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Dynamical chiral-symmetry breaking and determination of the quark masses
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Using an effective-potential approach for composite operators, we study dynamical symmetry
breaking in QCD-like theories with massless quarks. The analysis is extended to massive quarks in

QCD with three flavors and the masses of the pseudoscalar-octet mesons and their decay constants
are calculated. Renormalization-group corrections are taken into account. The effective potential
depends on the standard parameters of QCD: AQco m„, md, nt, and on a mass scale p, which

discriminates between the infrared and the ultraviolet regimes. A good fit for the meson masses

(agreement within 3%) and for the decay constants is obtained for the following values of the quark
masses at 1 GeV: m„=5.8 MeV, md ——8.4 MeV, and m, = '. 18 MeV. These values essentially agree
with the values obtained by quite different methods.

I. INTRODUCTION

In this work we will study the problem of chiral sym-
metry in QCD and the implications of its spontaneous
and explicit breaking.

From the vast amount of experimental information
available some highly fruitful ideas were developed long
before QCD was invented. We are referring to what is
known as "current algebra. " In this approach the quark
mass matrix appears only as a phenomenological quantity
to be related to observables through the commutators in-
volving the currents and the energy-momentum tensor.

The approximate SU(3) symmetry of the strong in-
teractions of u, d, s implies that the constituent masses of
the light quarks are not much different. The breaking of
this global flavor symmetry was identified with an octet
term. ' Isospin conservation is a much better symmetry
than the whole flavor SU(3). The approximate equahty of
the u and d constituent masses holds to a higher degree of
accuracy than for d and s. The masses of c,b, t are all
much larger than those of u, d, s and we do not see evi-
dence for flavor-SU(4) or higher symmetries in the ha-
dronic spectrum.

The smallness of the pion mass (M /M~ =0.14) makes
the pion very special among the hadrons. To understand
this point Nambu suggested that there is a limit in which
the pion is a massless Goldstone boson associated with
spontaneous symmetry breaking. To apply this idea one
first considers the chiral limit m„=md ——0 and ignores

LJ
~

0)&0, (1.2)

the Nambu-Goldstone realization. Two theorems are
specially relevant.

The first, due to Coleman, asserts that "the invariance
of the vacuum is the invariance of the world. " The phys-
ical states (including bound states) are then invariant un-
der the Wigner-Weyl symmetry transformation. It is
then strongly suggested that the SU(2)v is an approxi-
mate Wigner-Weyl symmetry and that the chiral
SU(2)L SU(2)R contains Nambu-Goldstone-type genera-
tors.

The second relevant theorem is due to Goldstone. It
states that for each global generator that fails to annihi-

strangeness. This system is classically invariant under
the global-symmetry group SU(2)L SU(2)tt U(1) t,
IgjU(1) „. The U(1) v is directly manifest as baryon-
number conservation, whereas U(1)„ is broken by the
Adler, Bell, and Jackiw axial anomaly. The
SU(2)t ——SU(2)L+tt invariance leads to isospin conserva-
tion and in fact the hadrons fall into easily recognizable
isospin multiplets. On the other hand, there is no evi-
dence for a chiral hadronic spectrum.

For a generator L' of a symmetry transformation of
the dynamical system we have two possibilities:

Lji0)=0,
the Wigner-Weyl realization, or
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~

8"J„"5(x)
~

nj. (p)) =5& f M e (1.4)

which expresses the property of the pions being the Gold-
stone bosons in the chiral limit. One defines

(1.5)

so that

(1.6)

The content of PCAC (partial conservation of axial-
vector current) is the identification of $1, (x) as the pion
field in the chiral limit.

The six generators of the chiral G =SU(2)L SU(2)z
group, Q'=QL +QR and Q5=QL —Qz (i =1,2, 3), are
such that

Q'i 0) =0,
Q',

~

0)&0 .

(1.7)

(1.8)

The isospin generators annihilate the vacuum and gen-
erate a subgroup H of 6, the stability group of the vacu-
um [here H =SU(2)~], while the generators Qs lie in the
quotient space

Qs ELieG/LieH . (1.9)

The symmetry G breaks down spontaneously to the sym-
metry H (Ref. 5).

The approximate SU(3) suggests an extended chiral-
symmetric limit corresponding to m„=md ——m, =0.
This extended chiral symmetry will be spontaneously bro-
ken and manifested by Goldstone bosons vr, E,g. In this
limit the global group is SU(3)I SU(3)„SU(1)~ with
SU(3) „=SU(3)I z realized in the Goldstone mode and
SU(3)v ——SU(3)L+„directly manifest in the "eightfold
way. " The explicit chiral-symmetry violation raises the
masses of the pseudoscalar mesons to finite values. The
violation of SU(3)v leads to mass splittings in the fiavor
multiplets. The term which explicitly breaks SU(3)L
SSU(3)~ U(1) v is

—(m„uu +mddd +m, ss) . (1.10)

Its effects are usually treated by "chiral perturbation
theory" which contains both "current algebra" and "ex-

late the vacuum there must exist a massless spinless bo-
son with the quantum numbers of that generator. We
may thus explain the smallness of the ~ masses if in the
limit m„,md ~0 the m becomes a Goldstone boson. The
mass of the physical pions then originates from the expli-
cit chiral-symmetry-breaking parameters m„and md.
Since m„and md are small, the pions are almost massless
and the axial-vector currents to which they couple are al-
most conserved.

Setting

(0
~

J„"5(x)
~

n J(p) ) =ip„fik~f e (1.3)

where i,j,k are isospin indices and J„& is the axial-vector
current, one has

tended PCAC. "
The main problem at this point is to understand the

dynamical reasons why SU(3)„manifests itself in the
Goldstone mode. In the nonrenormalizable pre-QCD
model of Nambu and Jona-Lasinio the cause of spon-
taneous symmetry breakdown was a direct strong
nucleon-nucleon attraction. The scheme was motivated
by the observation of an interesting analogy between the
properties of Dirac particles and the quasiparticle excita-
tions that appear in the theory of superconductivity of
Bardeen, Cooper, and Schrieffer (BCS). The characteris-
tic feature of the BCS theory is that it leads to the energy
gap between the ground state and the excited states of a
superconductor. This gap is due to the fact that the at-
tractive phonon-mediated interaction between electrons
produces correlated pairs of electrons, with opposite mo-
menta and spin, near the Fermi surface. In the same way
as the energy gap in a superconductor is created by an
effective electron-electron attraction, one may envisage
that the Dirac mass is also due to some interaction be-
tween massless bare fermions. In Ref. 8 a simplified non-
renormalizable model of a chirally invariant four-fermion
interaction is considered. The implications are that the
nucleon mass is generated by some primary interaction
between originally massless fermions and that the same
interaction is also responsible for the formation of pseu-
doscalar zero-mass bound states of fermion-antifermion
pairs which may be regarded as idealized pions. The
presence in the physical spectrum of massless particles is
a manifestation of spontaneous symmetry breaking. The
Goldstone bosons are here composite particles. The play-
ing of the Goldstone mechanism is visible in the effective
Lagrangian more explicitly than in the fundamental La-
grangian. The symmetry is spontaneously broken by the
dynamics, and one speaks of dynamical symmetry break-
ing (DSB).

Just as the effective electron-electron attraction in su-
perconductivity arises from the more fundamental
electron-phonon interaction, the Nambu —Jona-Lasinio
model can be taken as an effective low-energy description
of the strong quark-gluon gauge interaction. So the fur-
ther problem is to explain how the color forces lead to
the dynamical breakdown of chiral symmetry. In such a
way the problem is reduced to that of the dynamical real-
ization of a linear cr model. ' In the unstable (symmetric)
phase of the o model there are n scalar and n pseudos-
calar tachyons transforming as the (n, n ')8 (n *,n) repre-
sentation of the chiral SU( n )I SU( n )z group. In addi-
tion there are n left and n right massless fermions as-
signed to the (n, O) and (O, n) representations, respective-
ly. The occurrence of tachyons indicates that the vacu-
um of the normal phase with massless fermions is unsta-
ble. Under the vacuum rearrangement (phase transition),
the symmetry is lowered to SU(n)~IIU(1)~, and n —1

pseudoscalar tachyons go into massless Goldstone bo-
sons, whereas n scalars and one pseudoscalar [associated
with the U(1) „broken by the axial anomaly] are
transformed into massive bosons. Fermions acquire mass
due to the Yukawa-type interaction with scalar bosons.
In the framework of QCD, hadrons are represented by
bound states of quarks and antiquarks. So one must
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determine the forces which can lead to such tightly
bound states as tachyons and Goldstone bosons in the un-
stable and stable phases, respectively. One expects that
the binding of the fermions, coming from the strong ac-
tion of the color forces at distances of the size of the
bound bosons, results in the appearance of condensates
breaking chiral symmetry spontaneously.

The crude but basic idea is the following. Consider a
bound state of a pair of massless quark and antiquark.
Because of the uncertainty principle, the energy of the
ground state in a fully relativistic formulation will be
given by

E2 p2 g2 j 2 p2(1 g2)

where p and r denote the relative momentum and coordi-
nate, respectively, and g is the gauge coupling constant.
When g exceeds something of order of one, there will be a
tachyon bound state, indicating the instability of the vac-
uum. In order to cure this instability, the vacuum re-
arranges itself and gives mass to the quarks. The ex-
istence of a critical value for the coupling is essential for
the mechanism of dynamical mass generation.

The gauge coupling in quantum chromodynamics is
asymptotically free and becomes strong at large dis-
tances. So there will be a scale at which the ground state
of the theory has an indefinite number of massless fer-
mion pairs which can be created by the strong coupling.
Since we still expect the bound state to be invariant under
Lorentz and color-SU(3), transformations, it will only
contain pairs with vanishing total momentum, angular
momentum, and color charge but with a net chiral
charge. More generally the situation is that the vacuum

~

0) will have the property that an operator which des-
troys a fermion pair has a nonzero vacuum expectation
value

=0, (1.13)

=0. (1.14)

cannot be observed at a finite order in a loop expansion.
Necessarily it requires at least an infinite subset of all or-
ders (in a chirally symmetric theory the invariance of the
Lagrangian guarantees that the mass term in the fermion
propagator will never appear in any finite order of pertur-
bation theory). One needs an approximation scheme that
preserves those nonlinear features of field theory which
lead to the relevant cooperative effects. With the
effective potential series, as introduced by Jackiw, it is
possible to sum large classes of ordinary perturbation-
series diagrams so one has a formalism specially ap-
propriate for the study of DSB.

In the present case one expects that the breaking of the
theory is due to the formation of bound states (conden-
sates) playing the role of the eleinentary scalar fields P.
So one needs an appropriate generalization of the
effective potential for composite operators. This was in-
troduced by Cornwall, Jackiw, and Tomboulis' (CJT).
The idea is to introduce, inside the generating functional
of the Green's functions of the theory, sources J(x,y)
coupled to the composite operators one is interested in,
and then to Legendre transform to a generalized effective
action. The functional I one obtains for a scalar theory
depends not only on the expectation value of the scalar
field P, (x) but also on G(x,y), the expectation value of
T[$(x)P(y)], and it represents the generating functional
in P, of the two-particle-irreducible Green's functions ex-
pressed in terms of the propagator G. [The conventional
effective action is merely 1 ($„6)at J(x,y)=0.] Physi-
cal solutions must satisfy

(Q
~
VL, +~i, ~

0)=(0
~ %~,+II,

~

0) =U5, i, . (1.12)

To carry out the analysis one has first to decide how to
perform a quantitative computation of chiral-symmetry
breaking. Basically we need to test whether the energy of
the vacuum is lowered when fermion bilinears acquire a
nonzero vacuum expectation value. The standard
method, when the quantity acquiring a vacuum expecta-
tion is a scalar field P, is to evaluate the effective poten-
tial. " The main property of the effective potential is that
it turns out to be equal to the energy of the vacuum un-
der the constraint that the vacuum expectation value of P
has some definite value P, . So one only needs to mini-
mize this functional with respect to P, in order to deter-
mine the vacuum value of P and the various phases of the
theory.

A series expansion for the effective potential was de-
rived by Jackiw. ' Each order of the series corresponds
to an infinite set of Feynman diagrams with a fixed num-
bers of loops. This functional evaluation of the effective
potential is very useful, since it is important to be able to
study the higher-order multiloop graphs, if not explicitly,
at least in general terms. In fact there exist phenomena
which cannot be easily seen in perturbative series. A
clear example is the formation of bound states, which

Equation (1.13) reproduces the equations of motion,
while (1.14) is nothing but the Schwinger-Dyson equation
for the full propagator G. This formalism is thus espe-
cially appropriate to the study of dynamical-symmetry
violation, characterized by the fact that one may have for
(1.13) and (1.14) the symmetric solution for $„$,=0,
and a symmetry-breaking solution for G.

In Ref. 13 a formal series expansion was derived for
the generalized effective action consisting in a systematic
resummation of graphs with a fixed number of loops. So
one has to evaluate I cJT to a certain loop order and
derive the stationary conditions given by Eqs. (1.13) and
(1.14} for vanishing sources. A nonsymmetric solution of
Eqs. (1.13} and (1.14) for the composite operator G is a
signal for dynamical symmetry breaking.

For example, in the case of spontaneous chiral-
symmetry breaking (XSB), a11 this procedure is equivalent
to turning on some external field (analogous to a magnet-
ic field orienting a potentially ferromagnetic system) cou-
pled to the bilinear (i'), construct the ordered vacuum
in the presence of this field, and then see if the vacuum
remains ordered when one turns off the field. The vacu-
um expectation value of the composite operator ( Pf) is
the order parameter characterizing the phase transition.

However, as it has been pointed out in Refs. 14 and 15,
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the CJT functional has an intrinsic defect: it is not
bounded from below. In particular, in the case of a
SU(N) ferinion gauge theory, a recent detailed numerical
study' shows that all chiral-symmetry-breaking station-
ary points are saddle points. This is a very unpleasant
property if one wants to perturb the vacuum of the
theory to find its excitations.

To cure this instability probleIn of the CJT formulation
a modification of the CJT effective action has been intro-
duced, which corresponds to a different choice of the
source-dependent term. ' ' The modified functional has
the same stationary points as that of CJT, but does not
suffer from the problem of unboundness from below, and
has also the property that the symmetry-breaking solu-
tions of the Schwinger-Dyson equation for the propaga-
tor correspond to minima. The main difference with
respect to CJT resides in the choice of the dynamical
variables. In the case of fermionic gauge theories, the
CJT effective action is a functional of the full fermion
propagator 5, while the modified effective action is com-
pletely expressed in terms of the fermion proper self-
energy X.

We have applied the modified effective action formal-
ism to the study of dynamical breaking of chiral symme-
try in QCD-like gauge theories. Our main hypothesis is
that the relevant contribution to the XSB phenomenon
comes from relatively short-distance effects (this kind of
problem has been considered also in the lattice calcula-
tion frainework' ). This assumption will be mainly
justified by the numerical results obtained in this ap-
proach, and it will allow us to evaluate the effective ac-
tion at the two-loop order. Our strategy consists in intro-
ducing a parameter p as an infrared cutoff. Practically
we have taken the self-energy of the fermions constant
below p, and above we have used the behavior suggested
by the operator-product expansion (OPE). The fermion
self-energy is expressed in terms of the renormalized fer-
mionic condensates. The condensates are indeed our
variational parameters, to be determined by looking at
the minimum of the generalized effective potential.

For a first approximate understandingi7, 2o, zi we have
discussed the so-called "rigid case," in which the loga-
rithmic corrections coming from the renormalization-
group analysis were neglected. In this approximation it is
possible to derive analytically the complete expression for
the effective potential at two fermion loops. The result is
that in the case of massless fermions, the theory has two
phases: the chirally symmetric phase and the phase bro-
ken into the diagonal flavor subgroup whenever the
gauge coupling constant exceeds a critical value. For
massive quarks it is necessary to specify the renormaliza-
tion of the composite operator wave function. This leads
to a condition equivalent to the Adler-Dashen require-
ment in the limit of vanishing quark masses, and also en-
sures the absence of spontaneous breaking of parity. In
this framework the lowest vacuum corresponds to a local
minimum of our effective potential, and from this it is
possible to calculate the masses of the pseudoscalar
mesons. They are simply related to the second deriva-
tives of the effective potential which, in our mode1, are
indeed positive definite (our stationary points are mini-

ma). This first approach, in QCD with three flavors, al-
ready gave ' a good fit to the pseudoscalar-meson masses
(singlet sector excluded) giving rise to the quark mass ra-
tios

md /m„= 1.94, m, /md ——21.7,
(m, —m )/(md —m„)=43. 14 [m =(m„+md )/2]

to be compared, for example, to the respective values
1.76+0. 13, 19.6+1.6, 43.5+2.2, given in Ref. 22.

For a complete calculation one has to use the gauge
coupling constant and the fermion self-energy corrected
by the renormalization-group analysis in the leading-
logarithmic approximation. For massless quarks we find,
in particular, that, when the leading-logarithmic expres-
sions are used for both g and X, XSB does occur in QCD
with three flavors for

as= &0 73
g'(p, )

4m.
(1.15)

with a U(3) i residual symmetry. '

For the massive case a preliminary presentation has
been given in Ref. 23. We must evaluate the effective po-
tential, a functional of the proper fermion self-energy X,
in QCD with three flavors, in the general case in which
both spontaneous and explicit breakdown of the chiral
symmetry are present. The calculations are in the two-
loop approximation, use is made of the Landau gauge,
and the renormalization-group-improved expression for
the gauge coupling is used. From the analysis of the

asymptotical equations satisfied by the Green's functions
we deduce the form of the test function to adopt for X.
We assume a constant behavior in the infrared region of
momentum and a decrease as 1/p (logs) for p &p, , con-
sistent with the OPE analysis. By substituting in the
effective action we find an expression which is ultraviolet
finite. This fact is connected with the use of
renormalization-group-improved expressions for X and g,
which completely regularize the theory in the two-loop
approximation considered. However a finite part of the
effective potential remains again to be fixed through a
suitable normalization condition. The natural choice
comes from the expression of the effective potential for
small masses and, in this limit, it is equivalent to the
Adler-Dashen requirement. Our method then consists in
making a convenient Ansatz for X in terms of a set of pa-
rameters related to the fermionic condensates and in
minimizing the effective potential with respect to these
parameters. We find that, similarly as for the massless
case, the effective potential evaluated at the minimum
decomposes into the sum of separate contributions, one
for each flavor. We determine in this way the values of
the condensates for the quarks u, d, and s at the
minimum. They depend on the parameters of our model:
the renormalization invariant mass AQcD the three quark
masses m„, md, and m„and the further scale p we have
introduced in order to separate the infrared from the ul-
traviolet region of momenta. Our task is to determine
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these parameters from the experimental data. We can
calculate the masses of the pseudoscalar mesons (pseudo-
Goldstone bosons) and we can derive their decay cou-
pling constants by following the treatment of Ref. 24.

Necessary ingredients are the normalization of our
pseudoscalar dynamical variables and the expression for
the vertex functions of the pseudoscalar composite fields.
The decay constants are then evaluated from the cou-
plings of the mesons

~

m ) to the axial-vector currents
J„'~(x) (j,k =1, . . . , 8). (The mixing in the 3-8 sector
has been explicitly taken into account. ) We have in this

way a system of coupled equations which allow to deter-
mine the parameters of the model by an iterative pro-
cedure. We obtain a very good fit for the meson masses
(agreement within 3%) and for the decay coupling con-
stants for the following values of the quark masses at 1

GeV:

m„(l)=5.8 MeV, md(1)=8. 4 MeV,

(1.16)

m, (1)=118MeV .

These values agree with the values obtained by quite
different methods, except for certain sum-rule estimates
of m, (1) which give larger values.

We have tried to make this paper self-contained as
much as possible, also at the expense of repeating some
material which can be found in the references. In Sec. II
we review some fundamental aspects of alternative forms
of the effective potential for composite operators and we

look at the nature of their stationary points. Then we

derive our modified version for the effective action and
discuss its properties. In Sec. III we evaluate the effective
action for a QCD-like gauge theory of massive fermions.
In Sec. IV we derive the ultraviolet behavior of the fer-
mion self-energy in the general case in which both spon-.
taneous and explicit breakdown of the chiral symmetry
are present. We also make some comments in favor of
the use of the so-called "regular solution" for the self-
energy. In Sec. V we discuss the variational Ansatz for X,
and we introduce a suitable renormalization condition for
our functional. In Sec. VI, in order to better understand
the pattern of the dynamical breakdown of the chiral
symmetry, we analyze the properties of the massless
effective potential. Section VII is devoted to the compar-
ison with other studies of the dynamical-symmetry-
breaking phenomenon. In Sec. VIII we discuss the mas-
sive case for QCD with three flavors. Then we calculate
the masses and the decay coupling constants of the
octet-pseudoscalar mesons in terms of the parameters of
our model in Secs. IX and X, respectively. The numeri-
cal results are given in Sec. XI while in Sec. XII our dis-
cussion focuses on the comparison of the values we get
for the quark masses with the values obtained by different
methods. Conclusions are in Sec. XIII. In Appendix A
we show explicitly the cancellation of the ultraviolet
divergences in I, whereas Appendix B is devoted to the
analysis of some properties of the extrema of the effective
potential.

II. EFFECTIVE ACTION FOR COMPOSITE
OPERATORS, REVIEW OF ALTERNATIVE

FORMULATIONS

The main tool in the following analysis is a modified
version of the effective action for composite operators in-

troduced by Cornwall, Jackiw, and Tomboulis' (CJT).
The physical interest in the study of the effective action
and, more particularly in the study of the effective poten-
tial, is the fact that the minima of this functional deter-
mine the possible vacua of the theory. This is particular-
ly relevant when one expects a nontrivial vacuum as in
the case of spontaneously broken symmetries. When the
breaking is due to the formation of condensates the tech-
nique of the effective action for composite operators turns
out to be very useful. In fact it consists in a systematic
resummation of graphs which is capable of describing
nonperturbative phenomena in a sequence of approxima-
tions.

The more direct way to construct an effective action
describing the interactions between the elementary de-

grees of freedom of the theory and the collective modes
(composite fields) is to introduce an auxiliary field in the
generating functional and to develop a loop expansion.
This approach leads to the so-called "collective vari-
ables" or "auxiliary field" (AF) method (see, for example,
Ref. 25). Unfortunately the AF technique suffers from
severe limitations because it can be usefully applied only
in the case of quartic interactions. A more general for-
malism to study dynamical symmetry breaking was intro-
duced by Domokos and Suranyi, and by Cornwall,
Jackiw, and Tomboulis. ' In this method, one introduces
a "classical" bilocal field, which turns out to be the one-
particle propagator of the theory, and defines a general-
ized effective action such that its variations with respect
to the usual "classical" fields and to the bilocal fields

reproduce the equations of motion of the theory and gen-
erate the Schwinger-Dyson (SD) equations for the propa-
gators (gap equation). This seems to be the most efficient

way at our disposal to discuss DSB.
We will review the AF and the CJT methods for a fer-

mion gauge theory showing that, in the lowest approxi-
mation, these formulations are equivalent, in the sense
that the stationary points in the two cases give the same
dynamics. We will then introduce a modified version of
the CJT functional having the same local extrema as the
CJT one, but a different asymptotic behavior, and which
is bounded from below. ' ' The main advantage of the
new form of the action is that the symmetry-breaking
solutions of the gap equation correspond to minima.
This can be seen from the explicit expression and from
the general analysis performed by various authors.
This stability property is essential if we want to do some-
thing more than just finding the extrema of the effective
potential and in particular if we want to perturb the vac-
uum to find its excitations.

Let us recapitulate here the salient points of the CJT
formalism in the case of a fermion gauge theory in its Eu-
clidean formulation. The technique consists in introduc-
ing a bilocal source J (x,y) coupled to the operator
P(x)g(y) in the generating functional Z( JT[J]:
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Z [J]=

(2.1)

pression for J:
&IcJT

&

6I z
(2.8)

/JAN= fd x d y f~(x)J &&(x,y)P&(y), (2.2)

where a and P are collective indices for spinor, flavor,
and color variables. Also we have not explicitly intro-
duced in ZCJT[J] the usual linear sources coupled to f
and P because we are not interested in their eff'ects. Let
us define the "classical" bilocal field S

~cJT
J = —S (2.3)

where iV is a normalization constant (which will be omit-
ted from now on), and I ( g, g, 3„)is the classical Euclide-
an action for the gauge theory evaluated in the Landau
gauge (see Sec. III). Clearly I also contains ghost terms,
but, for the sake of simplicity, we have written down only
the dependence on the fermion and gauge fields. Use is
made of the shorthand notation

From Eq. (2.8) the SD equation follows by setting J =0.
It is clear that

(2.9)

represents the fermion self-energy when the source is
turned off. We will evaluate I 2 at the lowest order, that
is, at the two-loop level, corresponding to a single-gluon
exchange (Fig. 1). This approximation will be improved
by taking into account renormalization-group effects,
namely, by using the running coupling constant at the
vertices (see Sec. III). The important fact is that I z in
this approximation is a quadratic expression in S. In fact
(5 I z/5S ) is nothing but the gluon propagator plus pos-
sible corrections not explicitly involving fermions. For
this reason it follows (the trace operation is understood)
that

and introduce the effective action I cJT as the Legendre
transform of the generating functional of the connected
Green's functions WCJT ———inZ( JT.

51 1 5I
r, = —s s= —s

2 5S' 2 5S
(2. 10)

& ~cJT
~CJT[S] ~CJT 5J J .

It follows that

51'cJT

S
=J .

(2.4)

(2.5)

or

5'r, 51.,
5S

S= (2.11)

The Legendre variable S conjugate to J will be the CJT
dynamical variable. For physical processes (J =0), S has
to satisfy the stationary condition for the effective action,
5I CJ'r /5S =0. We will show that this is nothing but the
Schwinger-Dyson equation for the fermion propagator,
and so S coincides with the exact fermion propagator
when the source J is turned off.

If one is interested only in translationally invariant (TI)
solutions of the SD equation, one can take the composite
field S to be a function of the space-time difference
(x —y). In this way an overall space-time volume term
factorizes out and the effective potential for composite
operators VcJT may be defined as

It is easy to see that the approximation we are using for
I z corresponds to formally integrating over the gluon
fields in the generating functional Z and then to expand
up to the fourth order in the ferrnionic fields. In this way
one obtains an effective four-fermion interaction and, in-
stead of using I cJT one can use the effective action ex-
pressed in terms of a collective variable, the auxiliary
field 4 related to the bilocal ferrnion-antifermion com-
posite field. The strength of the effective four-fermion in-
teraction, within the specified approximation, is given by
(5 I 2/5S )

V( JT[S]n=r,»[s] lT1~ 0= f d X (2.6)

which, in the CJT formulation, is equivalent to consider
the generating functional for zero-momentum two-
particle-irreducible Green s functions, expressed in terms
of the propagator S.

I cJf (and equivalently Vc&T ) can be expressed in the
Euclidean space as the following forrnal series:

VYYYYY%

I CJT(S)= —Tr lnS ' —Tr(SO 'S) —I"2(S), (2.7)

where So is the free fermion propagator and I 2(S) is the
sum of all the two-particle-irreducible vacuum diagrams
of the theory evaluated with fermionic propagator equal
to S. By inserting (2.7) in (2.5) one gets the following ex-

FIG. 1. I", in the lowest-order approximation for a vector
gauge theory. The solid line represents a ferrnion propagator
equal to S.
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One makes use of the functional identity

+exp ——,
' 4— D 4— =const, 2.12

where D is an arbitrary operator. In order to eliminate

the quadrifermionic term, we will choose D =5 I z/5S .
One then defines a functional ZAF depending on a bilocal
source J(x,y) which is now coupled to the auxiliary field

Z~F [J]=e "" = J 2)g2)g2)4 exp — I,ff(g, g)+ ,'(4 —pg—) (4 gp—) Jg&—
-~AF~J~ 5 I2

(2.13)

where I,z(g, g) results from the integration over the
gauge fields and from the expansion up to the fourth or-
der in the fermionic fields. From the equations of
motions for the auxiliary field 4 one gets

Then from Eq. (2.19) one gets

5 I2J= —Sp +
5S

51 2

5S2
(2.21}

4 &(x,y)=f (x)P&(y) . (2.14)

In this sense 4 can be identified with the operator gg.
In order to build up an effective action relative to the

auxiliary composite field, let us integrate on the fermion
fields

which gives 4, as a functional of J.
Let us look at Eqs. (2.8}and (2.21). They represent the

stationary conditions for 1CJT and I AF, respectively.
Switching off the source J and using Eq. (2.11) in (2.8}
they, respectively, read as

5 I 2
ZAF[J] =f$4 exp — —Tr ln So '+

S

+—4 0 —JC5S' (2.15)

512s-'=s-'+ 's
p

5 I2
S

(2.22)

(2.23)

If we make a stationary-phase approximation, i.e., a tree
approximation in the 4 field, we get

5 I2
WAF [J]= —Tr ln So

' +
S

5'r,
+ @p 4p —J@p

5S2
(2.16)

5 WAF
(2.17)

and

where 4p is the solution of the classical equation of
motion. One can Legendre transform W„„[J]in the usu-

al way by defining

This means that the CJT and AF formulations are
equivalent in the lowest approximation [which is the tree
approximation for the auxiliary field and the lowest non-
trivial (two-loop) order in the CJT formalism], in the
sense that S and 4, satisfy the same gap equation at the
physical point and so describe the same dynamics. How-
ever, the functional forms of I CJT and I AF are different,
and the effective actions for these two cases do differ out-
side the stationary points.

We can easily show that the difference between WcJT
and WA„ is a quadratic term in J(x,y) due to the fact
that the source in the generating functional is coupled to
f(x)P(y) in the first case, and to 4(x,y) in the second
case. If we start from Eq. (2.1) and use the same func-
tional trick (2.12), we obtain, after integrating over the
fermion fields,

from which it follows

5~~F
(2.18} 512

exp ' — —Tr ln Sp + 4+J
5S

5I AF

54, (2.19) 5'r,
+—4

5S
(2.24)

In the lowest-order approximation we can choose
By substituting Eq. (2.16) in Eq. (2.18) we ob-

tain the auxiliary field effective action in the tree approxi-
mation for the composite field 4, (Ref. 27):

5'r, ~ 5'r,
I ~„[@,]=—Trln So '+ @, +—e,5S' ' 2 ' 5S'

5I2
5S

(2.25)

If we use the invariance of the volume element under
translations, we can change the integration variable

' —1

(2.20) and get
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—~CJT 512
e ' = @exp ' — —Trln So '+

5S

5 I2
+—4 4+ —J

2 5S~ 2

52+

5S

xJ —J4

(2.26}

that is,

5 I 2
CJT AF+ 2 5S2

(2.27)

So, the whole effect of introducing the auxiliary field 4
and coupling a source to it is to add to 8'cJT a term with
a quadratic Jdependence.

We will see that this term is responsible for changing
the stability properties of the effective potentials in the
two formulations. In fact, let us introduce in the stan-
dard way the "auxiliary field" effective potential

V „[4,]A=I „[4,] i,, 0= Jd x . (2.28)

It is clear that, in the AF formalism, the second deriva-
tive of V~F [4, ] can be interpreted as the mass of the 4,
field. So, its positivity is a necessary condition for the va-
lidity of the composite field loop expansion. We will
show that the auxiliary field effective potential does have
a local minimum corresponding to the lowest vacuum of
the theory. On the other hand, even in the free field case,
VCJT turns out to be unbound from below (see Refs. 14
and 15). The absence of a lower bound and the related
saddle-point behavior for the solutions of the gap equa-
tion of VcJT is an intrinsic defect of the CJT formulation.
Haymaker, Matsuki, and Cooper' ' have shown that, in
the case of a SU(N) fertnion gauge theory, under certain
physical conditions imposed on the solution of the gap
equation, the lowest-energy stationary point is a saddle
point for VcJT while it is a local minimum for VAF.

To determine whether a solution of the gap equation is
a local minimum, a saddle point, or a maximum, we need
to solve an eigenvalue equation for the curvature opera-
tor, which is defined by expanding the effective potential
around a solution X of the gap equation:

V(X+5X)= V(X)+—,
' J dp dq 5X(p )

Taking into account these properties of the CJT and
the AF effective potentials, we can introduce a further
functional which is a modification of the CJT one, but
which does not suffer from the problem of unboundness
from below. In particular our effective action will be as
general as the CJT action (not being restricted to the case
of four-linear interactions), will have the same stationary
points as I cJT and 1 AF, and it will have the same func-

tional form and therefore the same asymptotic behavior
as the AF functional whenever applicable. In this way it
will be clear that the instability due to the presence of
saddle points is an artifact of the particular choice of the
effective potential and that it disappears when one
chooses an alternative but physically equivalent form.

We have shown that 8'AF can be obtained by adding a
source-dependent term to 8'cJT Let us change the
definition of the source J(x,y),

5 I 2J= L.
5S

Then Eq. (2.27) can be rewritten as

512
W~F ——Wc,T

—I q(S+L)+I q(S)+ L,
5S

(2.30)

(2.31)

where we have used the formal series representation (2.7)
for I CJT. Substituting Eq. (2.32) in (2.31) one gets

W&F [L]= —Tr ln(S '
}—Tr(So 'S) —I z(S +L )

and

(2.33)

5S
5S s+L 5L

5I 2

5S

(2.34)

where we have used the property of I 2(S) of being a
quadratic functional of S [Eqs. (2.10) and (2.11)]. Let us
consider the explicit expression for 8'cJT in terms of
I cJT:

WcJT = I cJT—JS
5I 2=I cJT— S

5I2= —Tr ln(S ') —Tr(SO 'S) —I z(S) — L,5S

(2.32)

5 V
X z 2 5X(q )

5X(p )5X(q ) z

Let us insert (2.30) into the gap equation (2.8),

5'r. . . 5r,L=S ' —S
5S

(2.35)

+ 0 ~ ~ (2.29} Then, recalling that I 2 is a quadratic functional, that is,

It is possible to show that in the CJT case, the second
term in (2.29) can be negative or positive by choosing ap-
propriate variations 5X, i.e., the solution is a saddle
point, and also that the same solution of the gap equation
which is a saddle point of the CJT effective potential is
instead a local minimum of the AF effective potential.

5'r, 5r,
(S+L) 5S

it follows that

(2.36)
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5~AF
5L

5I 2 =X
I s+L

—=X
S+L

5I 2S, '=S-'+
S+L

So, by substituting (2.37) in (2.36), we obtain

(2.37)

(2.38)

effective actions describe the dynamics of the different
composite fields S and X to which the sources are linearly
attached.

A third alternative for the source term gives our result.
Since we want X to be our dynamical variable (and not
X), it is quite natural to define a new action by simply
redefining S as (S +L) in (2.39):

5I ~= —Trln So '+
s+L

I2
+Tr

s+L
(S +L) —I,(S +L), (2.39)

where again Eq. (2.37) has been used. The diff'erent func-
tional form of I cJT and I „„is due to the use of different
sources, J and L, respectively. This means that the two

which means that the variable conjugate to the source L
in the AF formalism turns out to be X. Finally, let us
perform the Legendre transform of W~„[L] with respect
to L in order to get the "auxiliary field" effective action
as a functional of X= —(5I 2/5S)

I s+L.

~AF
I ~F[X]= WAF — L

5I i 51,
I [X]=—Trln So '+ +Tr S —I 2(S) .

(2.40)

This effective action was proposed in Ref. 17. It is clear
from the derivation that I ~„[X]and 1 [X]have the same
functional form. This means that the second derivatives
of the two effective potentials with respect to their
respective variables, evaluated with sources turned off,
are equal (X=X at the physical point). This makes sure
that our potential has local minima as stationary points.
There is now a general proof of this property, and also
our analytical and numerical calculations confirm the va-
lidity of the statement.

Let us now derive the relation between our functional
I and I cJ'r By using Eq. (2.8) in (2.7) one obtains

T

5r, 5r,
I cJT[S]=—Trln So ' + +J +Tr +J S —I i(S)

5I 2= —Trln So '+
5S

5I 2—Trln 1+ So '+
—1

5I 2J +Tr S +Tr(JS)—I 2(S) . (2.41)

J =Tr in[1+(S ' —J) 'J]

Then, if we use again (2.8), we may write
—1

5I ~
Trln 1+ So '+

=(S ' —X) ' —S —X
5X 5X

I i 5S
5S 5X

(2.47)

Then, the stationary condition 5I /5X=O leads to the
correct SD equation

=Tr ln(1 —SJ) ' . (2.42) S '=So '+X . (2.48)

Let us now insert (2.42) in (2.41) and compare with (2.40}:
Another good reason to use I instead of rcJT is related
to Eq. (2.38):

I'cJ&——I +Tr ln(1 —SJ)+Tr(JS) .

From Eq. (2.43) the following relations follow:

(2.43) 5W~F 5I 2 5WA„

5S SL
I cia' I

1=o=l"
I I =o ~

51'cn 5I
5S J o 5S J Q

However,

(2.44}

(2.45)

5 rcJT
S J o 5S J o

2 ~ 2
(2.46)

Furthermore, let us perform the functional derivative of
I as given in (2.40) with respect to X (X= —5I 2/5S):

5I
=X

I s+I.' 5S
(2.49}

which shows the simple relation between the self-energy
and the vacuum expectation value of the composite field
4 (4,=(4) }. It follows that a series expansion of the
effective action in X= —512/5S gives essentially the
one-particle-irreducible (1PI) Green s functions relative
to the field N, while a series expansion in S, as in the CJT
case, does not have such a direct physical interpretation.
In other words, X describes the physical excitations of
the theory around the vacuum, whereas an analogous sit-
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uation does not hold in the CJT formulation due to the
fact that (5 VcJr /5X ) is not positive definite.

III. THE EFFECTIVE ACTION IN QCD-LIKE
GAUGE THEGRIES

+ghost terms+gauge fixing, (3.1)

where 4 are n multiplets of SU(N), each of them assigned
to the fundamental representation of the gauge group,
and So is the free fermion propagator which, in a theory
renormalizated at the point p =p, has the expression

Sc(p) =
I Z~(p, A)[lP ™0(A)]j (3.2)

Here A is an ultraviolet cutoff, Z~()u, A) is the renormal-
ization constant for the fermion propagator, and

mo(A) =m(p, ) —5m(p, A), (3.3)

where m(p) is the n Xn renormalized mass matrix which
is responsible for the explicit breakdown of the chiral
symmetry and 5m(p, A} is the mass counterterm. In fact
we can write the Lagrangian in Eq. (3.1) as a sum of two
contributions:

X =SO—Zq, (P, A)qlmc(A)4, (3.4)

where Xo is invariant under the transformations of the
fiavor group U(n)r U(n)R [more precisely it is invariant
under the global chiral SU(n )I 8 SU( n )„and the
U(1)1+ii groups, since the divergence of the singlet
axial-vector current connected with the U(1)r z group is
nonzero even in the chiral limit, due to the axial anoma-
ly].

The expression to be evaluated is [see Eq. (2.40)]

5r, 5r,
I [X]=—Trln So '+ +Tr S —I z(S)

5S 5S

(3.&)

with

Let us evaluate the effective action for an SU(N)
QCD-like gauge theory within our modification of the
CJT functional formalism, in the realistic situation when
spontaneous and explicit breakdown of the global chiral
symmetry take place. The calculations are for 8=0 (8 is
the parameter connected with the axial anomaly).

The classical Euclidean Lagrangian density of the
strong interaction of the fermions %', mediated by a set of
vector gluons A„which are the gauge bosons of the sym-
metry group SU(N), is (here and in the following we will
use boldface characters for matrices in Qavor space which
are not proportional to the identity matrix)

X = %SO '4 igq—IA ++gauge terms

with X equal to the fermion self-energy function.
We will show that, in the chiral limit, the theory

possesses two phases (the chiral phase and the phase bro-
ken into the diagonal subgroup} and, in particular, that
spontaneous symmetry breaking occurs when the cou-
pling constant g exceeds some critical value. This spon-
taneous symmetry breaking is accompanied by n —1

composite Goldstone bosons which are each associated
with an unbroken generator of the coset space
SU(n}z8SU(n)„ ISU(n)r +n.

Actually the Lagrangian in Eq. (3.1) is not chirally in-
variant because of the quark mass term. However in the
dynamically broken phase one has dynamical generation
of fermionic masses due to the formation of quark-
antiquark condensates. For the sake of simplicity, we
will keep on calling this phenomenon spontaneous J'SB
even if, clearly, this term is no longer entirely appropri-
ate. In this case the particle spectrum contains pseudo-
Goldstone bosons which have acquired a mass induced
by the explicit chiral-symmetry breaking.

We assume that the main contribution to the effective
action for the spontaneous chiral-symmetry-breaking
phenomenon comes from short-distance effects. For this
reason we will introduce an infrared cutoff for the
confinement region and we will mainly focus on the
short-distance dynamics. In this range it is sensible to
perform a loop expansion of the effective action. In fact
for large momenta, in virtue of the asymptotic freedom of
the gauge theory, one can neglect the multiloop contribu-
tions and evaluate I 2 to the lowest order, given by the
graph in Fig. 1. Here one has to decide on the form of
the vertex and of the gauge field propagator. The
renormalization-group analysis and the asymptotic free-
dom suggest us to use the free expression for the vertex
and gauge field propagator improved by the running cou-
pling constant (see the next section). But, as far as the
vertex is concerned, the situation is more subtle because,
in principle, one can run in some difficulties in order to
satisfy the Ward identities. Let us examine this point.

We can express the inverse of the full fermion propaga-
tor in the following general form:

S '(p)=iZ(p )P —X'(p ) . (3.8)

This equation can be satisfied by taking

( — )
I =i@ + [i[Z(q, ) —1]q, i[Z(qz) ——1]q2

Then the Ward identity for the vertex function reads

(q, —q2)"I =S '(q&) —S '(q2)

=iZ(q
& )g, —iZ(q2 )q2 —X'(q f )+X'(q2 ) .

(3.9)

5I2
5S

(3.6)
—X'(q, )+X'(qz)I . (3.10)

S '(p)=SO '(p) —X(p) (3.7)

In Eq. (3.5) S is the full fermion propagator which, at the
physical point, satisfies the gap equation

However, in the evaluation of I z, I „is always saturated
with the gauge field propagator. Therefore, if we adopt
the Landau gauge, the gauge field propagator is trans-
verse and we can safely use the free expression for the
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XTr[S(p)T'y"S(q) T'y']D„„(p —q)

x fd'x, (3.11)

where T', a =1, . . . , N —1 are the Hermitian genera-
tors of the gauge group in the fundamental representa-
tion, g (p, q) is the running coupling constant, and

k„k„
2 g"—

2k k

In the region of momenta larger than the
renormalization-group-invariant scale of the theory Mo
(in QCD MO=A&cD) we will assume, in the leading-
logarithmic approximation, the following form for the
function g (p, q) (Ref. 30):

g'(p, q) =e(p q')g'(p)+e(q' —p')g'(q) . (3.1—3)

However, we know that the running coupling constant
g (p) becomes singular for p =Mo, a singularity due to
the use of perturbation theory in a region where the cou-

vertex. In other gauges the corrections to the free vertex
are needed in order to satisfy the Ward identity (3.9). For
this reason we shall prefer the use of the Landau gauge.
Also, as we shall see, there will be some other
simplifications in this gauge. For example, the wave-
function renormalization constant Z+(p, A} in the Lan-
dau gauge is equal to one in the approximation we are
considering. We remark that by itself, the phenomenon
of spontaneous chiral-symmetry breaking is gauge invari-
ant since the chiral group currents are singlets with
respect to the gauge group. As stated before we will con-
struct the effective action as a functional of X and we will
describe XSB with the help of this function which, at the
physical point, represents the dynamical fermion mass.
In the next section we will derive a relation between the
scalar part of the fermion self-energy and the condensate
(%%)„renormalized at the point p. So if one chooses
the vacuum expectation value ( V%')&, which is a gauge-
invariant quantity, as the order parameter, it is reason-
able that all the results one finds in such a picture are
gauge invariant. There is also a recent demonstration
that chiral-symmetry breaking occurs in vectorlike gauge
theories in such a way that the critical coupling constant
and dynamical mass function are gauge independent, at
least at the leading order. This fact ensures the gauge
independence of our results which are derived in the Lan-
dau gauge.

The expression for I z is then

1 dp dqp
(2m ) (2n. )

pling becomes strong. Unfortunately in Eq. (3.11) one
has to integrate upon all the range of momenta and con-
sequently one has to make an Ansatz for the coupling
constant in the infrared region. Since the attitude we
take here is that the spontaneous chiral-symmetry break-
ing is dominated by short-distance effects, we will substi-
tute the infrared behavior of g (p) with a constant value

by introducing a mass scale p characterizing the separa-
tion between the large- and the small-distance regions.
On the other hand, for values of p y p we will assume
the standard renormalization-group expression for g (p}
which provides an effective cutoff of the interaction at
small distances. So, the expression we will use for the
running coupling constant in the leading-logarithmic ap-
proximation is

g'(p)=2b e(p' —p )
In(p, /Mo)

e( 2 2)
ln( /M )

(3.14)

with b =24m. /(11N —2n). In this way the expression
(3.11) for I 2 is not merely the ladder approximation con-
sisting of a single gauge field exchange but, with the in-
sertion of the running coupling constant, it takes au-
tomatically into account the vertex perturbative correc-
tions at least in the leading-logarithmic approximation.

A further observation is in order. We have chosen the
point at which we renormalize the theory to be coin-
cident with the scale p separating the infrared and the ul-
traviolet region. As will be clear in the next section, this
fact leads to some simplifications, for example, in the re-
lation between the value of the minimum of the effective
potential and the corresponding value of the fermion-
antifermion condensate. The constant p is a parameter of
our model.

In order to evaluate I 2, let us parametrize the fermion
propagator in the following way:

=5s„[iA(p')",p+ B(p'), +i y,C(p'), ] (3.15)

with A, B=1, . . . , N, a, b =1, . . . , n. Notice that, from
the assumption of a fermion propagator S which is a
function only of the space-time differences, the transla-
tional invariance of the effective action follows and, as a
consequence, the space-time volume 0=jd x factorizes
out in I 2 [see Eq. (3.11)]. Let us substitute the parame-
trization (3.15) in (3.11) and evaluate the trace over the
color and the spinor indices

d4 d4 2( )I" = 6NC 0f, , ', tr[B(p')B(q')+C(p')C(q')]
(2m )' (2~)' (p —q)'

—21',Q ', tr Ap &q E p, q(2n. ) (2m ) (p —q)
(3.16)
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where C2 (——N —1)12N =g, T'T', a =1, . . . , N —1,
is the quadratic Casimir of the fermion representation,
the trace is over the flavor indices, and

(
2 2)2

E(p, q)=1 ——(p +q )+
(p —q)'

X(2)gq f dz2B(z)( )

16%2 q
2

+ f, dp'B(p')g'(p) (3.24)

(3.17)

The expression for g (p, q) we use does not depend on the
angle between p and q [see Eqs. (3.13) and (3.14)]. There-
fore one can perform the angular integration in (3.16) by
the help of the following formulas:

d
67r2 dq 2, X,(q')=-

dq

We can invert the relation between X, and B by applying
an appropriate differential operator to both sides of
(3.24). In particular, diff'erentiating with respect to q,

f d B( ),
q 0

(p —q)'

The result is

QE p, q =0

fdn 1

(p —q)'

fdQ

2 —
~
]nq/p

~

pq'
e I ]nylon

(3.18)

(3.19)

(3.20)

that is,

16m

3C2

dq

(3.25)

z X,(q')= f ' dp'p'B(p')
dq

q

(3.26)

X(p )=X,(p )+iy, X~(p ) . (3.21)

Then, performing the functional derivative of I 2, given in
(3.11), with respect to S(q ), and using the parametriza-
tion (3.15), we obtain

and so there is no contribution in I 2 from the matrix A
defined in (3.15). This is obviously due to the nonrenor-
malization of the wave function in the Landau gauge at
this order. We are left with a dependence of I 2 only on
the matrices B and C.

Remember that, as pointed out in the previous section,
our task is to express I 2 as a functional of X= —5r2/5S
which, when the Schwinger-Dyson equation is satisfied, is
nothing but the fermion self-energy. In order to do that,
let us separate scalar from pseudoscalar contributions by
defining

B( 2)
16m. 1 d

3C2 q2 dq2

dq

X, (q )

gz(q) dq
2

and analogously

16& 1 dcq'=
3C~ q2 dq2

X(q)
d g (q)

dq

(3.27)

(3.28)

and, differentiating once again, we obtain

X( 2) 3C f P B( 2)gd4 2(

(2vr ) (p —q)

X (q )=3C f,C(p')
d4 2(

(2~) (p —q)

(3.22)

(3.23)

Let us remark that in deriving Eqs. (3.27) and (3.28) it is
crucial to assume (3.13). The expressions we find are
however valid for any choice of g (p).

An important property of I 2 in the two-loop approxi-
mation is to be a quadratic functional of S. We can then
reexpress I 2 [see Eqs. (2.10) and (2.11)]as

sr,
I z

———'Tr S = ——'Tr(XS) .
2

(3.29)

Here X, and X are matrices in the flavor space. After
inserting (3.13), we perform the angular integration in
(3.22):

By substituting all these results in (3.16) and performing
the angular integration, we obtain

I ~= 0f dp tr X, (p )
2 dp , X,(p') +X~(p')

d g'(p) dp' ' ' dp'

dp p

X~(p )

d g~(p) dP

dp p

(3.30)

This is the final form for I 2, depending only on X, and X~.
Let us now evaluate the term with the logarithm in I [see Eq. (3.5)]:
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Trln So + =Trln[iP —mo(A) —X,(p ) i—ysX&(p )]
sr,

where we have defined

d4 d4
=NO lnDet ip —mo A —X, p —iy5X p:—NQ lnDet ip —M

(2m } (2m )
(3.31)

M=[mo(A)+X, (p )]+iysX~(p ) .

The following relations hold:

MM = [mo(A)+X, (p')]'+ X~(p')+ i),[X~(p'),mo(A)+X, (p )],
Mp =pM

py5M=M pyq,

(3.32)

(3.33)

(3.34)

(3.35)

Det(iP —M)=Det Py5 esp =Det( iP ——M ), (3.36)

from which

[Det(iP —M)] =Det(iP —M)Det( iP ——M )=Det(p +MM }=Det(p +M M) .

Our result is then

(3.37)

5I 2
Tr ln So '+ NQ f dp p ln Det(p +MM ) .

32m.2 (3.38)

We can now write down the final form of the effective action I as a function of X. Observing that in the two-loop ap-
proximation

5I 2Tr S —I 2=I 2,5S

we get (det is the determinant in Aavor space)

(3.39)

I [X]=Q — f dp p 1 nedtjp +[ma(A)+X, (p )] +X (p )+i[X (p ),mo(A)+X, (p )])
N

2 dp , X,(p') +X~(p')
d g'(p) dp' ' dp'

dp p

d g'(p)
dp p

, X~(p')
dp

(3.40)

As expected, the volume element 0 factorizes out, and
we can define the effective potential

r=nv.
Our method will now consist in making a convenient An-
satz for X(p ) in terms of a set of parameters related to
the fermionic condensates and then in evaluating these
parameters by minimizing the effective potential with
respect to them.

IV. THE ULTRAVIOLET BEHAVIOR OF THE FERMION
SELF-ENERGY FUNCTION

In order to get the necessary information about the
asymptotic behavior of the self-energy, we will adopt the

following strategy. First of all, we will derive the renor-
malized Schwinger-Dyson (SD) equation in the UV re-
gime by using renormalization-group considerations.
This circumstance will allow us to show that the choice
we have made in the previous section for the vertex func-
tion and for the gluon propagator to evaluate r2 is indeed
the correct one. Next we convert the SD equation in the
UV regime into an ordinary linear differential equation.
From the discussion of this equation we will be able to
find the asymptotic behavior of the self-energy. We will
show the consistency of this result by proving that the
SD equation is UV finite, assuming the standard relation
between the bare mass and the renormalized one, in the
leading-logarithmic approximation. Then, in the next
section, we will discuss, through the SD equation, the in-
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frared behavior of the self-energy, and we will introduce a
variational Ansatz for the self-energy based on these re-
sults. Of course, this procedure leaves us the freedom to
add a finite counterterm to the mass matrix. The result-
ing ambiguity in the effective action can be resolved by
requiring an appropriate renormalization condition.

We will obtain some restrictions on the mechanism of
spontaneous chiral-symmetry breaking directly from the
equations of the theory. ' In particular we will consider
the Ward identities relating the unrenormalized proper
axial-vector vertex function to the fermion bare propaga-
tor in the massive case. These quantities depend on an
ultraviolet cutoff A. Only after having introduced the re-
normalized functions and going over to the deep Euclide-
an region of momenta we will perform the limit A~ ~.

For the sake of simplicity, we will consider the case of
an SU(N) gauge theory of n fermions having the same
bare mass; that is, we will restrict to a bare mass matrix
proportional to the identity in the flavor space

[mo(A) =mo(A)1]. The Ward identities read

ip"I ', "(q„q, , A)= —2imo(A)I's "(q„q„A)

+y,
' S'"-'(q„A)

+S'"-'(q, ,A)
'

y, ,
2

(4.1)

where p =q2 —q„ I 5„"are the bare vertices of the color-
less axial-vector currents J„'s ——0'y„ys(A, /2)4, I s

' are
the bare vertices of the colorless pseudoscalar densities

Js =4ys(A, ;/2)%, A, , are the matrices of the fundamental
representation of the SU(n) algebra normalized to
tr(A, , A, )=25... i,j =1, . . . , n —1, and S' ' ' is the in-

verse bare fermion propagator.
The vertices I 5„" and I 5

' satisfy equations of the
Bethe-Salpeter type:

4

I's "(qz, q„A) &
—— '

(y ys) &+ f K' '(q2, q, , k, A) & &[S' '(k+p, A)I ~s„"(k+p,k, A)S' '(k, A)] .&,

A d4A:
I's '(qz, q~, A) ~

—— (iys) &+ K' '(q2, q&, k, A) ~ .Ir[S' ~(k+p, A)I s '(k+p, k, A)S' '(k, A)]
(2~)'

where K' ' is the bare fermion-antifermion scattering kernel.

By substituting (4.2) and (4.3) in (4.1) we get

4

pepys+ f &K' '(q2, qi, k, A)[S "(k+p A)ys+ysS' (k A)]= 2 mo( A) ys+ysS (q, A)
(2n )

+S"'-'(q„A)y, .

(4 2)

(4.3)

(4.4)

By taking the limit p ~0 and defining q =(q~ +q2 )/2, we get

4

ysS' ' '(q, A)+S' ' '(q, A)ys —— 2mo(A—)ys+ f K' '(q, k, A)[S' '(k, A)ys+ysS' '(k, A)] .
(2~)

Let us consider the renormalized functions

S(k)=Zq, (p, , A)S (k, A), K(q, k)=Zq, (p, A)K' '(q, k, A)

(4.5)

(4.6)

where Z~(p, A) is the usual renormalization constant for the fermion propagator and p is the renormalization point,
which, as before, is chosen to be coincident with our mass scale p. One then obtains the equation

A d4k
ysS '(q)+S '(q)ys= —2Z~(p, A)mo(A)ys+ f K(q, k)[S(k)ys+ysS(k)] .

(2m )
(4.7)

Let us parametrize

S '(k)=iZ(k )k —X'(k ) . (4.&)

Substituting in (4.7) we get

ysX'(q ) = Z+(p, A)mo(A)ys

A d4k
+ f K(q, k)[S(k)ysX'(k2)S(k)] .

(2m )

(4.9)

As usual in considering the ultraviolet asymptotics, let
us go to the deep Euclidean region of momenta in Eq.
(4.9). Since the ultraviolet asymptotics of Z(k ) and
K(q, k) are insensitive to the mass term, they should not
be modified from spontaneous chiral-symmetry breaking.
Therefore, in the leading-logarithmic approximation, one
can take for them the expressions following from the
renormalization-group analysis. We will assume the va-
lidity of the usual argument that the main contribution to
the integral on the right-hand side of Eq. (4.9) in the limit
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&(q, k).p. ir = C2[ig (q, k)]'(r")~ir(7")..
xD„,(q —k),

Z(k )=1, S(k)= ——
k

(4.10)

q ~ oo comes from the region k, (q —k) &&Mo (Mo is
the scale parameter of the theory), and use the expres-
sions

A(p )=-
p 2+ X~2(p 2 }+X&2(p 2 }

X,'(p')
I3(p') =-

p 2+ X&2(p 2
) +X~2(p 2

)

Xp(p')
C(p )=

2
p 2+ X~2(p 2

) +X~2(p 2
)

(4.14)

where all the quantities were defined in the previous sec-
tion.

Let us spend some words about these choices. Accord-
ing to the renormalization-group analysis and thanks to
the asymptotic freedom of the gauge interaction, it is
meaningful to approximate the kernel E in the large
momentum region with its lowest perturbative order, but
one has to insert the running coupling constant which
takes automatically into account the vertex perturbative
corrections at least in the leading-logarithmic approxima-
tion. Remember that we have used the same arguments
in the calculation of I 2 [see Eq. (3.11)]. In this way the
expression (4.10) for the kernel is not merely the asymp-
totic limit of the ladder graph, but, with the insertion of
the running coupling constant, faithfully represents the
complete (relevant) kernel. Also, since we are working in
the Landau gauge, there is no wave-function renormaliza-
tion at this order [Z+(p, A)=1]. This means that the
anomalous dimension y+ is equal to zero in this approxi-
mation and so there are no logarithmic corrections to the
lowest perturbative order of the proper four-fermion
scattering amplitude.

Substituting (4.10) in (4.9), we find in the deep Euclide-
an region

A d4k, X'(k')
X'(q2)=mo(A)+3C2 f g'(q, k)

(2~) k (q —k)

(4.11)

This equation is nothing but the linearized form of the
SD equation we obtain by varying the effective action.
To see this, consider the variation of the action when the
bilocal source J(x,y) is off, that is, at the physical point.
We get

(4.15)

d4 X' (p')
X'(q )=3C2p q 2

(2 )4 2+X~2( 2)+X'2(P2)

(p —q)'
(4.16)

which, in the ultraviolet regime, where we can neglect the
self-energy contribution in the denominators [and for
mo(A) =me(A)1], coincide with (4.11).

In the region k, (q —k) »Mo we are considering, we
will assume for the function g (q, k) the behavior expect-
ed from Eqs. (3.13) and (3.14) in the large momentum
range. Substituting in (4.11) we get

q' dk X'(k )X'(q )= mo(A)+3C2g (q) f (2m. ) k (q —k)

+3C f&' d k
(k)

q (277) k ( k)
(4.17)

According to our assumption of ultraviolet dominance,
we will use a regularized expression for X'(k ) in the
k~0 limit (see the next section) and so we will not be
faced by infrared divergences in (4.17). Finally we in-
tegrate over the angles to obtain

Taking into account Eqs. (3.22) and (3.23) and using
(4.14) we get the nonlinear SD equations for X,

' and Xp.

X,'(p')
X,'(q2}=ma(A)+ 3C2

(2qr)4 p'+X,'(p')+Xp (p')

I2
S '(p)=SO '(p)+ =iP —mo(A) —X(p )

S

=iP —X'(p ) (4. 12}

3C~
X'(q )=ma(A)+

16m

2 2
g ', ' f' d'kX( k)

q 0

S(p) =i A(p')P+B(p')+i@, C(p')

=[ip" X,'(P'} irsX,'—(P')] ' —. (4.13}

From Eq. (4.13) we get (after diagonalization in flavor
space)

with the self-energy function X evaluated at the
minimum of the effective potential. Recalling our param-
etrization (3.15}for S(p), we get at the extremum

dk22k & k

q
(4.18)

showing that the chiral-symmetry-violating part of the
fermion self-energy satisfies an homogeneous integral
equation.

For the determination of the ultraviolet asymptotics of
the dynamical mass function X'(q ), one has to solve
(4.18) with a finite A and, only afterwards perform the
A~ oo limit. Equation (4.18) can be transformed into a
differential equation by following the same procedure we
used in deriving Eqs. (3.27) and (3.28). In this way we get
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16m d

3C2 dq

with the boundary condition

X'(q ) =X'(q ) (4.19}
d g (q) d

dq q

X,(q').
It is possible to express the constant a2 through the

phenomenological parameter ( 4+ )„(a summation over
spinor and color indices is understood; however no sum-
mation is performed on the flavor indices). Indeed, in the
theory with cutoff we have

q', X'(q')+ 1—, ,g'(q)
g (q) dq

X [X'(q ) —mo(A)]» ——0 .
q =A

The general solution of Eq. (4.19) takes the form

X'(q )=a, X,(q )+a2X2(q )

with

(4.20)

(4.21)

( +4 }A=—lim (0
~

TV(x)%(0)
~
0}~x~0

A d4k= —lim Tr
' " 4S(A) k

k'- (2qr)

A dk Xz(k )= lim a24%
(2qr) k

p2

3C2b
(4.27)

and

—d

X,(q ) — ln
q ~ MO2 2

'd —1

Xz(q ) — ln
1 q

q M

(4.22)

(4.23)

where we have only considered the X2 contribution to the
dynamical mass because the explicit symmetry-breaking
term does not contribute due to the definition of the T
product. Also, in deriving (4.27), we have used X2' ' ——X2
since in the Landau gauge there is no wave-function re-
normalization at this order. From the relation between
the bare and the renormalized condensate

3C bd=
Sm

In the literature these two solutions are commonly re-
ferred to as the irregular and the regular solution, respec-
tively. By substituting (4.21) in the boundary condition
(4.20) and retaining only the leading contributions for
large values of A we get

ln(A /Mo)

In(p /Mo)

we finally determine a 2:

3C,b
a, = ln, (Ve)„

2%

(4.28)

(4.29)

p2 2d —2

a )
———a2d ln

A Mo

A2
+ma(A) ln

Mo

(4.24)

We can now remove the cutoff A. Remembering that,
in the leading-logarithmic approximation, the relation be-
tween the bare mass and the mass renormalized at the
point p reads

(notice that both the constants a, and a2 are
renormalization-group invariant, i.e., independent of p).

Summing up, the ultraviolet asymptotics of the fer-
mion mass function, in the case in which both spontane-
ous and explicit chiral-symmetry breaking take place, is
given by

In(q /Mo)
X'(q ) — m(p)

q In(p /Mo)

Z (p, A)=

m (p) =m~(A)Z '(p, A),
ln(p /Mo)

ln(A /Mo)

(4.25)
3C2 g&(q) ln(q /Mo)

+ 4& "
q In(p /Mo)

(4.30)

we obtain

2 d

a, =m (p) ln
0

(4.26)

The result is that the constant a, is proportional to the
explicit chiral-symmetry-breaking parameter and so it
vanishes in the chiral limit. In this way we have found
that the asymptotic behavior of the irregular solution

X,(q ) exactly corresponds to the result of a straightfor-
ward renormalization-group analysis for nonvanishing
bare fermion mass. Hence we expect that the solution
which actually represents chiral symmetry realized in the
Goldstone mode has the softer asymptotic behavior of

Let us notice that, if one wants to take into account also
the pseudoscalar contribution in X', the previous con-
siderations are still true and one obtains an extra term in
(4.30} proportional to the pseudoscalar condensate. So,
separating the scalar from the pseudoscalar contribution
in X' we get

ln(q /Mo)
X,'(q ) — m(p)

q' In(p /Mo)

+ (++}„3C2 g (q) ln(q /Mo )

4& "
q In(p /Mo)

(4.31)
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3Cz g2(q) ln(q /Mo )
Xp(q') — ('P&@5'P )„

q& 4& "
q In(p, /Mo)

+J„'q ——2mo(A) %'y5 (4.33)

(4.32)

These results are consistent with those obtained by
means of the Wilson operator-product expansion (OPE)
analysis. In the OPE evaluation of X'(q ) the factors
g (q) and [In(q /Mo)] are due to the renormalization-
group improvement of the Wilson coeScients and, in par-
ticular, [ln(q /Mo)] comes from the anomalous dimen-
sion of (4+), or equivalently of (%i y5%')

It is surprising that, although the first papers concern-

ing the ultraviolet asymptotics. of the fermion self-energy
in QCD appeared in the mid 1970s (Refs. 32 and 33), un-

til now there is no common opinion about the form of
these asymptotics. For example, in recent studies of the
spontaneous chiral-symmetry breaking of massless QCD
in the framework of variational approaches, some au-
thors agree with us in using the regular solution X2(q )

as given in (4.23), while other authors use the irregular
solution X,(q ) given in (4.22). Also, it was affirmed in a
recent paper that the ultraviolet asyrnptotics of the
dynamical quark mass has the irregular form (4.22) while
the regular solution is only an artifact of the Hartree-
Fock approximation. This conclusion has been criticized
by Miransky and we agree with him in stating that only
the regular solution can ensure the conservation of the
anomaly-free axial-vector currents Jz&

——0'y„y~(A, ;/2)%
in massless QCD [this condition is of course necessary to
guarantee the spontaneous character of chiral
SU( n )L SU( n )„symmetry breaking].

In fact, let us specialize the previous analysis of the ul-
traviolet asymptotics of the fermion self-energy to the
chiral case. In the theory with ultraviolet cutoff A and
bare mass mo(A), the axial-vector currents satisfy the
equations

Because of asymptotic freedom, the dependence on A of
the composite operator [Vy~(A.;/2)%]~ is well known

[see Eq. (4.28)]:

q y& g =Z '(p, , A) +y&
A

(4.34)

with Z given in (4.25). So the condition ensuring the

conservation of the axial-vector currents is a rapid de-

crease of the bare mass rno(A) as A~ 00:

lim mo(A)Z '(p, A)=0 .
P —+ oo

(4.35)

The condition (4.35) is necessary and sufficient to deter-

mine uniquely the asymptotics of the fermion self-energy.

In fact, by using it in the boundary condition (4.24), we

find that the coefticient a& is equal to zero in the A~ 00

limit, and therefore only the regular solution X2(q ) does

contribute in (4.21).
In a paper subsequent to Ref. 36, Reinders and Stam3s

discuss the dynamical quark mass function in the frame

of the OPE. They find that, asymptotically, the regular

solution is consistent with the OPE, while the result from

analytic continuation to lower values of p leads to a

freezing of the quark self-energy at its threshold value,

reached for p =m dye where m dye is a sort of
constituent-quark mass. As we will see in the next sec-

tion, the Ansatz for the dynamical quark mass function

we will use agrees with this result.
As a check of this procedure, we want to show that the

gap equations (4.15) and (4.16) are UV finite if we use for

mo(A) the dependence from the cutoff A implied by Eq.
(4.23). As far as the pseudoscalar part is concerned, the

integral representation (4.16) is clearly ultraviolet conver-

gent due to the behavior (4.32) for Xz. As far as X,' we

have

mo(A)+3C2
4 X&( 2) 2

p +X,'(p')+X~ (p') (p —q)

3C ~s z( )-mo(A)+ 2 I dp'X,'(p')
6+2 0

' p~ z

3C2 A2 dp2 in(p'/Mo)
-mo(A)+ m(p)

1677 o p ln(p /M20)

2b ln(A /Mo2)
=mo(A) —m(p)

ln(p /Mo) In(p /Mo)
=0, (4.36)

where we have used Eq. (4.25). In other words, the two
types of asymptotic behavior (4.31) and (4.32) give us a
perfectly UV regularized theory in the leading-
logarithmic approximation.

V. VARIATIONAL ANS A TZ FOR THE FERMION
SELF-ENERGY AND RENORMALIXATION CONDITION

FOR THE EFFECTIVE ACTION

In order to derive a variational Ansatz for the self-

energy to be used in the effective potential, we will as-

l

sume a momentum dependence of X(p~) outside the ex-
tremum as the one suggested by the solution of the SD
equation. We know already the UV behavior of this solu-
tion and we need to study the IR regime. This can be
done by using the gap equations (4.15) and (4.16).

Let us suppose that

X'(q ) —(q ), a~0.
q ~0

By looking at Eqs. (4.15) and (4.16) in the q ~0 limit, it
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X(p') =X'(p') —mo(A) (5.1)

we can make an Ansatz for X(p ) interpolating between
the UV and the IR behavior of the solutions of the SD
equation. The simplest choice is

is easy to see that, with this assumption, one has a finite
contribution at the lower limit of integration on the
right-hand side, while, on the left-hand side one has an
infrared divergence. It follows that, for q ~0, X'(q )

must go to a finite constant.
Recalling that at the extremum X(p ) is given by

J(x,y)~J(x,y)+m5 (x —y) . (5.8}

from Eq. (4.25) is crucial. Of course, we have again the
freedom of adding to mo(A} a finite counterterm and we
need to specify a suitable renormalization condition to re-
move this ambiguity (this is equivalent to specify the re-
normalization of the composite fields s). We can derive
such a condition by looking at the expression for the
effective action in the limit of small masses. We can
think to add the mass term by the following replacement
in the bilocal source:

p )=m(p)fi{p } mo(A)+(s+'ysp}f2(p

with

(5.2)
Then the generating functional of the connected Green's
functions in the presence of a small-mass term can be
written as

f (p') =e(}M'—p')+ e(p' —p')f (p') ",
f2(p') =I e(v' p')—

(5.3)

W[m, J] —W[O, J]+f d x tr m
5W[O, J]

m~O 5J x,x
(5.9)

2

(
2 z)P f( 2)d —i

ln(p /Mo)

ln(p /Mo)
(p') =

(5.4)

(5.5)

where the trace over the spinor and the color indices is
understood. We can now calculate the effective action at
its extremum J=0, obtaining

3C2

p
3cz g'(p)(p.,)=, (W. iy, e, )„, a, b=l, . . . , . n

p

(5.6)

(5.7)

If we had not chosen the renormalization point of the
theory to coincide with the scale p, and if we had instead
renormalized at p =p, then an extra factor

1n(p /Mo)

ln(p /Mo2)

would have been present in Eqs. (5.6) and (5.7).
Substituting the Ansatz (5.2) in (3.40), one can show

that the effective potential is UV finite (see Appendix A).
Notice that, in order for the UV divergences to cancel
out, the dependence of mo(A) from the cutoff following

where p is the parameter separating the UV and the IR
regions already introduced in Eq. (3.14). We will use the
parameter-dependent test function (5.2) for the fermion
self-energy in our effective potential formalism to investi-
gate the stability of the theory.

The fields s,& and p,b, a, b =1, . . . , n, which here are
constant fields because we are only interested in the eval-
uation of the effective potential, will be our variational
parameters. The minimum of the effective potential will
determine the values of these parameters corresponding
to the optimal form of the test function for X(p ). The
matrices s and p evaluated at the extremum of the
effective potential, which will be called (s) and (p), can
be related to the fermionic condensates.

This can be seen directly by the comparison of our An-
satz with the expressions given in Eqs. (4.31) and (4.32).
We obtain in this way

1(m)
~
J=o' 0 W(m 0)

W(0, 0)—tr m Id x S(x,x)
m~O J=O

I (0)
~ J o+Qtr(m(% 4) ) (5.10)

In fact S(x,x) is nothing but minus the scalar condensate.
Therefore we have to require

1 i 51
lim —tr m-o 0 g(yq ) extr

(5.1 1)

, a V(s'+p', s)
lim tr m
m~O Bs

4Xp
emir 3Czg'(p)

(5.12)

Finally, we give the expression of the effective potential
V (1 =QV} as a function of the variational parameters of
the theory, s and p:

4

V = cA, tr(s'+p')+( A &+5zI)«[m(p) s]
4m

dyylndet y+x +x +~ x, x
0

(5.13)

where

or equivalently, by using the relation between the scalar
condensate and the scalar field s (5.6),
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C =
3C&g (p) 2a 0 1+2aF(u)

2a ( du 1 1+2a
(M 0 u 1+2aF (u ) 2a

VI. MASSLESS EFFECTIVE POTENTIAL

Let us consider the logarithm term in I in the massless
case

5I 2I 1,&
———Trln S0 '+

f((y)
F(u) =1— lnu, x=m

2Q P

f~(y)
+s = —Trln[iP —X, (p ) —iysX&(p )]

fz(y)
Z=P

p

f, (y) =8(1—y)+8(y —1) 1+ lny
1

2Q

' —d

(5.14)
d4= —NA ln Det ip —s+iy5p 2 p2

(2n. )

(6.1)

where we have used Eq. (5.2) in the massless case and

fz(p ) is given in (5.4). The matrix

fz(y)=IJ, 8(1—y)+8(y —1)— 1+ lny
1 1

y 2a

a =ln p
0

and we have introduced the finite counterterm 5zf to be
determined such as to satisfy the normalization condition
(5.12).

A =s+ l $5p (6.2)

Ad ——U AU (6.3)

Since this transformation leaves the I 2 contribution in
the effective action invariant, we can simply insert Ad in
the evaluation of the determinant

considered as an n )(n complex matrix, can be diagonal-
ized by a chiral rotation using two unitary matrices U
and U:

n —1

lnDet[ip —A&fz(p )]=lnDet ip — s0+ g s;h; +iy& p0+ g p;h; fz(p ) (6.4)

where we have expanded Az in terms of the generators of the Cartan subalgebra of U(n), 1, and h;, i =1, . . . , n —1,
normalized as tr(h;h ) =5; . Substituting (6.4) in (6.1), one obtains

4

I 1,
———NQ ln Det ip —71+iy 5m 1 2 p ip —X2+ ~ 75~2 2 P P +n + V5~n 2 5Og

(2m )

NQ g f ~l—nDet[iP —(X, +iy, n, )fz(p )],
(2n. )

(6.5)

where

n —1 n —1

X =$ =s0+ g s;(h;)„, m, =p„=p0+ g p, (h, )„, a =1, . . . , n
i=1 i=1

that is, 7, and m., are the eigenvalues of the matrices s and p, respectively. On the other hand,

(6.6)

tr(s +p )= g (X, +m., ) .
a=1

(6.7)

Therefore, evaluating as before the determinant over the y matrices in I 1, and performing the integration over the an-
gular variables, we obtain the following expression for the effective potential in the massless case which we will indicate
as V' ' (we omit an additive infinite constant):

4 n
V(0( i y V(0)(y ~ )

4m

d2 ( F(u)2d —2 X'+~2
VI '(X, m)= c 1+ f du (7 +m ) —,' f dyy ln—1+

1 1 du——f in[1+(X +n)u F(u) ].
2 0 g
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( 1 +y2/3 }2

7T 2 —'"
4 2 3/3y2/3

——arctan

which shows the asymptotic behavior for large fields

V (0)(y2) y2
tt) ~ oo

2

and we see that V' ' is bounded from below. Starting
froin Eqs. (6.8) and (6.9), we can easily derive the expres-
sion

(6.10)

V(0)(y2) I/(0)(y2)

cd ) F(u)" 2

2(2 o 1+2aF(u)

ln
i du 1+/ u F(u)2

o u 1+/ u-'

In Eq. (6.11) the first term is positive definite because
F(u) &0 for 0 & u & 1. As far as the second term is con-
cerned, one has to consider the quantity

d —1

F(u} '= 1 — inu
1

2a

The expression (6.11} is positive definite when
F(u) '&1. Because u &1, it follows that F(u)" '&1
according to (d —1) & 0. We recall that

3bC~ 9C2

8~ 11N —2n

where c, F (u ), and (2 are defined in (5.14).
As expected, V' ' is a completely finite quantity both in

the ultraviolet and in the infrared regimes. The theory is
in fact regularized in the infrared by the assumed con-
stant behavior of the self-energy in the p ~0 limit,
whereas the convergence in the ultraviolet follows in the
massless case from the physical meaning of 1 and ~. In
fact, from the relations (5.6), (5.7), and (6.6) it follows
that 7 and ~ have operator dimension equal to three.
However, because of the chiral invariance, linear terms in
7 and ~ are forbidden so that the effective potential V' '

must start at least with (X +~ ) in an expansion in the
composite fields. Therefore, because of the absence of
operators of dimension lower or equal to four, no ultra-
violet divergences are expected in V' '.

We will now verify that the effective potential V' ' of
Eq. (6.8) is bounded from below. To this end, let us intro-
duce a function V( ' obtained by V( ' setting d =0 and
F ( u ) = 1. This would correspond to consider a situation
with a rigid coupling constant and zero anomalous di-
mensions. In this case one can perform exactly the in-
tegrations obtaining an analytical expression for V ' ':

4 n
V(0) ) y P(0)(y2) y2 g2+ 2

Q=1
(6.9)

VIoj tp6

8--

6--

I
I

I
I

/
/

I
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/
/

2--

i ~ i

-0.04 0.00 0.02 004

FIG. 2. Behavior of V~ '(7) near the critical point in the case
of QCD with three fiavors. The curves shown correspond to the
values p/A&CD ——1.354 (dash-dotted line), 1.355 (solid line),
1.357 (dashed line).

Thus, in QCD with color-triplet fermions (N =3,
C2 ———', ), one has d =12/(33 —2n) and d & 1 for n & —", .
This means that, if we have less than six families,
V') '((})) ) —V') '((() ) &0 for any value of P . We have de-

rived in this way a rigorous lower bound for Vi '((}() ).
This bound clearly shows that also V' ' is bounded from
below.

Without loss of generality, we can suppose that the
vacuum expectation value (VEV) of m, is equal to zero (it

can be chirally rotated away). Since the effective poten-
tial has the additive form given in Eq. (6.8), e~ery 1, has

the same VEV, (X, ) =u. Therefore if JSB occurs, its

pattern must be of the type SU( n )L)8) SU( n }2(

~SU(n)L+R because from the expression of g, in Eq.
(6.6) follows

(so)=u, (s, )=0, i=1, . . . , n —1. (6.12)

Performing the numerical analysis V' ', we find that, in

QCD with three flavors (Mo ——AQci3), the theory under-

goes chiral-symmetry breaking for )M/AQci3 & 1.355
which corresponds to

(6.13)

VII. COMPARISON WITH OTHER STUDIES
OF THE DYNAMICAL CHIRAL-SYMMETRY-BREAKING

PHENOMENON

The method of the effective action for composite
operators proves to be a convenient tool for studying field
theories with dynamical symmetry breaking. The appli-
cation of the direct variational method to the problem of

The behavior of the effective potential near the critical
point is showed in Fig. 2.

In this way we have proved that the quark-antiquark-
gluon interaction provides the Goldstone realization of
the chiral symmetry due to the spontaneous breaking of
SU(n)L SU(n}2( into SU(n)L +it.
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DSB in QCD-like gauge theories, has allowed us to take
into account the nonlinear aspects of the problem and to
justify the results first obtained in the framework of the
linearized approximation (see, for example, Refs. 39 and
40). In fact, a way to investigate the dynamical mecha-
nism of the spontaneous breakdown of chiral invariance
in massless gauge theories is based on the exact solution
of the linearized Bethe-Salpeter (BS) equations for the
pseudoscalar Goldstone bosons. The main hypothesis of
this approach is that the mechanism of the condensates
formation, responsible for the spontaneous symmetry
breaking, comes from the strong gauge forces acting at
distances of the order of the size of the Goldstone bosons
and a crucial point is the assumption that these distances
are smaller than those at which the confinement forces
dominate. In the model considered in Ref. 39 the dynam-
ics of condensation is described by BS equations for the
fermion-antifermion tightly bound states, in which pa-
rameters for infrared and ultraviolet cutoffs are intro-
duced in order to pick out the momentum range responsi-
ble for binding. The infrared cutoff is identified with the
confinement scale. Since the result of the analysis gives a
critical value (g)«, , for the coupling constant at which
chiral-symmetry breaking occurs and, since in non-
Abelian gauge theories the domain of strong coupling

[g (p) & (g)„;,] is the region of small inomenta, the ultra-
violet cutoff is identified with the value of p at which

g (p) —(g)„;,.
The kernels of the BS equations are taken in the ladder

approximation, with values of the coupling constant g
and of the fermion dynamical mass m equal to the values
of the running coupling constant g (p) and of the fermion
mass function X(p )/Z(p ), respectively, averaged in the
appropriate momentum range [S '(p)=iZ(p )P—X(p )]. With these approximations, it happens that
the BS equations have the solutions for the tightly bound
states with M & 0 provided the coupling n

a= for SU(N)

exceeds its critical value

A/t if t) t, ,
(7.3)

with

3C2

11 2n /3—
(which exactly corresponds to our choice for the running
coupling constant). The numerical result is that, in the
case of triplet quarks and n =3, for t, & 0.88 the
constituent-quark mass does not vanish in the chiral lim-
it, that is, chiral symmetry is spontaneously broken.
Since the parameter t, corresponds to our in(p/A&co),
the critical point results for

=2.4
crit

which corresponds to a broken phase for

(7.4)

the mass formula for the pseudoscalar mesons can be de-
rived, and, once compared with the current-algebra mass
formula, it provides a dynamical realization of the PCAC
hypothesis.

From the Ward identities for the axial-vector currents,
it follows that such a way of determining the dynamical
fermion mass is equivalent to looking for nontrivial solu-
tions for the linearized Schwinger-Dyson equation for the
self-energy X(p ) in the ladder approximation. An im-

proved form of the Schwinger-Dyson equation for the
quark propagator in QCD has been numerically studied
by Higashijima. He also assumes that the short-range
force, rather than the confining force, is responsible for
chiral-symmetry breaking in QCD, and so he approxi-
mates the kernel of the SD equation by one-gluon ex-
change, but improving with the running coupling con-
stant. In order to tame the infrared singularities of

3C2g (t)A(r}=, , r =ln
477 ~Q(.Q

he defines a nonconfining QCD-like model by

A/r, if r &r, ,

7r
(iz) crit (7.1)

g (p) vr
a, =

4a 4
(7.5)

In QCD this means

g 7T
(7.2)

The main results are the following. In the symmetric
unstable phase there exist n pseudoscalar tachyons,
while, in the phase in which the vacuum rearrangement
results in spontaneous breakdown of the chiral
SU(n)LSU(n)„symmetry, a fermion mass appears.
The spectrum of the fermion dynamical masses can be
determined by requiring that the tachyons disappear in
the stable phase and, instead of them, the (n —1)-piet of
pseudoscalar Goldstone bosons appears [the singlet under
SU(n)L +~ acquiring mass through the Adler-Bell-Jackiw
anomaly of the U(1)L z current]. Also, when there is
spontaneous and explicit breakdown of chiral symmetry,

This is completely consistent with the critical value
(7.2) of the coupling constant of Ref. 39, in which the
linearized SD equation is considered. This is not surpris-
ing, since the dynamical mass function goes to zero as a
power for large values of momenta, and so its contribu-
tion at the denominator of SD equation is quite inessen-
tial in the range of momenta at which chiral-symmetry
breaking occurs.

As far as variational methods are concerned, let us
mention the result obtained by Peskin' with a simple sta-
bility analysis of the CJT effective action. In order to
compute whether chiral-symmetry breaking can be in-
duced by one-gluon exchange in a SU(N) gauge theory of
massless fermions (lowest-order approximation), he
works in the following simplified framework: a fixed cou-
pling constant g and I ~JT to quadratic order in the fer-
mion self-energy X. Expecting that for g sufficiently
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small the vacuum is chirally symmetric, he restricts the
attention to the stability of the symmetric vacuum. He
finds that the kinematical terms in I CJT stabilize the
chirally symmetric state X=O, and so the interactions
must counteract this effect. The explicit calculation of
I 2, truncated at second order in X, shows that a criterion
for instability is

m„0 0

m= 0 md 0

0 0 m,

(8.1)

malism for QCD. We will consider the case of three
flavors u, d, s by introducing a diagonal mass matrix

3C,g'
)1

4m
(7.6)

Let us calculate explicitly the determinant in (5.13}by us-

ing the standard relation holding for 3)& 3 matrices:

which, for quarks in the fundamental representation of
SU(3) gives

a p —.
s 4

This result represents only a criterion for the vacuum in-
stability and it depends on the crude approximations
done.

In general, other computations based on the CJT
effective action formalism give a higher value for the crit-
ical coupling constant. For example, Gusynin and Siten-
ko in Ref. 34 make an analysis completely equivalent to
ours but using the CJT functional. Their numerical
analysis for QCD with three fiavors gives for the coupling
constant the critical value

det A = —,
' [(tr A ) ——,'(tr A)(tr A )+—,

' (tr A) ] .

We get, in this way,
I'

V= cA, tr(s +p )+(Az+5zf )tr[m(p) s]
4m.

dyylnA32
p

where
b

b jQ
sa sa~

a

b

pa= pa g2 a

(8.2)

(8.3)

(8.4)

(8.5)

«shiit—-
2

. (7.7) k, =Gell-Mann matrices,

Similar results have been obtained by Castorina and
Pi. They use the original CJT variational principle and
reach our same conclusions on the chiral-symmetry
breaking. However, their potential is not bounded from
below, since, as we have shown in Sec. II, all the station-
ary points corresponding to chiral-symmetry-breaking
solutions are actually saddle points. Their statement of
boundness from below of the VCJT effective potential
reflects the fact that they have not analyzed the behavior
of the potential in the complete range of parameters.
This conclusion has been proved directly by Gusynin and
Sitenko in Ref. 34 where computer calculations show the
monotone decreasing of VCJr(X) for large values of X.
The unboundness from below of this function is main-
tained if any finite number of loops is taken into account
in evaluating the potential, since the contribution of the
multiloop diagrams vanishes in the limit of large dynami-
cal mass.

As a final remark, it is interesting to notice that the
variational methods with the specific Ansatzes for the fer-
mion self-energy give a higher value for the critical cou-
pling constant as compared to the methods based on the
exact solution of the linearized equation or on the numer-
ical solution of the nonlinear SD equation. This is a gen-
eral feature of the variational calculations and clearly in-
dicates that the true form of the self-energy is more com-
plicated than that of the type (5.2).

VIII. EFFECTIVE POTENTIAL IN QCD
WITH THREE MASSIVE FLAVORS

We can now discuss the general case of massive fer-
mions and examine the particular predictions of the for-

and

Ao
——(-,')'~, i =1, . . . , 8, a=0, . . . , 8,

A, =y'+3y'E+y (3E' C')+E' EC'+—'D, —

C =Ck Ck, D =dk)~ Ck Cl C~,

k (T2} (xoxk+ 0 k)+ 2d~jk(x;x~+z;zj )

+f jkx,z),
E=—,'tr(x +z ), i,j,k, l, m, =1, . . . , 8 .

The quantities c, A, , A 2, x, and z are the same we have
previously introduced in (5.14) and 5zf is the finite coun-
terterm which we will determine by imposing the normal-
ization condition (5.12).

It is possible to prove that, for a symmetric mass ma-
trix m, =m 5„a,b = 1, . . . , n, the search for the minima
of the effective potential corresponding to vanishing
charged fields can be performed on the null charged fields
surface (see Appendix B). Of course, one cannot certain-
ly exclude the possibility that V has some other minima.
However, one can notice that, in the zero-mass case, the
potential V does not show any other isolated minimum
and therefore, for small m, the zero charged condensates
minimum is certainly the absolute one.

This result is in agreement with the general result by
Vafa and Witten. They have shown that in vector
gauge theories with 8=0 (8 is the parameter connected
with the axial anomaly}, the global vector symmetries are
not spontaneously broken and that, in the case of a sym-
metric mass matrix, all the condensates are equal [the
theory breaks down to SU(n) v]. Let us notice that for a
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nonsymmetric mass matrix, and small values of the fer-
mionic masses, we do expect the same conclusions to
hold, because of the continuity of the effective potential
function. We will then assume that, also for the nonsym-
metric case, the matrix of the condensate is diagonal at
the physical point. This leads again to an effective poten-

tial at the minimum which is a sum of independent terms.
In the case of QCD with n =3, by taking the charged

fields equal to zero in (8.3), and using the definition (6.6)
for X and rr, with a =u, d, s and (Ao/V2, A3/V2,
A, s/&2) as basis of the Cartan subalgebra of U(3), we get

V=
~ g V(X„m„a ),3p

4~ a =u, ds

V, (X,m, a) =cA &(X +u )+paX(A2+5zf ) ——,
' dyy ln 1+2 2 1 2aX+ (X'+~')

0 y+a

ln 1+
& du 2aXu'F(u) '+(X'+n')u'F(u)'

o u 1+a uF(u)

(8.7)

with a, =m, /p and d = —,'.
We can now determine 5zf by imposing the normalization condition (5.12) which in this case reads

1 BV 4'lim
m, o mg BX, 3C2g~(p)

(8.8)

where the partial derivative is made with respect to the explicit dependence of V on X, (symmetry-breaking part). The
result is

1 u & du F(u)
A2+5z = —2C + du +

}u o u+&X'&' o u 1+&X'& u F(u)"— (8.9)

where & X & is the value of the field X at the minimum of the potential in the massless case.
By substituting (8.9) in (8.7) we get the final form of the effective potential (with charged fields equal to zero) for QCD

with three massive Aavors:

ld F
V, (X,m, a)=c 1+ f du (X +n )+aX 2c+ f du

"
o ~ f '

2a o 1+2aF u u+ X o u 1+ X uF(u)

2aX+ (X'+~')
dyy ln 1+

y+a
ln 1+i du 2aXu F(u) '+(X +n. )u'F(u)

o u 1+a uF(u)
(8.10)

where we recall that [see Eq. (5.14) with Mo ——AocD]

1F(u)=1 — lnu, a =ln
2Q A @AD

Remember that the following relations hold:

&X„&=&.„„&= '
&..&+

'
&., &+ '-&..&

" &uu&,
g'( )

3 P '

&X~ & = & s~~ & = ~- &s, &
—~- & ~, &+

1 1 1

v'3 ' v'2 ' v'6

g'(P)
&dd &,3 P ' (8.1 1)

&X, &=&a„&=~- &~o& —( —')'"&~, &= ", &»&„,
3p

and analogously for & m, & related to & 4 i y &4, &„.
We can now determine the values of the quark conden-

sates from the stationary points of V, (X„n.„a,) given in

Eq. (8.10). In general, one should study the extrema of
V& in the (X,n. ) plane. However, we have proved in Ap-
pendix B that, if there is a minimum on the ~=0 line,
there are no other minima at m&0. In Sec. IX we will
show that, in the physically interesting case, such a
minimum does exist. This will be proved by minimizing
the effective potential at m=O and verifying that the cur-
vature is positive through the calculation of the pseudo-
Goldstone masses. Therefore we have no spontaneous
violation of C and CP according to a general result by
Vafa and Witten. '

As examples we have plotted V&(X,a):—V&(X,O, a) as
given in Eq. (8.10) as a function of X in the massless case
and for a value of the quark mass equal to 5.8 MeV (see
Fig. 3). We see that in the massive case the degeneracy is
removed and we have a minimum for a negative value of
X. In Fig. 4 we can see how the shape of the effective po-
tential changes for an increasing value of the quark mass
(118 MeV). The values 5.8 and 118 MeV correpond to
the masses, renormalized at 1 CxeV, of the quark u and s,
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V) To better visualize our program let us concentrate, as
an illustration, on the case of a single flavor, in which the
potential V is a function of the scalar field 7, the pseudos-
calar field m., and the quark mass m. First of all, one has
to properly normalize the field ~ with respect to the
canonical pseudo-Goldstone field P

=b (9.1)

, X

FIG. 3. Effective potential V, for QCD with three flavors as
a function of 7 for m =0 (dashed line) and for m =5.8 MeV
(solid line). The curves are for a value of p/AQcD —1.11.

The constant b can be obtained in terms of the pion de-
cay constant f„ in the limit of zero four-momentum, us-

ing the soft pion theorems. Therefore, both the pseudo-
scalar masses and the decay coupling constants (see the
next section) are evaluated in this approximation. Per-
forming a chiral rotation in (9.1) and taking the vacuum
expectation we get

b.=-
&Z (X&

' (9.2)

respectively, as we will obtain in Sec. XI from the fit of
the octet-meson masses. The boundness from below of
our effective potential is evident in these graphs.

XI. PSEUDOSCALAR-MESON MASSES

We have seen in the previous sections that, if the cou-
pling constant in the infrared region exceeds a critical
value, dynamical breakdown of the chiral symmetry
occurs in the massless case. According to the Goldstone
theorem, we expect n —1 massless Goldstone bosons rel-
ative to the breaking of SU(n)L SU(n)„ to SU(n)i+a
[as stated before we are neglecting the U(1) „problem].
These particles are represented by the composite fields

p,&, a, b = 1, . . . , n, whose vacuum expectation values are
related to the pseudoscalar condensates (0',iy, 'Pb)„by
Eq. (5.7). When a mass matrix m for the quarks is al-
lowed, the Goldstone bosons acquire mass and, in QCD
with three flavors, they are the octet-pseudoscalar
mesons. We will now calculate the masses of the
pseudoscalar-octet mesons in our model.

where, as usual, (X) stands for the value of X at the
minimum of V. To compute the mass of the pseudoscalar
meson (the pseudo-Goldstone boson described by the field

P ), one has to take the second derivative of the effective
potential with respect to the field m, evaluate it at the
minimum, and opportunately normalize it

2 d2V 1 dV
dP'-, „,„b dm.

2
(X&' d'V

(93)f d~

Since (n. ) =0, the following relation holds:

O'V 1 BV
(X) BX

(9.4)

where the derivative of V on the right-hand side means
the derivative with respect to the explicit dependence on
X (BV/BX is proportional to the explicit chiral-
symmetry-breaking term). Equation (9.4) represents the
Goldstone theorem. Substituting it in Eq. (9.3) we get

M„=- ' (X&"
f'- BX

2
(~~&

g'(p) ~V
f2 " 3p3 BX

(9.5)

V)
where we have used the relation between the scalar field
at the minimum and the scalar condensate. Taking into
account the normalization condition (8.8), Eq. (9.5) repro-
duces the Adler-Dashen formula in the small-mass limit

3--
M

~

0- —2m (gg)„. (9.6)

2--

FIG. 4. Effective potential V, for QCD with three flavors as
a function of 7 for an m = 118 MeV and p/AQcD —1.11.

This justifies our renormalization condition for the
effective potential.

Let us now apply this procedure to the general case of
QCD with three flavors in order to obtain an expression
for the masses of the pseudoscalar-octet mesons. We
recall that the effective potential we have calculated de-
pends on the standard parameters of QCD, AQCD m„,
md, m„and on the mass scale p. So we will proceed in
the following way. We will derive a convenient generali-
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8

Pi= g Pja)i ~

j=1
(9.7)

zation of Eq. (9.5) which will allow us to compute directly
the pseudo-Goldstone masses in terms of AQcD m„, md,
m„and iM and of the decay coupling constants f,
i,j =1, . . . , 8. Then we will derive within our formalism
an expression for f; and, finally, we will determine the
parameters of our theory from the experimental data.
Having a system of coupled equations, this determination
will be performed numerically.

First of all we need to normalize our dynamical vari-
ables p;, i =1, . . . , 8 [reinember that we are neglecting
the U(1)„problem] defined in (8.5). Let us call p, the
fields which diagonalize the matrix of the second deriva-
tives of the effective potential given in Eq. (8.3). Then

=F(4, qi, )„,a = u, d, s)

=b+,

(9.15)

~~0 g0

where, according to the usual conventions, we have set

fii =f22 f + f~=fSS=fir+ f66=f77=flrOg 0 ~

(9.16)

where a is an orthogonal 8)& 8 matrix which is nondiago-
nal only in the 3-8 sector. The coefficients b; which relate
the fields p, to the physical fields P, ,

For the sector with Q =S =0, one obtains

f„„=g A„a „b„p,v=3, 8,
p=3, 8

(9.17)

8

P;=b;p; =b; g p, a;,
j=1

(9 8) with

can be determined through standard current-algebra ar-
guments. In fact, let us remind the standard relations of
pion physics, for three quark flavors: (9.18)

if,, =(0
~ [Qs, ~I}j(0)]

~
0), i j =1, . . . , 8, (9.9)

where P are the canonical pseudo-Goldstone boson fields
related to the p by Eq. (9.8),

Qs =f d x qi (x)ys %(x)5 (9.10)

p;=F %'iy5 v'2 (9.12)

where

(9.13)

is the usual dimensional normalization factor. Substitut-
ing (9.12) in (9.8) and then in (9.9), we find

fj = — a;JbJF tr(4%)„
v'2

akjbjd;kiF tr 4
k, l =1 2 p

(9.14)

So, for the sector with charge or strangeness different
from zero ( a,"=5,"), one gets (remember (X, )

are the axial charges, and fj are the decay coupling con-
stants for the meson octet defined by

(0~ J„'s(x)
~

n (p)) =ip„f;,e 'i'", ij =1, . . . , 8 . (9.11)

Here J„'s are the axial-vector currents and the
~

m (p))
are the meson-octet states with four-momentum p„which
satisfy Eq. (1.6). Combining Eq. (8.5) with (5.7) we find
that the fields p, are related to the pseudoscalar fermion
condensates by the relation

Summarizing, the coefficients b, can be expressed in
terms of the decay constants of the pseudoscalar mesons
and the values of the fields I, (a =u, d, s), at the
minimum of the effective potential, but, due to the mixing
in the 3-8 sector, one has also to take into account the
matrix a which transforms the fields p; into the mass
eigenstates [notice that in the SU(2)-symmetric case
(m„=md), a;, =5,,].

Let us now derive an expression for the masses of the
pseudoscalar-octet mesons by multiplying the second
derivatives of the effective potential with respect to the
pseudoscalar fields by the appropriate factors relating the
physical fields iI}; to our variables p; [we do not compute
the g' mass since we have not considered the effects of
the U(1)„anomaly]. The mass matrix is given by

2d V

dg, dy,

d V
ak alj d

8

2 akiaijVki i j= 1, . . . , 8 . (9.19)
j k, l =1

A direct calculation of the second derivatives, evaluated
at the extremurn of the effective potential, leads to the re-
sult
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3p 1 oo Xu 1 Xd 1
V» ——V22 —— 2cA

&

— dy y + , f~(y)'4~2 p2 p xu +xd y +x x„+xd y +x
3p 1 oo

V33 2cA
&

— dy y
4m. 2p

1 1

,+, f, (y)
y +x„y +xd

3p 1
V44

——Vq5
—— 2c A i

— dy y
4m p

xu 1

x„+x, y+xu
2+ f2(y)'x„+x y+x

(9.20)
3p 1 xd 1

V66 V77 — 2c A, — dy y 2+4n p o xd+x, y +xd
f&(y)'x„+x y +x

3p
V88 —— 2cA i-

4a
1 ~ 1 1 1 1 2 1

, +—,+—,fz(y)'
p 0 6 y+x' y+xd

3p 1 1 ~ 1 1 2
V38 V83 dyy, —,f2(y)4n' 2v'3 p' o y+x,' y+x„'

where c, A „f2(y) are defined in Eq. (5.14) and x, (a =u, d, s) are the eigenvalues, evaluated at the extremum of V, of
the matrix x defined in (5.14).

We shall now derive a more physically transparent expression for the elements VkI. As stated before, when one sets
the charged fields equal to zero, the effective potential decomposes in the sum of three contributions, one for each
fiavor, as showed in Eq. (8.7). For the further developments, it is convenient to rewrite Eq. (8.7) in the following form:

V = g V, (p„x„m, ),
4~ a =u, ds

CO m f2(y) m f i(y)
V, (Q,X, m)=cA&p +mx(A2+5zf) ——' f dyy ln y+ 2 f, (y)+p +2X— fz(y)

0 p p p p

that is,

fz(y)=cA, — dyy
2p' 0 y+[mf, (y)I@+&X&f,(y)/p]'

av, 1 av,
2&x& ax

So, for the various fiavors a =u, d, s one gets

where P =X +m, A2+5zf is given in (8.9) and c, A „f i (y),f2(y) are given in (5.14). The extremum condition is

dv, av, av,
=27 + =0,

ay
+

ax

(9.21)

(9.22)

(9.23)

(9.24)

Let us substitute Eq. (9.24) in (9.20). For the 3-8 sector we get simply

1 av 1 av
2&x„& ax„2&x & ax

aV 1 aV 2 aV
6&x„& ax„6&x,& ax, 3&x, & ax,

aV 1 1 OV

2v 3 &x, & ax 2v'3 &x„& ax„

Let us now examine V&&, as given in Eq. (9.20). We can rewrite it in the form

3p xd 1 xd
V» —— 2cA, — dyy

4m P o y+Xu X„+Xd y+X u+Xd y+Xd

x,(x„—x, )

&x„& ax„4~' 0 (y+x„')(y+~d )

(9.25)

(9.26)



A. BARDUCCI et al.

or, analogously, we can obtain

1 V

(x, ) ax,

3@~ ao x„(xd —x„)dyy, , f2(y) .
4~ o (y +x„)(y +xd )

(9.27)

1 V
Vii = V22=-

2&x„) ax„

So we can write an expression ud symmetric for V&& by
summing Eqs. (9.26) and (9.27) and dividing by 2. The
same arguments apply to V44 and V66 and the result is

where ( Pg )„=( u u )„=( dd )„. Equation (9.31) is the
standard Adler-Dashen relation.

As already observed, there is mixing between the com-
ponents along the directions 3 and 8 [see (9.25)]. This is,
of course, expected and we have to diagonalize the matrix
of the second derivatives of the effective potential in or-
der to get the masses of the physical m and r)s. [The r)s is
not the true physical particle, but the result of undoing
the mixing between the members of the octet and of the
singlet of SU(3) which leads to the physical r) and rI'.]
The explicit calculation, performed up to the order

2m„—md

m,

1 V

2&xd& Bxd

1 V
V44= Vss =—

2(x„) Bx„

1 V

1 V
V66= V77=-

2&x, & Bx,
extra

a 33 a3s

as3 ass

(9.28)
with

1

N V3s

V33 —Vss

2
V3sN= 1+

( I'33 —~ss )'

gives for the 3-8 sector

1/2

V3s

V33 —Vss
(9.32)

1 V

2(x, ) Bx,

1 1 av
b'. (x& ax , (X) (9.30)f2

extr

and, with the normalization condition (8.8), we get, for
m~0,

We recall here that the partial derivatives are with
respect to the explicit dependence on X„and

x, —xb
2 yy 2 28m 0 y+x, y+x

a =u, d, s . (9.29)

Inserting (9.28) in (9.19), we obtain the extension of the
Goldstone theorem, as expressed in (9.4) to the case of
three fiavors. In fact in Eq. (9.28) the dependence on the
explicit symmetry-breaking part of the effective potential
has been isolated. This means that, in the m ~0 limit,
the Vki are all naturally equal to zero independently of
the values of the fields g, at the minimum. This is not
clear if one uses directly Eq. (9.20) for evaluating Vkr,
with obvious problems from a computational point of
view.

As an example, let us consider the SU(2)-symmetric
case given by m„=md ——m, and no strange quark. Clear-
ly in this case (X„)= (Xd ) = (X) and a;.=5;J. Then, us-
ing the first of Eq. (9.15), we obtain, for the pion

X. PSEUDOSCALAR-MESON DECAY CONSTANTS

In our context there are at least two procedures for
evaluating the decay constants of the pseudoscalar
mesons: (i) to evaluate the couplings of the fields P; to
the axial-vector currents jj5„and (ii) to evaluate the resi-
due at the pole of the meson propagator. For (i) we need
to know the meson-quark-antiquark vertex, while for (ii)
the knowledge of the bound-state wave function of the
pseudoscalar fields is required. These quantities can be
directly determined from the effective action if we are
able to extend our previous calculations from constant
fields s and p to arbitrary functions of space-time. In fact
from the effective potential one can extract amplitudes
for composite operators of vanishing four-momentum,
but, to derive amplitudes of nonzero momentum, one has
to allow for space-time dependence in the composite
fields.

Our effective action 1 [see (2.40)] consists of two terms:
the I 2 term, which in our approximation is a quadratic
expression in the composite fields [so the relation (3.39)
holds], and the term with the logarithm, which can be in-
terpreted as the sum of all the graphs with a fermionic
loop. Therefore, in order to determine the Ineson-quark-
antiquark vertex, we only need to generalize the loga-
rithm term of I to the case of local fields.

Let us reca11 the structure of the self-energy for con-
stant fields s and p [Eq. (5.2)]:

6I2
fiS( )

~(~ ) m(~)f&(~ )

M'. ~. ,——2m ', &qy)„, (9.31) +( + ) 5p)f2(p (10.1)
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with f, (p ) and f2(p } given in (5.3) and (5.4), respective-
ly. For the sake of simplicity, from now on we will oinit
the square in the arguments of X, fi, and f2. The opera-
tor we need to generalize is

(x„&
(s)= 0

0

(x, ) (10.5)

5I 2
So '+ with So '(p) =iP —mo(A)

5S

in the Landau gauge. We will use a Weyl symmetrization
prescription, that is,

x So + y =(x ~tP —m(p)f, (p)
5r
5S

——,'[s(x)+iysp(x) fz(p)]+ l y )

(10.2)

where x„and p„have the canonical definition

p„lp&=p„lp& [x„p.]=—ig„.
(10.3)

Notice that this prescription maintains the charge-
conjugation property of the fermion propagator

5I 2 , , 5I 2
C So '+ (x,y) C '= So '+ (y, x) .

S

(10.4)

We shall also see that the Weyl symmetrization prescrip-
tion leads to a meson-quark-antiquark vertex which is
consistent with the axial Ward identity.

In order to evaluate Tr ln(SO '+5l 2/5S), we translate
the composite fields s and p with respect to their value at
the minimum of the effective potential. Let us define

and introduce the operators

(S) '(p)=iP —m(p)f, (p) —(s)f (p),

4(x) =s(x)+iy p(x) (—s),
R=-,'[4(x),fz(p)]+,

(10.6)

=Tr ln(S) ' —g —Tr(SR)" . (10.7)
n=1 n

The last trace can be calculated by inserting intermediate
eigenstates of x„:

2n

Tr(SR)"=f g d'x;«[(xi
~

S
~
»2 &&»2

~

R
~
»3 &

&& &x,„,i
Six,„&

x(,„~ R
~

)] . (10.g)

From the definition of the operator R, introducing

f2(» —y}=—&»
I f2(p}

l y &

we get

(10.9)

where S can be interpreted as the quark propagator with
mass ( s )f2(p}, dynamically generated. We thus obtain

sr,
Tr ln So '+ =Tr ln(S) '+Tr ln(1 —SR)

( z; ~

R
~
»2;+i) = —,'[@(xz,)f,(xz; —x„+i)+f,(x„—xz;+, )4(x„+,)]

,' fd z;—[5(z; —x2; )+5 (z; —x2;+ i )]f3(»2( —x2, + i )4 (z, )

=f d z, V(»2;,»2;+, ,z;)4(z;), (10.10)

where we have defined

V(x,y;z)= —,'[5 (z —x)+5 (z —y}]f2(x—y) . (10.11)

So, using

S(x —y) =—(x
~
S(p)

~ y ), (10.12)

we finally obtain

2n n

Tr(SR)"=f Q d x, ff d z, S(x, —x, )V(x„x,;z, )4(z, )

XS(»3 »4) V(x4, xs,'z2)N(z3) X S(x2„,—xz„)V(»2„,»»z„~4(z„) . (10.13)
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From Eq. (10.13) it is clear that the operator Tr(SR)"
corresponds to n bound-state fields 4 emerging from a
fermionic loop calculated with fermion propagator S as
illustrated in Fig. 5. The vertex V(x,y;z) has the follow-
ing expression in momentum space:

V(x,y;z)= f V(p, q)
d p d g

(2m ) (2'�)
—ipx +iqy +i (p —q)zXe

(10.14)

&s(p q)='ys —[f2(p)+fz(q)] .
2&2

(10.15)

This is the effective coupling g . To get the effective
pqq

coupling g& for physical mesons, we must properly nor-

malize the fields p; by using Eq. (9.8). The result is

8

Gs(p, q) =—g V~s(p, q)aj;
'i =]

V(p q) =-,'[f2(p)+f2(q) 1

where the momenta are as in Fig. 6.
Actually we are interested in the pseudoscalar bound-

state vertices. We can read their expressions directly
from Eqs. (10.13) and (10.14):

FIG. 6. The pseudoscalar bound-state vertex with two fer-
mion lines of momenta p and q whereas p —q is a bound-state
line.

(remember that in the massless case the fermion propaga-
tor is proportional to the unit matrix in the Aavor space,
since the condensates in the self-energy all have the same
value for each flavor). Let us substitute the expression
for the fermion propagator as given by The Schwinger-
Dyson equation in the massless case

S '(p) =iP —X(p), (10.18)

where X is the self-energy evaluated at the minimum of
the effective potential. We get

u= iy s „g ——a,;[f2(p)+f2(q) l
i '=i 2 2

(10.16) iq"I s„(p+q,p)=@ys——ys —[&(p+q)+&(p)] .

The G5 are the physical pseudoscalar-meson-quark—
antiquark vertices.

We will now prove that the expression (10.16) is exact-
ly what one needs in order to satisfy the axial-vector
Ward identities relating the proper axial-vector vertex
functions I's„and the fermion propagator S (Ref. 42).
Let us consider the case of massless quarks. Then, the
axial-vector Ward identities have the following form [see
Eq. (4.1)]:

(10.19)

From Eq. (10.19) it follows that one can have a nonzero
dynamical quark mass if and only if I S„has a pseudosca-
lar pole at q =0 (Goldstone pole) with residue propor-
tional to the pion decay constant f„.Then we can write

I's„(p+q p)= y„ys f G—'s(p+q p),

iq "I s„(p +qp) =y,—S '(p)+S '(p +q)ys (10 17)—
+I sq(p+q p) . (10.20)

0(z.)

Q(z&)

Z2

g(z, )

Here Gs(p+q, p) represents the proper pseudoscalar-
meson —quark —antiquark vertex function and f' s„(p +q,
p) is a term regular at q =0, which can be ignored in the
approximation we are considering, since it is of order g .
Finally, the comparison of Eq. (10.19) with Eq. (10.20)
gives the following expression for pion-quark-antiquark
vertex function:

Gs(p +q,p) = —i ys [X(p +q—)+X(p)] (10.21)
1

t

/
/

/

which is in complete agreement with (10.16). In fact, in
the approximation of massless quarks, we have

,, =5... b, =b, = — —,X(p)=(X)f (p) .

(10.22)

FIG. 5. Graphical representation of the operator Tr(SR)"
given in Eq. (10.13).

It is worthwhile to stress that the result (10.16) crucially
depends on the symmetrization prescription used.
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In practice, what we have shown here is that our
effective action reproduces, at one-loop level, the results
of the dynamical perturbation theory (DPT) introduced
some time ago by Pagels and Stokar.

At this point, having derived the meson-quark-
antiquark vertex function, it is possible to obtain an ex-
pression for the meson decay constants f; by directly
evaluating the coupling of the fields P. to the axial-vector
currents Js„. From Fig. 7 one gets (remember that we
are working in the Euclidean space)

FIG. 7. Graphical representation of the matrix element

(Oi Js„(0) in;(q))

de A, ;(0
I Js„(0) I ~, (q) & =~q„f;, ='3 f & T«y„ys S(p+q)G~s(p+q p)S(p)

(2n)~ " 2

Substituting the expressions for the quark propagator and for the meson-quark-antiquark vertex, we get

8 4

iqpfij g akj f ', [fi(p +q)+f I (p)]T«r„rs [i (A+0 ) —~(p +q)l 'i} s
—[iP —~(p)]

2b, „, ' (2m. )'

where

X„(p)

(10.23)

(10.24)

X(p) = 0 Xd(p) 0 (10.25)

0 0 X,(p)

with X,(p)=m, f, (p) +(X, )f2(p), a =u, d, s. Let us evaluate the traces over the spinor and the flavor indices in

(10.24):
8 d4p p„[&,(p +q) &b(p)]—q„Xb(p—)

(10.26)

where c' are 3)(3 matrices

0 1

c"= 1 0
0 0

1 0
c3= 0 1

0 0

0 0 0
0=c, c= 00
0 1 0

0 1 0 0
c =—01088

0
3

0 0 4

1 0 0 0
0 0 1

0 0 1 0

1 0 0
C38 0 1 0 83

v'3
0 0 0

(10.27)

To obtain an expression for f;, , we will differentiate with respect to q„ in Eq. (10.26), and, according to the soft-pion
limit, we will take q =0. In this way we get

with

8

fi, =
b X Mibabj
j k=1

(10.28)

= 3 d p
gpv ik ~ g Cab 4

b „d ~ (2m)

ar..(p)

&f~(p) &.(p) —&b(p) Pi ~
g'i, v&b P)

" [p'+& '(p)][p'+& '(p)] [p'+& '. (P)][p'+& '(p)]

BX,(p)
2P~, +

g pp [&,(p) —&b(p)]
—2f2(p) [p'+ &.'(p) ]'[p'+ & b(p) 1

(10.29)
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For the sector with charge and strangeness different
from zero, inserting (9.15) in (10.28), one finds

(x„&+&x, &f += — — Mi, ,

(x„&+(x,&

f~+ = — — M~,
2

&xd &+(x, &f M66
2
sc'Fc '

[clearly from Eq. (10.29) we get M~& ——M22, M44 ——M»,
and Ms6 ——M77].

As an illustration, let us derive a representation for f„
in the case of massless quarks. Then

f33 f—0
—M3+33, f ss f——„MssAs, , (10.36)

M„, M„
b3 —— , b8 ——

33 88

Using (10.36) in (10.37), and Eq. (9.18), we get

( &x„&+(x, &
)'

b2
2~8 18f„

(&x„&+(x„&+4(x,&)'

(10.37)

(10.38)

Equation (9.19) for the 3-8 sector in the symmetric case
reads

aX(p)

g„„M))——6 2 4 f2(p}
(jp P"

[p'+ & '(p)]'

(10.31)

1 1
M 3

— V33 M 8
— V88b2 b2

(10.39)

which means that, as expected, there is no mixing So we
can identify

So, using the relations (10.22) and performing the angular
integration, we obtain

& '(p) ——,'p ' &(p)
d X(p)

dp (10.32)
[p '+ & '(p }]'

which is the expression given by Pagels and Stokar. We
recall that Euclidean variables have been used.

On the other hand, for the sector with Q =S =0 one
obtains

M3 ——M 0, M8 ——M
1T l3

and the following relations hold:

d V((x„&+(x, &
}'„

d V
M'„,=, ((x„&+(x, &+4&x, &

)' „

(10.40)

(10.41)

1

fv„=b & un v„
& p=3, 8

(10.33)

It follows from the previous considerations that in the
general case one has to correct Eq. (10.41} with terms of
order (m„—md ) /m,

which, together with Eq. (9.17), gives

f„„f„„=g M„a +„~,„,
p, 7-= 3, 8

(10.34)

M3a3
b 2 p=3, 8

A, a, '

p= 3, 8

Ms,a,s

b2 p=3 8

8pap8
p=3, 8

(10.35)

Equation (10.34), in which there is no summation on the
indices p and v, gives the square of the decay constants in
the 3-8 sector. Here the matrices M and A depend only
on the parameters of our model: p, AQCD m„, md, and
m, . Therefore the f, 's are completely determined as
functions of these quantities. On the other hand, with
Eq. (10.35) we can calculate the coefficients b3 and bs
which enter in the expressions of M o and M„[see Eq.
(9.19)].

As an example let us consider the SU(2)-symmetric
case (m„=md). Then a, =5, and also A3s ——As3 ——0;
M38 ——M83 =0, so

XI. NUMERICAL RESULTS

The expressions we have found in the previous sections
for the decay coupling constants and for the
pseudoscalar-meson masses are functions of the parame-
ters of the model: p, AQc'0 m „,md, and m, . The prob-
lem is now to determine these parameters from the exper-
imental data. We have a system of coupled equations
given by (9.19) and (10.28), so this determination can only
be done in an approximate way.

In order to realize this program, we start from the
SU(2) sector with m„=md ——0. Then the representation
for f [see Eq. (10.32}],gives f /A&cD as a function of c

=F(c)
AQCD

(remember that in @CD with three fiavors [see Eq. (5.14)]
c =2m /g (p), or equivalently p/AQCD —e ' ). The nu-
merical analysis of Eq. (11.1) shows that the function
F(c) has a maximum F,„when c =0.23. This means
that in our model AocD) f /F, „. So, in order to repro-
duce the experimental value f =93 MeV with the possi-
ble smallest value of AQCD we have to fix c =O. 23 corre-
sponding to the maximum for F (see Fig. 8). In this way,
having fixed the value of c, we can determine p (or AQCD)
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(i F((-)

0.20-
are the following, to be compared with the experimental
ones (the values in parentheses are current-algebra pre-
dictions):

0.15—

0.10-

0.05-

0.00
00

I

0.2 0.4 0.6 o.e

M+
M p

M

M„
f.
f»
f„

Evaluated

139 MeV

138.7 MeV

492 MeV

498 MeV

546 MeV

93 MeV
105 MeV
111 MeV

Experiment

139.6 MeV

135 MeV
494 MeV

498 MeV

(566) MeV

93 MeV

f» If„=1.17

(fqlf =1.3)
FIG. 8. Plot off /AQco vs c in the massless case. The curve

reaches a maximum value F,„ for c =0.23.

from the experimental value of f . Furthermore, from
the value of the minimum of the effective potential for
massless quarks, one can extract the values of the con-
densates (uu )„=(dd )„(the superscript 0 means
m =0). Using these values in the Adler-Dashen relation
(9.31), we obtain a first approximation for the quark mass
m„=md, given the experimental value of the pion mass.
Substituting these first results in Eq. (10.28) with i,j,k =1
we redetermine p, assuming again f =93 MeV. Then
we iterate this procedure. From the minimum of the
effective potential we obtain the values of the condensates
for the quarks u and d and then, from the second deriva-
tive of the effective potential evaluated at the minimum,
we extract the values of the quark masses. Schematically,

The fit for the meson masses is very good (agreement
within 3%) and the ratios f» If = 1. 13 and

f„If„=l. 19 are in rather good agreement with the ex-
perimental results and with the current-algebra calcula-
tions, respectively.

Some observations are now in order. It is known that
the main contribution to the m.+——m mass difference is
electromagnetic. The mass splitting we find in the frame-
work of our model comes only from the explicit SU(2}
breaking due to m„&md and therefore, it has to be corn-
pared with the current-algebra predictions. ' For the
fit we have reported, the mass difference is
(M + —M 0)=0.3 MeV of which 0.11 MeV comes from
the m. -gs mixing.

Here M„ is the mass of the eight component of the oc-
I8

tet. However, q8 mixes with the singlet g0 because of the
SU(3) breaking, and the physical states are given by

f =93 MeV~p, i) =riscos8 —ripsin8, ri' = ri&sin8+ ripcos8, (11.5)

dV =0 (uu )„=(dd )„,
m„(p)+md(p)

M =(139 MeV) ~m(p)=

where we have explicitly indicated the dependence on the
renormalization point p of the quark masses and conden-
sates. The iteration converges very quickly and the re-
sults we obtain are

@=497 MeV, A&cD
——449 MeV, m(p)=18 MeV .

(1 1.2)

With these values, it is easy to determine m„given, for
instance, M +=494 MeV. The result is

m, (p)=294 MeV . (1 1.3)

m„(p, )=14.5 MeV, md(p)=21 MeV . (11.4)

We are now ready to calculate the masses and the de-
cay constants for the octet mesons. The values we get 23

Finally, assuming that the electromagnetic mass
difference between K +—and E,K is of order of 1.5 MeV
(Ref. 22), we can calculate the difference m„(p, ) —md(p)
and, combining with the previous result (11.3), we find

where 0 must be determined so as to diagonalize the
square mass matrix

M P M08
2 2

(11.6)
80 98

Since we are ignoring the mixing with the SU(3} singlet,
the output of our model is M„, not to be compared with

~8

the experimental value of M„but with the prediction of
the modified Gell-Mann —Okubo mass formula which
gives M„=566 MeV (Ref. 45).

Let us also specify that in the deterinination off 0 and

f„,we have neglected the mixing terms, since their con-
8

tribution is almost irrelevant. Our explicit calculation
gives in fact f38,f» -1.5 MeV. (See also Ref. 44, where
the determination of the off-diagonal meson decay con-
stants is performed in the context of chiral perturbation
theory. )

Having determined the values of the quark masses, one
can extract the corresponding numerical values of the
quark condensates from the minima of the effective po-
tential. Let us recall that the values we get for the masses
and for the condensates must be interpreted as those for
the renormalization point p =497 MeV. To compare our
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results with the values obtained by quite difkrellt
methods, quoted in the literature, let us perform a rescal-
ing at 1 GeV. From Eq. (4.25) we have that the current-
quark masses scale as

T d
111p/A@CD

rn(P)= m(p)
lnp/A&cD

(11.7)

m (P)(1(1(&p
——m(p)(qt( &„,

we obtain

m„(1)=5.8 MeV, ( uu )
~
——( —223) MeV3,

m&(1)=8.4 MeV, (dd ) i
——( —225) MeV

m, (1)= 118 MeV, (ss ),=( —284) MeV

(11.8)

(11.9)

XII. COMPARISON WITH CURRENT-ALGEBRA
AND SUM-RULE PREDICTIONS

FOR THE QUARK MASSES

with d =—,'. Notice that this scaling behavior follows
from the cutoff dependence of the bare mass which is
essential for the UV finiteness of the effective potential.
Since m (iI'j1() must be a renormalization-group-invariant
quantity

B=—,(uu)2

R =43.5+2.2 (42. 65) . (12.2)

(in fact, in the chiral limit, f„=fx and
( uu ) = ( dd ) = (ss ) ), showing that the Gell-
Mann —Okubo additive rule is well satisfied by the pseu-
doscalar octet. So, if one ignores the higher-order correc-
tions, Eq. (12.1) gives the quark mass ratios in terms of
the masses of the pseudo-Goldstone bosons.

The study of higher-order terms in the quark mass ex-
pansion cannot be done by power expansion around the
chiral limit since the theory contains massless physical
particles (Goldstone bosons) which generate infrared
singularities. To obtain a reliable approximation
scheme, it is necessary to reorder the expansion and sum
up the leading infrared singularities that occur at any or-
der in the quark masses. With the estimates of the
higher-order terms in the quark mass expansion, one can
analyze the quark mass ratios m„:m&.m„given the ex-
perimental values of the meson and baryon masses. For
example, in Ref. 22, the ratio R =(rn, —m )/(rnid —m„),
with m =(m„+mz)/2, is determined on the basis of five

independent manifestations of isospin breaking (K+-E,
p-n, X+-X, :- -:-,and p-co mixing). Treating the values
one obtains in this way as independent, one derives

M + =(m„+mq)B+O(m lnm ),
M + =(m„+m, )B +0(m lnm ),
~zo zo ——(m~+m, )B +0(m~lnmq),

(12.1)

with the same constant

The earliest information about quark masses was de-
rived from current algebra, although, in that framework,
the quark masses appeared only implicitly in the transfor-
mation properties, namely, in the commutation rules in-
volving the currents and the energy-momentum tensor.
There are convincing estimates of the quark mass ratios
from the comparison of various current-algebra Ward
identities at zero momentum transfer with physical pa-
rameters such as the masses and the decay constants of
hadrons. The success of the current algebra predictions
is mainly due to the fact that the ratio of the quark
masses is defined unambiguously, as it is scale indepen-
dent. For example, a standard way to extract informa-
tion about the quark mass ratios is based on the chiral ex-
pansion. ' In fact, since the masses of the light quarks
u, d, s turn out to be small, the deviations from chiral
symmetry may be studied by treating the quark mass
term in the Hamiltonian as a perturbation, with massless
QCD as the unperturbed system. The chiral symmetry
implies a set of Ward identities which link the various
Green's functions and therefore interrelate the expansion
coefficients. In this way, by expanding the mass of the
bound states in powers of the quark masses, one obtains
the first-order mass formulas. For the pseudoscalar-
meson octet they read

In (12.2), as well as in the following equations, we add in
parentheses the values we get in our model. From the ob-
served masses of m., K, and g, one can extract the value of
the ratio m, /m and, from the analysis of the correspond-
ing higher-order terms in the quark mass expansion, one
gets

m, /m =25.0+2.5 (16.62) . (12.3)

The above results for R and m, /rn imply the following
values for the related quark mass ratios:

mz/m„=1. 76+0. 13 (1.45),

m, /mz ——19.6+1.6 (14.05),

m, /m„=34. 5+5. 1 (20.34) .

(12.4)

II(q')=i fd'x(O
~

r8(x)8'(0)
~

0)e'&", (12.5)

where 8(x) denotes a composite operator of quark and
gluon fields with specified quantum numbers. They are
assumed to satisfy dispersion relations of the type

Let us remark that the discrepancies between the chiral
perturbation theory results and ours (written in
parentheses), are essentially due to the fact that in our
calculations f„&fx&f „and also the values of the quark
condensates are different for each flavor.

While it is possible to calculate the quark mass ratios
on the basis of current algebra alone, the absolute values
of the light-quark masses are not accurately known even
if there has been substantial progress during the last few
years. The framework which has been used are various
QCD sum rules. The kind of objects one deals with are
two-point functions like



38 DYNAMICAL CHIRAL-SYMMETRY BREAKING AND. . . 271

oo 1 1
II(q ) = ds —ImII(s)+subtractions .

s —q —ie ~

(12.6)

P(q')=i fd'x(0
~

TB"J„(x)B"J,(0)
~

0)e'~" . (12.8)

The reason for considering these particular two-point
functions is that in QCD the operators 8"J&„and 8"J„,
which are renormalization-group-invariant operators, are
proportional to the sums and to the differences of quark
masses, respectively. For example, there are two familiar
Ward identities which relate $5(0) and P(0) to products
of quark masses and vacuum expectation values of
quark-antiquark fields:

$5(0)= —(m„+m&)(uu+dd ),
g(0)= —(m„—md)(uu —dd) .

(12.9)

Although some consensus on the values of the light-
quark masses has by now been reached among various
group of authors, the errors remain rather large. For ex-
ample, Gasser and Leutwyler show that the sum rules
they consider for the divergence of the axial-vector
current, are consistent with

m(1) =7+2 MeV, m, (1)=180+50 MeV . (12.10)

With the results for the ratios m„:md.m, given in Eq.
(12.4), the estimate m(1) =7+2 MeV amounts to the fol-
lowing figures:

The weighted average of the hadronic spectral function
( I/m. )lmil(s) on the right-hand side, for sufficiently large
spacelike q values, must match II(q ) on the left-hand
side which, up to subtractions, is a calculable quantity in
QCD. Following the work by Shifman, Vainshtein, and
Zakharov (SVZ), there has been a lot of effort to im-
prove on the QCD evaluation of the left-hand side of
equations such as (12.6). These authors have proposed to
use the Wilson operator-product expansion of the time-
ordered product in Eq. (12.6) to parametrize nonpertur-
bative effects due to the confining nature of the QCD vac-
uum. In order to extract information about light-quark
masses, the appropriate two-point functions are those in-
volving the divergence of the axial-vector currents,

p, (q') =i fd'x '(0
~

TB"J,„(x)B"J„(0)
~

0)e"",

and the corresponding two-point functions associated
with the divergence of the vector currents,

Adler-Dashen relation, one can fix the order parameter
(uu ) =(dd ) from the experimental values of M and

f„. The result is

(uu ),=( —225+25) MeV ( —(223) ) (12.12)

and it agrees very well with our value.
In a recent paper, Narison discussed in detail various

determinations of chiral-symmetry-breaking parameters
from the light-meson systems by using the SUZ-Laplace
transform QCD sum rules and also calculated a weighted
average of various estimates coming from different
methods. For the u, d, and s masses he gets (for
100 & AqcD & 150 MeV )

m„(l)=5. 1+0.9 MeV (5.8),
md(1) =9.0+1.6 MeV (8.4},
m, (1}=148.4+15.3 MeV (118) .

(12.13)

m„(1)+m„(l)=15.5+2.0 MeV (14.2) . (12.15)

They also determine the strange-quark mass from the
combination of the result (12.15) with the current-algebra
determination of the ratio m, /m [for example, the value

in Ref. 22 is given in Eq. (12.3)] and they get

m, (1)=199+33MeV (118) . (12.16)

Also, the best determination in their framework of the
down- and up-quark mass difference follows from the
combination of the current-algebra determination of the
ratio (md —m„)/(md+m„) with Eq. (12.15). They ob-

tain in this way the individual values

For the ratios of the quark vacuum condensates, he gets

( dd ) /( u u ) = 1 —( 1+0.3 ) && 10 ( 1+3 &( 10 ),
(12.14)

(ss)/(uu ) =0.6+0.2 (1.08),

where, as before, we have reported in parentheses the
values we get from Eq. (11.9).

Dominguez and De Rafael have recently presented
an improved determination of the light-quark masses in

QCD by combining the information provided by the
effective chiral Lagrangian of QCD at long distances (see,
for example, Refs. 22 and 44) and the QCD behavior at
short distances within the framework of Gaussian sum
rules and finite-energy sum rules. A result of their work
is the determination of the sum of the running u and d
masses at 1 GeV:

m„(1)=5.1+1.5 MeV (5.8),
md(1)=8. 9+2.6 MeV (8.4),
m, (1)=175+55 MeV (118) .

(12.11)

These absolute mass values are not known very accurate-
ly. If we focus on the central values, we see that our esti-
mates (in parentheses) for the u- and d-quark masses at
the same renormalization point compare very well, while
the situation for the strange quark is more uncertain.
Also, if one uses the value m(1)=7+2 MeV in the

m„(1)=5.6+1.1 MeV (5.8},
md(1)=9. 9+1.1 MeV (8.4) .

(12.17)

Finally we mention the results obtained by Reinders
and Rubinstein ' about the determination of the mass
and the condensate of the strange quark. Their strategy
consists in taking advantage of the constraints coming
from heavy-quark physics and then in analyzing the
light-quark meson channels with strange quarks. They
find that the compatibility of a11 the sum rules they calcu-
late specifies a very narrow window for m, (ss). As a
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consequence they establish that

m, (ss ) = —(210+5) MeV ( —(228) )

and

m, (1)=110+10MeV (118) .

(12.18)

(12.19}

24m const

p

1m„„„=m(p) 1+ ln
2a

where X'(p )=mp(A)+X(p ) is evaluated at the ex-
tremum of the effective potential. Using our previous re-
sults, we get the following form for Politzer's equation:

' —4/9

(ss ),=(0.8+0. 1)(uu ), , (12.20)

They also suggest the following value for the condensate: 2 4m,.„„2

+pg 1+ ln

—5/9

which, however, does not agree with their previous re-
sults. In fact, taking literally the values given in Eqs.
(12.18) and (12.19) one would get

(ss }
&

———(260+20) MeV ( —(284) ) (12.21)

2= 2
const =~ '(pE = 4m const ) t (12.22)

1.5

1.0

0.5

0.0
0 10 20 30 40 mq (1)

F&G. 9. plpt pf —((qq lt)t~s vs m (1). The values are in

GeV.

which is in very good agreement with our result.
Summing up, we can say that, as far as the value of

[m„(1)+md(1)] is concerned, one finds in the literature
values ranging between 10 and 19 MeV and we obtain 14
MeV. The situation for the mass of the strange quark is
more confused. One finds evaluations varying from 100
up to 230 MeV. We find 118 MeV. At the same time,
there is a general tendency within the sum-rule approach
to indicate that the value of the condensate ( qq ) de-
creases for heavier quarks. In our approach, the conden-
sate increases with the mass simply because the ex-
tremum of the effective potential moves further away
from the origin as the symmetry breaking increases. This
is clearly shown in Fig. 9 where we have a plot of the cu-
bic root of the quark-antiquark condensate as a function
of m (1). We see that the condensate varies very slowly
for large values of the current-quark mass. For example,
it varies by -(0.3 GeV) when passing from a value of 20
GeV to a value of 40 GeV for the mass. This means that,
for heavy quarks, the effects of the condensate become
secondary as also expected from the asymptotic behavior
of the quark self-energy.

To illustrate this phenomenon let us compute the
"constituent-quark mass. " Politzer has proposed a
definition which, in the Euclidean region, reads

(12.23)

Here the constituent mass is largely dominated by the
condensate scale. In the case of heavy quarks the situa-
tion is quite different. If, for instance, we look at the
charm quark, using the value m, (2m, ) = 1.01 GeV for
the charm mass, we find

(m, )„„„=0.97 GeV . (12.25)

Hence, in spite of the large value of the charm conden-
sate [(cc}z ——(600) MeV ], the constituent mass

differs from the current mass by only 4%. This means
that, already for the charm quark, the effects of the con-
densate are negligible in a quantity such as the constitu-
ent mass. Obviously this phenomenon will be stronger
for much heavier quarks. Finally let us observe that the
inclusion of the charm quark in this picture, as well as of
other heavy quarks, would not significantly change all the
previous results for the meson masses.

XIII. CONCLUSIONS AND OUTLOOK

We have analyzed chiral-symmetry breaking in QCD-
like gauge theories with ferrnions. We have included
renormalization-group corrections to the gauge coupling
and the fermion self-energy. We have used a variational
method based on an effective potential for composite
operators which is a modified version of the one intro-
duced by Cornwall, Jackiw, and Tomboulis. This formal-
ism has a nonlocal order parameter for which a nonlocal
source J(x,y) is introduced. Since the source function
must finally be taken to vanish, an ambiguity of adding
an arbitrary polynomial of the source is present, satisfy-
ing some suitable conditions. In particular our effective
potential corresponds to a choice which gives the same
local extrema as the CJT potential but has the advantage
of being bound from below. VCJT does not enjoy this
property, and this instability is reflected in the saddle-
point character of its stationary points. We have shown
that the different choices of the source term for the two
cases correspond to different choices of the dynamical
variables. Our effective potential comes out to be com-

with a =in()tt/A&cD). A numerical study of Eq. (12.23)
with the values of p, A&cD, m„, md, and m, given in

(11.2) —(11.4) and the values of the condensates renormal-
ized at ttt obtained by rescaling in (11.9), gives essentially
the same constituent mass for all the three light quarks:

(m„)„„„=275MeV, (md )«„st——276 MeV,
(12.24}

(m, ), „„=288MeV .
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pletely expressed in terms of the fermion self-energy X,
and our variational method consists in making use of a
parametrized test function for X. The parametrization of
the self-energy is in terms of constant fields related to the
fermionic condensates, evaluated at the minimum of the
effective potential.

We have assumed that the main contribution for
chiral-symmetry breaking comes from short distances.
For this reason we have introduced a parameter p as in-
frared cutoff and we have focused our attention on the
short-distance dynamics. In this range it is sensible to
perform a loop expansion of the effective action and to re-
tain only the lowest nontrivial contribution. The effective
action has thus been calculated at the two-loop order.
This approximation has been improved according to the
renormalization-group analysis (the calculations are per-
formed in the Landau gauge). For the momentum depen-
dence of the fermion self-energy we have assumed a con-
stant behavior in the infrared region (p &p) and a fall
down like 1/p (logs) for p & p as suggested by the
operator-product expansion analysis.

In the case of massless fermions we find that the theory
possesses two phases: the chirally symmetric phase and
the phase broken to the diagonal flavor subgroup, de-
pending on the value of the coupling constant renormal-
ized at the point p, which discriminates the IR from the
UV region. For @CD with three fiavors the numerical
calculations show that the color gauge dynamics spon-
taneously breaks the initial chiral symmetry down to
SU(3)L+a for a, =g (p)/(4m)&0. 73m, by giving equal
vacuum expectation values to each scalar quark-
antiquark pair ( uu ) = (dd ) = (ss ). The value of a,.
which agrees with that obtained by other variational
methods with specific Ansatze for the fermion self-energy,
is higher than the value usually found with methods
based on the exact solution of the linearized Schwinger-
Dyson equation or on the numerical solution of the non-
linear equation. We think this is due to the fact that the
true form of the fermion self-energy is more complicated
than the one we have used. In particular the constant be-
havior of X in the infrared region is a rather crude ap-
proximation and the low-momentum regions are also in-
volved in the definition of the critical value of a, .

The central part of this work is the extension of the
effective potential formalism to realistic situations when
both spontaneous and explicit breakdown of the global
chiral symmetry take place. We have examined in partic-
ular the predictions of our formalism for QCD with three
flavors. The minimum of the effective potential is found
to correspond to vanishing pseudoscalar condensates (no
spontaneous P and CP violation) and of scalar charged
condensates. We have determined the values of the
quark condensates ( uu ), ( dd ), and (ss ) from the sta-
tionary points of the effective potential. They depend on
the parameters of the model: the renormalization-
invariant mass AQcD the quark. masses m„, md, and m„
and the scale p. To determine these parameters we have
derived explicit expressions for the masses and decay con-
stants of the pseudoscalar mesons. The equations relat-
ing the meson masses to the second derivatives of the
effective potential with respect to the pseudoscalar fields

can be recast in a form which only depends on the expli-
cit symmetry-breaking part of the effective potential, par-
ticularly useful for computation. Also, after imposing the
renormalization of the effective potential in the small-
quark mass limit, these equations appear as the Adler-
Dashen relations for three flavors.

Allowing for general space-time dependence of the
variational parameters, we have calculated the effective
action at one loop by using the Weyl symmetrization
prescription to solve the quantum-mechanical ordering
problem. In this way it has been possible to extract,
directly from our functional, the expression for the
meson-quark-antiquark vertices. This is a necessary in-
gredient for the calculation of the pseudoscalar-meson
decay constants together with the normalization factors
relating our dynamical variables to the canonical
pseudo-Goldstone fields.

The expressions for the masses and the decay constants
of the pseudoscalar mesons represent a system of coupled
equations. The determination of the parameters of our
model has thus been carried out by iteration. Our experi-
mental inputs are

f =93 MeV, M y =139 MeV,

Mx+ =494 MeV, (M + M, )~—= l. 5 MeV,

and we get a very good fit for the octet-meson masses
(agreement within 3%) with the following choices:

p=497 MeV, AQcD
——449 MeV,

m„(1)=5.8 MeV, md(1)=8. 4 MeV,

m, (1)=118MeV,

where p/A&cD has been fixed in order to obtain a
minimal value for A&cD in the massless case for given f,
and the quark masses are renormalized at 1 GeV. (In our
calculations the mixing in the 3-8 sector has been taken
into account. )

Comparison with current-algebra and sum rules pre-
dictions shows that our estimates for the u- and d-quark
masses and condensates agree very well, while for the
strange quark the agreement is not as good. However the
indications given in the literature for m, (1) are uncertain.
One finds estimations varying from 100 up to 230 MeV.
So, within the large errors, we can conclude that our vari-
ational approach to dynamical mass generation had led
to quantitative results which are essentially in agreement
with those obtained by quite different, more phenomeno-
logical, methods. This proves the validity of the method
and encourages us to use it in other contexts.

The most direct extension of the method goes in the
line of reproducing the results of "chiral perturbation
theory" within our dynamical setting. In fact we have al-
ready given (see Barducci et al. ) a general derivation of
any amplitude among pseudoscalars including possible
external photons and 8', Z bosons. The formalism can
thus be applied to any problem of electromagnetic and
weak interactions of pions, kaons, eta, etc. At present we
are studying the implications for the K-E system.

The composite operator method based on our modified
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effective action can be straightforwardly extended to
finite temperature. The general formulation at finite tem-
perature has already been written down. The treatment
follows the work by Dolan and Jackiw and by Ber-
nard on spontaneous symmetry breaking at finite tem-
perature. The introduction of composite operators and
of their associated bilocal sources allows for the extension
to cases of dynamical symmetry breaking. The practical
aim of this type of work is a theoretical treatment of
QCD at finite temperature, in view of the importance of
the phase transitions that are expected to take place in
such a system. So far the only application of our finite
temperature formalism has been to the O(N) scalar mod-
el at large N, to verify that one reproduces the known re-
sults of that model.

The composite operator method can in principle be ap-
plied to supersymmetric QCD. The expected appearance
of other type of condensates, beside the quark-antiquark
condensate, and the necessary verification of additional
Ward identities lead in this case to a rather complex
problem, in principle not insoluble but which will
demand still more work before we may get to some con-
clusion.

We have also in mind the application of our formalism
to technicolor-type models. Let us spend some word on
this subject.

Recently, Appelquist and Wijewardhana have pro-
posed a modification of the technicolor (TC) dynamics
leading to a higher value of the technifermion condensate
( TT ) but leaving the Goldstone-boson decay constant F,
which determines the 8' and Z masses, essentially unal-
tered. In their model the asymptotic freedom of the TC
theory is maintained but it is assumed that the large num-
ber of fermions expected in a realistic TC theory substan-
tially slows down the running of the coupling. They
show that the slow running modifies the ultraviolet be-
havior of the theory. In particular they find that there is
a critical coupling a, that the running coupling a(p)
must exceed before chiral condensation can set in, and
that the solution of the Schwinger-Dyson equation for
constant a & a, has a 1/p power behavior multiplied by
an oscillatory function. They use a mass scale M associ-
ated with the additional interactions that generate quark
and lepton masses, as an UV cutoff. Then, the relatively

slow fall of the technifermion self-energy allows for a
higher value for the cutoff M than naively expected for a
given value of the fermion mass. This raising of the
cutoff leads to a suppression of the Aavor-changing neu-

tral currents and also raises the pseudomasses above
current accelerator bounds. They find that ferrnion
masses of the order of 100 MeV and pseudornasses of 100
GeV can be obtained for M-300 TeV. On the other
hand, 8'+— and Z masses remain essentially unaltered
since the condensate ( TT ) M is clearly much more sensi-

tive to the high-momentum behavior of the self-energy
than is the decay constant F. Because of the interesting
properties of this model, one can think of applying our
variational formalism to the case of chiral-symmetry
breaking in asymptotically free theories with slowly run-

ning couplings. The Ansatz for the self-energy to be used
in this case must clearly be different from the one used in

QCD. In fact the test function could start from a con-
stant value for momenta p &Azc, falling slowly like

1/p@(logs) for a significant range p & Arc and then take
the asymptotic form I /p 2(logs).

Composite models for quarks and leptons are usually
based on confining color-type forces at higher scales. In
fact the lack of dynamical understanding of those conjec-
tures was one of the original motivations for our work on
composite operators.

Finally, we mention the work' on the possible strong
Higgs sector, where the composite operator formalism
has allowed us to derive an effective Lagrangian for sca-
lar and longitudinally polarized weak bosons, giving in
particular the (multiple) production amplitudes for W's

and Z's, and showing how unitarity becomes restored at
high energies when one goes beyond lowest-order pertur-
bation theory.

All these topics are under study and represent some of
the further developments of the present work.

APPENDIX A: CANCELLATION OF THE UV
DIVERGENCES IN THE EFFECTIVE ACTION

Let us substitute our Ansatz (5.2) for X(p ) in the ex-
pression (3.40) for the effective action and let us start by
analyzing I 2. By performing an integration by parts in
(3.30) we obtain

2N 1r, = 0
3Cq 2 d g'(p)

dp p

. tr [X,(p )+X (p )]
d

dp'

0

A—J' dp'
0 d g'(p)

dp p

2

tr X, (p ) +trd 2

dp
Xp(p )

dp
(A 1)

with

X.(p') =m(p)f i (p') —mo(A)+sf 2(p ),
X,(p') =pf2(~'»

(A2)

(A3)
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and f1(p ),f2(p ) given in Eqs. (5.3) and (5.4). The surface term in (Al) gives a vanishing contribution. In fact, for

p =0 we get obviously zero. Let us calculate explicitly the contribution for p =A . Introducing

fA f——(p ) ~,= ln =1+ ln, a =ln1 A 1 A IM (A4)
2a ~~ 2a p&

' M

with f (p ) defined in (5.5) we have

g'(p)
dp p

. tr, [X,'(p')+X~(p')]d

—2d+1
=tr[m 2(p)] A

b 1+2a x

—«[m(p) mo(A) l 1+2a

6 2d

+tr(s +p )
4a p fx
b A2 1+2a ~

d 1

fd+1
—tr[mo(A) s] p'

b 1+2a

+tr[m(p, ) s] p'4a2, fA
b 1+2a A

(A5)

Remembering that, in the leading-logarithmic approximation

mo(A)=m(p)Z (p, A)=m(p)f A"

with Z (p, A) defined in (4.25), and performing the A~ oo limit we get

(A6)

[X2(p 2
) +X2 (p

2
) ]

d
dp2

p =A ~oo2= 2

—2d+1
-tr[m (p)] A

—2d+1
—tr[m (p)] A

4a2,—tr[m(p) s] p'

4a2, fA
+tr[m(p) s] p 1+2a

=0, (A7)

showing that no contribution arises from the surface term of I
&

in virtue of the mass renormalization.
So we are left with

2%
3C2 0 d g2( )

dp

For large values of momenta we have

[X.(p )+X (p )]
d

dp
2 5' P

(A8)

tr
2 [X,'(p )+X~(p')]

d

p —+ 002

[' ], ,fd 1

4a' p'

3

+2tr[m(p) s] — [d —1 —Zaf(p )] f(p )
4a 6

+tr(s +p ) [d —1 —2af(p')] f(p )
4a p

(A9)

SO

r2
~ „,= — QI tr[m'(p) ~+2 tr[m(p) s]X+tr(s'+p')C

L3C~

with

(A10)
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"'d z f(P') "
1+2af(p )

d, &'dp' ( ')
V'f, [d —1 —2af (p')]

2b p 1+2af (p )

1 ~ d ( 2)2d —2

C = — p f P [d —1 —2af(p )]
2b p4 1+2af (p )

(A11)

Notice that the first term in (A10) does not depend on the fields s and p and so it can be left out since it only
represents an additive constant. Furthermore, the integral in C is convergent for large values of momenta. It remains
to analyze the ultraviolet divergences arising from the term proportional to tr[m(p). s]. Taking the A~ oo limit, we
find a divergence in S of the form

8
~

d;„——lim ——a p, ln ln
d 3

A'

b p
which, substituted in Eq. (6.10) gives

I z ~

d;„——lim ap tr[m(p) s]lnln
NQ 3 A

~ 271 p
Let us now examine the ultraviolet divergences in the logarithmic term of I . Let us call it I „:

A
I ~, ——— f dp p lndetIp +[mo(A)+X, (p )] +X~(p )+i[X&(p ),mo(A)+X, (p )]] .

8m

(A12)

(A13)

(A14)

Substituting our Ansatz for the large momenta behavior
of X, and Xz, subtracting an infinite constant, and using
the relation

det(1+ A)=1+trA

for infinitesimal A, we obtain

A
I ...——,f '

dp'[tr[m'(p)]f f(p')

(A15)

+2tr[m(p) s]f, (p )fz(p )

+tr(s +p )fz(p )] . (A16)

In (A16) the first term does not depend on the fields s and

p and can be left out. Substituting the expressions (5.3)
and (5.4) for f&(p ) and fz(p ), one finds that an ultra-
violet divergence arises only from the term proportional
to tr[m(p) s]. The explicit calculation gives

pression for I . This is due to the fact that we are taking
into account the renormalization-group effects in the
leading-logarithmic approximation. As a consequence we
do not obtain the usual logarithmic mass divergence from
I 1,g but there remains only a divergent term which goes
to infinity like ln ln(A /IM ). In other words, the insertion
of the running mass m(p)f &(p ) in the scalar part of the
fermion self-energy regularizes the theory at one-loop or-
der, at least in the leading-logarithmic approximation,
while the residual divergence is canceled by the two-loop
contribution of I z.

Remember that also in the discussion of the
Schwinger-Dyson equations (see Sec. IV), the asymptotic
behavior for large momentum of the mass term in X,' is
responsible for the regularization of the theory in the ul-
traviolet range.

APPENDIX B: PROPERTIES OF THE EXTREMA
OF THE EFFECTIVE POTENTIAL

IN THE MASSIVE CASE

A

,s'f, f(p') '

8a

X2tr[m(p) s]

——lim alM tr[m(p). s]ln ln
NQ A

~ 2w p

(A17)

We will describe some general properties of the extre-
ma of the effective potential as given in Eq. (5.13). First
of all, we will prove that for a symmetric mass matrix
m, =m 5„a,b = 1, . . . , n, the search of minima with
vanishing charge condensates can be restricted to the sur-
face in which these condensates are zero. '

It is convenient to expand the fields s,„(and p,„) in
terms of the Cartan basis of U(n):

n —1 (n —1)n/2
s=so+g s, h, + g (s e +s e )

which exactly cancels the divergent part of I z [Eq.
(A 13)].

In this way we have a completely UV regularized ex-
and analogously for p. We want to show that, if the re-
striction of the potential V to the surface defined by
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s =s =0, p =p =0 (B2)

4 n

V= g V, (X„rr„m)
4m

(B3)

with X, and n., defined in (6.6). Because of the structure
of (B3), the minimum of V will be at the point (X, ) =U
and ( n, ) =w independent on a since we are considering
the U(n) symmetric case. So, using Eq. (6.6) this means

(so & =U, (po & =u,
(s, )=(p, )=0, i=i, . . . , n —1. (B4)

This is a minimum on the surface defined by (B2). It
remains to be shown that this point is a minimum also
along the charged field direction. Because of the SU(n)
invariance of the potential, the first derivatives of V will
have the general form

has a minimum, then it is a minimum also of the function
V. On this surface, V decomposes, as in the massless
case, in the sum of n contributions, one for each flavor

derivatives of the potential are positive also along the
charged directions, and therefore this point is a minimum
in the space of all variables.

Second, we want to show that only two possibilities
arise for the function V, (X,~, m): either V, has its abso-
lute minimum on the line sr=0, or V& has two degenerate
minima at the points ((X),(rr) ) and ((X),—(m ) ). This
follows from the properties: (i) V, is bounded from
below; (ii) the Hessian matrix of V, is positive definite on
the possible extrema outside the line ~=0. In fact, if V&

has a minimum on the line m. =O, no extrema outside this
line can exist due to the positivity of the Hessian. How-
ever, if no minima exist on the line m =0, then necessarily
two degenerate minima at m&0 must exist due to the par-
ity invariance of V&, ~~ —m. .

Let us now show that property (ii) holds. By using the
equation

dV, (X, m) aV, (X,vr)
=2~

a(~'+x')
which implies

= As;+Bp;,
av
Bs]

V =Bs;+Cp;,

V = As +Bp
S~

V =Bs +Cp
p

(B&)

(B6)

av, (x,~) =0
a(~'+x') (B9)

on an extremum outside the line m=O, we can write the
second derivatives of V, [Eq. (8.10)] evaluated at this
point in the form

d V, (X, n. )
=2f dp(aG, +XG2)

extr

AC —8'&0, A &0 . (B7)

where A, B, and C are SU(n) invariants. By hypothesis,
at the point defined by Eqs. (B2) and (B4), Eq. (BS) im-

plies

d Vi(X, n)
=2f "dp ~'G2,

extr

d V, (X, vr)
=2f dp m.G2(aG, +XG2),

extr 0

(B10)

We see from (B6) that the eigenvalues of the second where

[y +a y F(y) +2ayXF(y) '+(X +rr )F(y) ]

F(y)=1+ Iny, a =ln, G, =yF(y) ', G2 F(y)——1

2a '
Mo

(Bl 1)

Because dp is a positive measure, we can use it to introduce a scalar product. %e define

IIG, II'= f "dp G,', i =1,2, «, , G, &= f dp G, G, (B12)

Then the Hessian at the extremum is

~1„,=4a'~'(IIG II'IIG II' —&G G &') (B13)

which is a positive-definite quantity due to the Schwartz inequality.
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