and 83, tend to finite
limits. Our parameter k is the same as in Ref. 8 to within
a factor which slightly depends on the initial shear densi-
ty but is always very close to unity for large

I Po I
.

Within the same accuracy the parameter 83(go) dilfers
from its limiting value 83( ~ ) by
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posite sign for v.
As in FR% models one can determine how much

inflation occurred by finding the di8'erence between actu-
al 83 and its asymptotic value 03(+00 ). Moreover, once

$0 is known, one can determine the initial ratio of the ki-
netic energy to the anisotropy energy by measuring the
anisotropy z and using Eqs. (2.73) and (2.74). Unfor-
tunately, this method does not seem to be of great use be-
cause of the extremely small actual value of z.

we change the variables p& and p& to X and J such

that

pp =Xs1~, (3.5)

pp =X cos+ . (3.6)

Then the measure on the surface p=const, integrated
over g, becomes

III. THE PROBABILIr Y OF INFLATION
)(2= —12mXdXRdp& AdP+ AdP Rdg . (3.7)

It has been long suggested (see Refs. 1 —3, and 12) that
shear of an anisotropic metric can be an additional factor
driving inflation. However, it follows from our approxi-
mate solutions (2.45), (2.46), and (2.47), that this is not ex-
actly the case, at least for Bianchi type-I models. The
condition under which inflation occurs (given by

~ $0 ~
&&1} does not depend on the shear on the initial

data surface at early time t. In fact, the ratio (2.64) of the
scale factors after and before inflation depends slightly on
the initial shear density, which is roughly

1 —36B
Pr=

2t
(3.1)

(3.3)

Since all solutions cross a surface of constant density p
once, that surface can be chosen as the initial data sur-
face I 6, which is assumed henceforth. Using the con-
stant of motion X defined as

& =pp +pp2 2 2 (3.4)

However, the increase of the size due to the shear is in or-
der of unity and is therefore comparable to various uncer-
tainties resulting from ambiguities in the definitions of
the beginning and the end of inflation.

Another interesting problem, stated in Ref. 8, is the
dependence of the probability of inflation on the chosen
model. It has been argued that additional degrees of free-
dom (such as nonvanishing shear) would not change the
fact that the measure of the inflationary solutions and the
measure of the noninfiationary solutions are both infinite.
For a fixed range of additional variables it was suggested
that the qualitative nature of FRW models would not be
destroyed. We examine this in great detail below.

References 6 and 7 give a canonical measure on the
space of solutions of a Hamiltonian system with an odd
number of constraints. Here we have one Hamiltonian
constraint on a symplectic space I „of dimension 2n.
The restriction to an initial data surface, in order to
count each solution only once, further reduces the dimen-
sion to 2(n —1), giving a subspace I „,. The measure is
then the (n —1)th power of the symplectic form pulled
back to I „

1 }(n —1)(n —2)/2( }n —1 (3.2)

In the case of a diagonal Bianchi type-I metric coupled to
a scalar field, n is 4,and the symplectic form is equal to

(o=dp Ada+dp& Ad(}()+dp~ AdP++dpp AdP

In order to compare this result to those of Ref. 8 we fix
the range of parameters P+ and P . The measure (3.7) is
then proportional to

(((,'=XdXAd(ge )Ad/ . (3.8}

Using the parameters of our approximate solutions (2.45)
and (2.47) we get, on a surface of fixed and very high den-
sity, that

((2'= +1 dXRdB Ad/0.
6X 2B

1 —36B 0
(3.9)

This expression is finite when integrated only over the pa-
rameter B, which has the range from ——,

' to —,'. However,
it diverges when integrated over (()0. Thus, even for a
fixed range of X the measure is infinite. This is what was
expected for this model —additional degrees of freedom
give rise to additional divergencies. To make a direct
comparison of our result to that of Ref. 8 we set

[g—
2(I)2( 1 36B2)]—1/6

4.=(t'0 .

(3.10)

(3.1 1)

Then, for a fixed range of X the measure (3.9) is propor-
tional to

3a, [Y)sgng, +(t),(1—X a„P, } '/ ]da„hdg, .

(3.12)

For X=O this is exactly the same as the measure on a
surface of fixed density for the FRW models.

Since the total measure is infinite the ratio of the mea-
sure of the inflationary solutions to the measure of the
noninflationary ones is ambiguous and depends on how it
is evaluated. To make this statement evident we first ana-
lyze the measure on a surface of (fixed) high density p and
then compare the result to that which we find for very
low density.

For a fixed range of a, the measure (3.8) on the initial
data surface of fixed p can be expressed in terms of "re-
scaled" variables x and y defined by Eqs. (2.65) and (2.66).
It is proportional to

p"=4(1—x )dx A dy . (3.13)
Let p be the least value of (t)0~ necessary to get
significant inflation. If, e.g., we require the increase of
the scale factor of the Universe to be greater than some
predetermined

=(1+»= 1(()01'"exp(-,'40) (3.14)
ai
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we choose P = [—,
' ln( 1+Z) ] ' . At constant density

p » —,'P all solutions that do not give sufficient increase
of the size factor are in the stiff regime described by our
approximate solutions (2.51) and (2.52) and lie within a
narrow strip bounded by lines x =yt lntk3$ t, shown in

Fig. 1, where t =1/3v'2p. The rescaled measure p" of
this strip is 48/ t. The inflationary solutions lie outside
that strip and have the measure approximately equal to
3n4.8—$ t. Both measures are accurate to the terms of
order of t ln t or P t

~

Int ~, whichever is greater.
Thus, the ratio of the measures of the inflationary solu-
tions and the noninflationary ones, determining the prob-
ability of inflation, is

P I 3m v'2p —1)p1 .
PNI

(3.15)

z (27
2

exp( ——',P ) . (3.16)

The angular coordinate 8, defined by Eq. (2.75), is a func-
tion of the density p, and of the parameters Po and 8. It
is given by Eq. (2.77), in which 83 depends on Po and 8.
For a large amount of inflation (e.g., for large

~ $0 ~
), the

shear becomes extremely small by the time of the dustlike
region, so the dependence of 8 and 83 on B is very weak.
We will not consider this dependence. In the narrow an-
nular region near the equator the measure (3.13) on the
sphere has the leading term equal to

This is essentially the same as in the FRW case, up to a
factor of ~4. This ratio depends on the density p on the in-

itial data surface because we fixed the range of variables
a, p+, and p to get a finite total measure. If we assume
a uniform distribution of the initial data on the hypersur-
face p=const » —,'p~ within the fixed range of a, p+, and

p, it is highly probable to get an inflationary solution.
Now, let us consider the measure on a hypersurface of

fixed, but very low, density, p ((—,'. At this density all the
inflationary solutions are in the dustlike regime well after
the end of inflation, which happens approximately at
p= —,'. Therefore the solutions are given by Eqs. (2.73),
(2.76), and (2.77). The inflationary solutions (with

fQ ~
&&P ) lie near the equator of the hemisphere on

Fig. 1 and have
1/2

lines 8=8(ao,p)+8(g, p) and the second one obtained

by P —+ —(I). The measure of those regions is equal to

pl' ——1458vpg 'exp( ——", P ) « 1, (3.18)

Pi
II

I NI

486
vpP exp( ——,P )

—9
486

VP a,
(3.19)

and is negligibly small for large P and small density p.
This is exactly the opposite to the result obtained at high
densities. This result is similar to that of the Friedmann-
Robertson-Walker case in that both give small probabili-
ties of inflation at low density p and for a large
inflationary growth factor a2/ai, but here the growth
factor occurs in the —9 power rather than to the —3

power, and there is also a factor of p which is absent in

the FRW case. This latter factor means that at fixed

a2/a„ the probability of inflation in the Bianchi type-I
case can be calculated to be arbitrarily low, by choosing p
small enough, whereas in the FRW case the probability
approaches a (very small) constant as p is taken toward
zero. Thus by varying p from infinity to zero, we can
vary the probability of inflation, calculated by our pro-
cedure, from unity to zero. This behavior clearly exhibits
the ambiguity in the probability of inflation in this classi-
cal Bianchi type-I cosmology.

and tends to zero as P is taken to infinity or the density

p tends to zero. This behavior is different from the be-
havior of the analogous measure on the FRW models,
where the measure tends to a nonzero limit as p tends to
zero at fixed P . In our case the width of the annular re-

gion decreases with p decreasing and so does the measure
of the inflationary solutions. However, the angles in
which the inflationary solutions lie do not depend on the
density p. Those angles cut out a fraction of the cir-
cumference which is the same as that for the FRW mod-
els.

To estimate the probability of getting a solution which
had undergone a satisfactory inflation one can find the ra-
tio of the measure of the inflationary solutions to the
measure of the noninflationary ones, which is equal to

p"=4sin Oz dz hdtv . (3.17) ACKNOWLEDGMENT
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