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We numerically evaluate the axion emission rate from nucleon-nucleon, axion bremsstrahlung for
arbitrary nucleon degeneracy(ies). Our numerical rates agree with analytical results previously de-

rived in the degenerate and nondegenerate limits. While the conditions in the newly born, hot neu-

tron star associated with SN1987A are semidegenerate, the nondegenerate, analytical rate is found

to be a very good approximation (accurate to better than a factor of 2), while the degenerate, analyt-

ical rate overestimates axion emission by a factor of -20-100.

INTRODUCTION

To date Peccei-Quinn symmetry provides the most at-
tractive solution to the strong CP problem (for discussion
of the strong CP problem and Peccei-Quinn symmetry see
Ref. 1). The axion is the pseudo-Nambu-Goldstone bo-
son associated with the spontaneous breakdown of
Peccei-Quinn symmetry. Its mass and couplings are re-
lated to the Peccei-Quinn symmetry-breaking scale f, :

m, =0.62 eV[ 10 GeV /( f, /N) ],
g„-m,l(f, /N),

where N is the color anomaly of the Peccei-Quinn sym-
metry. (Here we have followed the normalization con-
ventions of Ref. 2; for a complete discussion of the axion
and its couplings see Refs. 2 and 3.)

Astrophysics and cosmology have placed very
stringent limits to the allowed mass of this hypothetical,
light pseudoscalar boson (for a review see Ref. 4). Re-
quiring that the cosmological population of coherently
produced axions does not contribute too much mass den-
sity today leads to the bound

m, & 3.6)& 10 eVy ' (AQCD/200 MeV)

where AQCD is the QCD scale parameter and y & 1 ac-
counts for any entropy produced in the Universe after ax-
ion production: y = (entropy per comoving volume
after/entropy per comoving volume before).

Light axions (if they exist} should be emitted from stars
of all varieties (main sequence, red giants, white dwarfs,
neutron stars), and should thereby affect stellar evolution.
The most stringent stellar emission bound is the recently
derived bound based upon axion emission from the newly
born, hot neutron star associated with SN1987A (Refs.
6—8). For the conditions that pertain in the core of the
hot neutron star just after its formation; T-30—80
MeV, p = (6—10)&( 10' g cm, the dominant emission

process is nucleon-nucleon, axion br emsstrahlung
(NNAB): N +N ~N +N +a (N =neutron or proton).

The matrix element for this process, as well as the
emission rate in the degenerate (D) limit, have been cal-
culated by Iwamoto. ' Using the matrix element com-
puted by Iwamoto, the author of Ref. 6 has calculated
the emission rate in the nondegenerate (ND} limit. Those
two rates for the process n + n ~n + n +a (n =neutron)
are
&, (D)=5.3X10 ergcm sec 'f g,„(X„pt~)'~TM6,v,

(la)

e, (ND)= l. 1 g10 erg cm sec 'f g,„(X„p,~) TM,v,
(lb)

where f—1 is the pion-nucleon coupling,
g,„-ml(f,/N) is the axion-neutron coupling, m =0.94
GeV is the nucleon mass, X„is the mass fraction of neu-
trons, p, 4 ——p/10' g cm, and TM,v =T/1 MeV. (For a
detailed discussion of the axion-nucleon coupling g, „

in
various axion models, see Refs. 2, 3, 6, and 7. For the
moment we will focus on the process n +n ~n +n +a;
later we will extend our discussions to all the NNAB pro-
cesses. ) The degenerate (D) and nondegenerate (ND) ax-
ion emission rates for n + n ~n + n +a (or p +p ~p
+p+a) are shown in Fig. 1 for X„p,~=4, as a function
of temperature.

The neutron Fermi momentum pF ——0.237
GeV(X„p,4)', so that pt; /2m T=30(X„p,4) /TM, v
=75/TM, v (for X„p,4-4). That is, one would expect the
ND rate to be valid for T ~&75 MeV and the D rate to be
valid for T &&75 MeV; the temperatures that pertain just
after collapse are -30—80 MeV, corresponding to nei-
ther strongly ND nor D conditions. The two rates E, (D)
and e, (ND) are equal for T=20 MeV: in the D limit
( T &&75 MeV) the ND rate overestimates axion emission,
as one would expect since blocking factors are ignored,
and in the ND limit (T»75 MeV) the D rate overesti-
mates axion emission, as one would also expect since the
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FIG. 1. The axion emission rate from neutron-neutron, axion
brernsstrahlung, for X„p14——4. Shown are the analytical expres-
sions valid in the D and ND limits, cf. Eqs. (1a) and (1b), and
our numerical results which are accurate to better than 1/o (in-
dicated by the triangles). The temperature which pertains in the
core shortly after collpase is -70 MeV. Also shown is y:P/T—
as a function of T.

differ by a factor of e, (D)/E, (ND) =20. Since any limit
to the axion mass in ~e, ', this corresponds to a
discrepancy of a factor of -5, a significant difference.
For the same form of the axion-nucleon coupling, the au-
thors of Ref. 7 derive the bound, m, ~ 0.9X 10,and the
author of Ref. 6, m, 0.75 X 10, a factor of —8

difference, much of which apparently traces to the
different axion emission rate used. Since the axion mass
bound based upon SN1987A is the most stringent upper
bound to the axion mass, we feel it is important to resolve
the discrepancy due solely to the axion emission rates. '

This is the motivation for this work.
In this paper we numerically integrate the axion emis-

sion rate for the processes N+N~N+N+a (N =neu-
tron or proton) for arbitrary degeneracy(ies). Our numer-
ical results are shown in Figs. 1 —3 and are compiled in
Tables I and II. The numerical results smoothly connect
the ND and D limits, and indicate that for the conditions
that pertain in the newly born, hot neutron star associat-
ed with SN1987A the ND axion emission rate is the
better approximation (accurate to better than a factor of
2), with the D rate overestimating axion emission by a
factor of —10—100. This is our main result. In the Ap-
pendix we calculate the matrix element squared for all
three NNAB processes, and provide explicit formulas for
the total axion emission rate.

D rate is more temperature dependent (see Fig. 1).
Which rate is appropriate for SN1987A? Since the two

analytic rates cross each other for T=20 MeV (where
pF/2mT=3. 5) one might naively expect that the ND
rate is the better approximation (as we will show, that is
in fact the case). The authors of Refs. 7 and 8 use the D
rate to compute axion emission from SN1987A, while the
author of Ref. 6 uses the ND rate: for T =75 MeV they

AXION EMISSION, ONE CHEMICAL POTENTIAL

To begin we will focus on the process n+n ~n+n+a
(or equivalently, p+p~p+p+a or n+p~n+p+a
with X„=X) as there is but one chemical potential; in

the next section we extend our discussion to
n +p ~n +p +a and two unequal chemical potentials.
The axion emission rate is given by a 15-dimensional
phase-space integral:

= fd II,dlI, d ll,dl14dll. (2 ) S
l
Af

~

)I (pI +p~ —p3 —p4 —p, )E,f,f2( 1 f 3 )(1 f4), — — (2)

where dII; =d p;/(2m ) 2E;, the labels i =1—4 denote the
incoming (1,2) and outgoing (3,4) nucleons (at present,
neutrons), the label a denotes the axion, the matrix ele-
ment squared

~

JR
~

is summed over initial and final

spins, and S is the usual symmetry factor for identical
particles in the initial and final states: here S =—,

' = —,
' X —,'.

The neutron phase-space distribution functions

f; =[exp(E;/T p/T)+1] '. (Fo—r the axion masses of
interest, m, —10 eV, axions simply "free stream" out,
and there is no need to take into account reabsorption, or
include the 1+f, factor for stimulated emission. For an
axion mass ~ 0.02 eV, axions become trapped in the core,
and like neutrinos are radiated from an "axionsphere. "
While we will not treat this regime here, we hope to do so
in a future publication. ) In keeping with the assumptions
of previous authors (and for simplicity) we will assume

the nucleons are nonrelativistic, i.e., T/m «1, and take
the matrix element squared to be constant:

g&&
~

JR
~

2=
—,'X256f g,„m /m (3)

where m =135 MeV is the pion mass and the factor of
S = —,

' is the usual statistical factor for identical particles
in the initial and final states. The matrix element squared
is discussed in detail in our Appendix. Two things should
be noted. First,

~

A,
~

is only exactly constant in the
limit that T»m„/3m =6 MeV. For the purpose at
hand, where the temperatures are »6 MeV this seems
like a very adequate approximation, and makes our nu-
merical calculations tractable. Second, our explicit calcu-
lation of

~

sk
~

differs from Iwamoto's calculation' of
l
Jkt

l
in the degenerate limit by a factor of (1—p/3),

where P depends upon the degree of degeneracy: P~O



2340 RALF PETER BRINKMANN AND MICHAEL S. TURNER 38

(degenerate limit); P~1.0845 (nondegenerate limit). For
simplicity of comparison and consistency with previous
work we will use Iwamoto's value for

I

JN,
I

. In the Ap-
pendix we will provide our expressions for

I

At
I

and for
the total axion emission rate based upon those expres-
sions.

In the nonrelativistic (NR), limit, E; =m +p; l2m, and
we define the NR chemical potential jM

—=p —m. Further,
we define the dimensionless quantities

y =P/T, u; =p; /—2mT .

10
E

2
~S 1Q

cv IQ
5

E

e -4
IQ

~+ 1Q5

10-6

EGENERATE
L A

NUMERICAL RESULTS

With these definitions the phase-space occupancy fac-
tors f; are f; = 1/(e ' + 1). The number density (per
cm ) of neutrons (or protons) is then

n„=2f""p,f(2m)'

-4 -3 -2 - I 0 1 2 3 4 5 6 7 8 9 10

pmP/T

FIG. 2. The axion emission rate from neutron-neutron, axion
bremsstrahlung as a function of y =P/T. Shown are the analyt-
ical expressions valid in the D and ND limits, cf. Eqs. (Sb) and
(6b), and the results of our numerical integrations which are ac-
curate to better than 1% (indicated by the triangles).

8Q= (V'2/m')(m T-)'"fp Q —/+1

=4. 1 &(10 GeV TM, vg (y),

where g(y):—j~"u'~urdu/(e" ~+1). Throughout we use

units where A=c =k~ =1, so that 1 GeV =1.3&10 '

cm and GeV =3.2)&10 ergcm sec '. %e also
note that X„p&4-9.0 X 10 g (y) TM,v. The function

g (y) has the following familiar limiting forms:

- u'"du

(m'~2/2=0. 886)e~, y && —1,
2y3/2 y )) 1

For intermediate values g(y) is well approximated by its
Taylor expansion (to better than 1% for —1 &y & 5)

g(y) =0.678+0.536y +0.1685y

+0.0175y' —3.24X10 'y

The neutron Fermi momentum is pF =—(3m n„)';in the
limit ofy &) 1,pF /2m T=y; while in the limit ofy && —1,
(pF l2m T) = l.2exp(2y /3).

It is convenient to define the center-of-mass (c.m. ) and
relative momenta: p+=(p&+p2)/2 and p—:(p& —p2)/
2, and the momenta of n3 and n4 in the c.m. frame:

p3, ——p3 —p+ and p4,
——p4 —p+. In the NR limit

(Tlm «1), the outgoing neutrons (n3 and n4) carry
essentially all of the momentum and the axion momen-
tum can be neglected. Momentum conservation then im-
plies p4,

———p3„while energy conservation implies
E, =p /m —p3, /m. With these definitions and the aid
of the delta function 10 of the 15 integrations can be im-
mediately performed, yielding

S
I
At

I

zTs. smo. s „„&u

f du+ f du f dy, f du„f dy,

)(, (u+ u u3 ) (u u3, )'f, (u, y)f, (u„y)[1 —f,(u„y)][1 —f4(u4, y)] (4)

where u& z ——u++u +2(u+u )' y&, u34 u3 +u+ 2(u„u+)~y„ 1'&=p+ p /I p+IIp I
)'.=p+ P3e/

I p+ IIp3, I, and the constant matrix element squared has been taken out of the integral. From this expression for e, it
is immediately clear that the axion emission rate is proportional to T times a function of y =p/T only T—he limiting.
D and ND rates discussed in the Introduction, cf. Eqs. (la) and (lb), are of this form, which is reassuring.

At this point it its straightforward to compute the axion emission rate in the ND limit (y « —1) by neglecting the
1 f3, 1 f4 "blocking" f—actors a—nd setting f, =e '. The integrand becomes independent of y, and y&, and the y„
y& integrals can be done trivially. The other integrations can also be done, giving

e, (ND)= SIJKI m T e ~

4X 35m-"

=2.68' 10 e ~m T m g

=1.1X10 erg cm sec 'f g,„(X„p,4) TM,v,

(sa)

(Sb)

(5c)

where Eq. (5b) follows from (5a) by substituting S
I
JNI=64g,„fm /, m, and Eq. (5c) from (5b) by substituting

e~=125(X„p,4)TM,v (valid for y && —1). This agrees with the result previously derived in Ref. 6 (see also Refs. 11 and



38 NUMERICAL RATES FOR NUCLEON-NUCLEON, AXION. . . 2341

13).
The D limit (y » 1) has been derived by Iwamoto he obtains

(D)m5T65m4g2 f4y 1/2313/Z

3780m an

=3.69X 10 3y !m2. 5T6 5m .—4g2 f 4

=5.3X10 ergcm sec 'f g,„(X„p,4)'i3T6M, v .

(6a)

(6b)

(6c)

By «st performing the y, and y, integrations (see below), and then expanding the rapidly varying parts of the in-

tegrand in a series of step functions, delta functions, and their derivatives, with some effort we have verified lwamoto s

result for the degenerate limit. In addition we have determined that the next term in the expansion is of order
O(y ')y' . The ND and D limit axion emission rates are shown in both Fig. 1 (as a function of T) and in Fig. 2 (as a
function ofy:P /T—).

Returning to the general case (arbitrary y), both the y, and y, integrations can be performed, and with the further

substitutions v—:u3, /u and q+ ——e —,e', can be expressed as a three-dimensional integral:

S 'm "T" 1 1

25 5m'

cosh [(u+ +u' ) /2 —y/2] cosh I[(vu )' +u+ ] /2 —y/2]
X [1—exp(2y —2vt4 —2u+ )] 'ln, , ln

cosh [(u+ —u' ) /2 —y/2] cosh [[(vu )' —u+i ] /2 —y/2I

(7a)

—=Si&~ m T I(y) . (7b)

This three-dimensional integral must be evaluated numerically. We have used two different numerical techniques to
evaluate this integral: Monte Carlo integration and direct integration. For the Monte Carlo technique, the integrand
was evaluated at 10 randomly chosen points in the domain of integration q&, q2, v 6 [0,1], and the integral was taken
to be the average value of the integrand times the volume of the domain of integration ( =1). To estimate the error we
grouped the 10 points into 10 subsamples of 10 points each, and computed the individual means of the integrand, and
then took the variance of the 10 means. The estimated errors for the Monte Carlo method were typically ( 10%. Be-

TABLE I. Axion emission rate i, E'for n +n ~n +n +a): analytical results and numerical results.
All numerical results are accurate to better than 1%. Rates are given in units of T65m 2'g,'„f4/m .
The integral I (y), defined in Eq. (7), is equal to the numerical results given here divided by 64.

y =P/T-
—10.0
—4.0
—3.5
—3.0
—2.5
—2.0
—1.5
—1.0
—0.5

0
0.5
1.0
1 ' 5

2.0
2.5
3.0
3.5
4.0
5.0
6.0
8.0

10.0
50.0

Numerical

5.53 X 10-"
8.85 X 10-'
2.38 X 10-'
6.36X 10-'
1.68 X 10
4.36 X 10
1.10X 10-'
2.68 X 10
6.17X 10-'
1.32 X 10-'
2.61 X 10
4.72X10 4

7.79 X 10-'
1.18X 10
1.67 X 10-'
2.22 X 10
2.82 X 10
3.43 X 10-'
4.64 X 10
5.77 X 10-'
7.75X10 3

9.37 X 10
2.52X10 '

Nonde generate

5.52 X 10-"
8.99X 10
2.44X10-'
6.64X10 '
1.81X10-'
4.91X10-'
1.33X10-'
3.63 X 10
9.86X10-'
2.68 X 10
7.28 X 10
1.98 X 10
5.38 X 10-'
1.46X10 '
3.98 X 10—'
1.08 X 10

Degenerate

0
2.61 X 10
3.69 X 10-'
4.52 X 10-'
5.22 X 10
5.83 X 10-'
6.39X 10-'
6.90X 10
7.38 X 10-'
8.25 X 10-'
9.04 X 10-'
1.04 X 10
1.17X 10-'
2.61 X 10
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cause of the severe effects of degeneracy for y ~ 5, the integrand becomes strongly peaked, and the Monte Carlo tech-
nique becomes unreliable. And for this reason we also used a direct technique to numerically integrate Eq. (7). By a

judicious series of transformations the integrand can be made very smooth, making direct numerical integration both
accurate and fast. The estimated accuracy for all our direct integrations is better than 1%. Our numerical results are
shown in Figs. 1 and 2 and compiled in Table I. The following expression is a closed form fit to I(y) which for all

values ofy is accurate to better than 10%%uo:

I„,(y)=[1.79X10 e +2.39X10 e «+1.73X10 (1+ ~y ~
)

+692X10 (1+ iy i
) +1.73X10 (1+ iy i

) 5«]

Our chosen range of y spans y = —10~50. From Fig. 2 and Table I it is clear that the numerical results smoothly

join on to the asymptotic limits (D,ND). The approach to the ND limit is much more rapid than the approach to the D
limit, which is easy to understand. In the ND limit the expansion parameter is e, while in the D limit the expansion is

in powers of y . From Fig. 1 it is also clear that the ND, analytic rate provides a very good approximation to the ac-

tual rate for p~/2m T & 3, or T & 30 MeV for X„p,4 ——4.

T%'0 CHEMICAL POTENTIALS

To this point we have assumed that the chemical potentials for all four nucleons are equal. For the processes
n, +nz~n3+n4+a and p]+p2+p3+p4+a this is of course true. However, if one wishes to consider the process

n1+p2 —+n3+p4+a this assumption is only valid if X„=X&.It is straightforward to relax the assumption of equal
chemical potentials by defining separate neutron (y, =P„IT) and proton (y2

—=P~ /T) chemical potentials. In this case
the analogue of Eq. (7) is

2m 0.5 T6.5

2"m'

[I+exp[(u'~ +u+«) —y, ]j [I+exp[y2 —(u' +u+ ) ]j
X [1—exp(y, +y2 —2vu —2u+ )] 'ln

[1+exp[(u' —u+ ) —y, ]j [1+exp[y2 —(u' —u+ ) ]j

(1+expI [(vu )' +u+«] —y, j )( I+expty2 —[(vu )' +u+«] j )
&(ln

(1+expI[(vu )'« —u+«] —y, j)(1+expIyz —[(vu )' —u+ ] j)
=S

~

Afjm ,TI(y„y') .

(8a)

(8b)

In the limit that y =—y, =y2 this expression reduces to Eq. (7), and I(y y ) =I (y). Also note that e, is again proportional
to T times a function ofy, and y2 alone. As before, the ND limit (y „yz« —1) is straightforward to obtain

e, (ND)= S~A.
~

m T e '

4X 35m"
(9a)

(10a)

=4.4X10 erg cm sec 'f g NX„X~pf4TM,v, (9b)

where Eq. (9b) follows by substituting S
~

JK
~

=256m g,zf /m „(forthis process S =1 as there are no identical parti-
cles in the initial or final states), and g,~ is the effective axion nucleon coupling for n +p ~n +p+a (see Appendix).
With some effort, by expanding the integrand as before one obtains the following expression in the D limit (y „y2» 1):

3lv'Z
e, (D)= m Tm g,Nf y

'' (1—b,y/2y)

/2/3 ~2/3
=2.1X10 ' ergcm 'sec 'g,zf P', 4 TM,v (1—&y/2y), (lob)

wh«e y =(y, +y2 )/2»d Ay =
j y, —y2 ~

/2.
Finally, in the limit that y& « —1 and yz » 1 (one degenerate and one nondegenerate species) with a similar amount

of effort we find that

e, (D,ND)=, 5 65m T m„g,zf e ' I dw/w I z dzln(1+w)ln(1+we ')
21.5 6.5 0 0

=5.43X10 m T m g f e '

=1.8X10 1.8X10 ergcm sec 'g,~f X,p, 4TM, v .

(1 la)

(1 lb)

(11c)

We have numerically evaluated I(y „y2)for y„y2E[—10, 10] using the same direct integration technique as before.
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Our results, all accurate to better than 1%, are compiled in Table II. These results agree with the analytic expressions
derived above in the appropriate limits. The grid of 231 values in Table II can be used to interpolate for all intermedi-
ate values. For a point (yby) in between grid points A =(y, , by; ), 8=(y;, by, ;), C=(y;, , hy, . ), D=(y;,. by, , ), the
double-logarithmic linear interpolation

r

~y;; -~y
lnI(y, b,y)= lnI(y;, b,y;)+ lnI(y;, hy;;)

y;; —y;

Ay —by; Ay;; —hy
lnI(y;;, hy, )+ 1nI(y;;, Ay;; )

L

provides a value for I (y, by ) which is accurate to better than 5%.
In addition, the following is a closed form ftt to I(y, ,y2) which is accurate to better than 25'1/o for all values of y „y2

(and typically, better than 10%%uo),

I„,(y„y2)=[2.39X10(e ' '+0.25e '+0.25e ')+1.73X 10 (1+ ~y ~
)

+6.92X10'(1+ ~y ~
) '"+1.73X10'(1+ ~y ~

) '"] '.

To illustrate our results we have computed e, for

p, 4
——8 as a function of temperature for two sets of abun-

dances: (i) X„=0.9, X =0. 1 and (ii) X„=0.7, X =0.3.
The case X„=X=0.5 has already been done, since in
this instance y, =y2 (see Fig. 1). The results for these
two cases are shown in Fig. 3, along with the analytic
rates for the degenerate and nondegenerate limits [for
simplicity, the (1—hy/2y) factor has not been included
for the degenerate limit]. Again, it is clear that for the
conditions that pertain in the postcollapse core the non-
degenerate rate is a very good approximation, overes-
timating e, by at most a factor of 2, while the degenerate
rate can overestimate i, by as much as a factor of 100.

DISCUSSION AND CONCLUDING REMARKS

%e have numerically calculated the axion emission
rate from nucleon-nucleon, axion bremsstrahlung for ar-
bitrary neutron and proton degeneracy using both Monte
Carlo and direct numerical-integration techniques. Our
numerical results agree with the analytical results previ-
ously obtained in the D (y &&1) and ND (y && —1) lim-
its, ' and with the analytic expressions we have derived
in the various limiting regimes with two chemical poten-
tials. Also, we have exphcitly evaluated the matrix ele-
ment squared for all three processes. Our expression for

(
JK

~
agrees with Iwamoto's result' for

~

JN
~

(for the
process n +n ~n +n +a) in the degenerate limit. The
total axion emission rate is given in the Appendix, cf. Eq.
(A 1).

Somewhat surprisingly, the transition from the D re-
gime to the ND regime occurs for pF/2mT-3. 5 (rather
than -1). For pF /2m T 5 3, the nondegenerate rate pro-
vides a reasonable approximation to the actual axion
emission rate. In the nondegenerate regime convergence
to the ND rate is rapid. The degenerate regime is rather
more corn.plicated. The leading-order term in the degen-
erate regime expansion varies as the square root of the
average chemical potential, and if the two chemical po-
tentials are quite different (as in the case for X„=0.9 and
X~=0.1) this can be quite a poor approximation. The

)P )p56

)p54 )O'4

cu +o

CP

~fl

E

)p52

ELl

)04S

A+ p A+p+ Q p = 8x )Q ggfT)

NUMER)GAL RESULTS

)
p48

)p46

l I l l I t l )p44
)op

)p44
)0 )00 10

I tMev)

FIG. 3. The axion emission rates from neutron-proton, axion
bremsstrahlung, for p =8 & 10' g cm ', and the compositions:
X„=0.9, X~ =0.1, and X„=0.7, X~ =0.3. (Note, Fig. 1 applies
to the intermediate case X„=X~=0.5. ) Shown are the analytic
expressions valid in the degenerate and nondegenerate limits, as
well as our numerical results which are accurate to 1% (indicat-
ed by the triangles). [For simplicity the (1—hy/2y) factor has
not been included in the degenerate rate. ]

convergence to the D limit is quite slow because the ex-
pansion is in powers of y ', and for two chemical poten-
tials because of the additional exacerbating e6'ect of un-
equal chemical potentials. The slow approach to the de-
generate limit is clearly illustrated in Figs. 1-3.

Our motivation for this work was to accurately calcu-
late axion emission from the newly born, hot neutron star
associated with SN1987A, where the conditions are that
of intermediate degeneracy. From Figs. 1 and 3 it is clear
that in the pertinent regime (p,„=8,T-70 MeV), the
ND rate is a good approximation (overestimating the
true emission rate by at most a factor of 2), and that the
D rate is a poor approximation (overestimating the true
emission rate by a factor of -20—100). Since any axion
mass limits which are derived scale as the axion emission
rate to the ——,

' power, mass limits derived using the D
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axion emission rate should be scaled upward by a factor
of -5—10. Applying such a factor to the limit derived in
Ref. 7 (where the D rate was used), brings this limit into
better accord with the limit derived in Ref. 6 (where the
ND rate was used). Given the overall uncertainties in
deriving these axion mass limits (see Refs. 6—8 for discus-
sion of the uncertainties), there now seems to be reason-
able agreement that the axion mass limit based upon
SN1987A is m, 10 eV.

Finally, we mention some work in progress. ' In order
to obtain a reliable limit to the axion mass based upon ax-
ion emission from SN1987A one needs to compare the
theoretical predictions of collapse calculations which in-
corporate axions in a self-consistent way' to the observ-
ables at hand. In this case "the observables" are the neu-
trino events detected by Irvine-Brookhaven-Michigan
(IMB) and Kamiokande (KII) water Cherenkov detec-
tors. ' We have recently added axion cooling to postcol-
lapse models of SN1987A, and computed the neutrino
signals expected in the KII and IMB detectors. ' As ex-
pected, the duration of the neutrino burst proves to be
very sensitive to the axion mass. For m, & 10 eV, the
length of the neutrino pulse drops precipitously from -9
sec to less than 4 sec for KII, and from -4 sec to less
than 2 sec for IMB, strongly suggesting that an axion
mass & 10 eV is inconsistent with the neutrino obser-
vations of SN1987A.
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APPENDIX

Here we discuss the matrix element squared
I

JM,
I

for
the three bremsstrahlung processes n +n ~n +n +a,
p +p ~p +p +a, and n +p ~n +p +a, and provide the
expression for the total axion emission rate from all three
processes. In the one-pion-exchange (OPE) approxima-
tion there are four direct and four exchange diagrams,
corresponding to the axion being emitted by any one of
the four nucleons (see Fig. 4). Iwamoto' has calculated

I

JR
I

for the process n +n ~n +n +a in the degen-
erate limit; he obtains

2 4 2
256 g..f

3 4
spin (fkf +m ) (fif +m ) (fkf +m )(fl I+m2)

where f= 1.05 is the pion-neutron coupling, g, „

is the axion-neutron coupling, and k =p2 —p4, l =p2 —p3. In the limit
of interest, 3mT »m and

I
k I, I

I
I

-3mT »m, so that the quantity in large parentheses is very nearly 3.
All together there are 64 diagrams which contribute to each matrix element squared. We have explicitly calculated

and summed up all 64 terms for the three bremsstrahlung processes. We will briefly describe our computations. The
momenta of the four nucleons are denoted by p&,p2, p3,p4 and that of the axion by a; in addition, the momentum
transfer for the direct diagrams is k =p2 —p4 and for the exchange diagrams, I =p2 —p3. To lowest order in Tlm,
k = —

I
k

I

and I = —
I

I
I

. The pion-nucleon coupling is (2m/m„)f~y», where f„„=f,f~~= f, f~„=&2f (as—re-
quired by isospin invariance). For the nn and pp processes there is a relative minus sign between the direct and ex-
change diagrams because of the interchange of identical fermions. The axion-nucleon coupling is (g„/2m)y~yf, where
g„=g,„(i=neutron) or g, (i =proton). ' Of the 64 diagrams only 48 are nonzero, and these can be grouped into four
categories which we will now discuss in more detail. Here and throughout we refer to the diagrams by their labels a, b,
c, d, and a', b', c', d'.

(i) fa I, fb I, Ic f, fd I, fa'I, fb'I, fc'I, fd'I'. Theprototypecalculationisthat, for I&
I

4g Vi/~4m'
Spin

1 1
Tr($3+m)(p3 a —md )(P, +m)(p3. a —md)Tr(gf~+m)(P2 —m)

(k —m ) (p3.a )

m (Ik
I

+m )
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where we have kept only terms to lowest order in T/m.
(ii) (a c*+c.a*), (d b +b d ), (a' c'*+c' a'*), (d' b" +b' d' ). The prototype for these diagrams is the in-

terference between diagrams a and c:

g (a c'+c a*)=
spin

gg. ig.d'f3f 24m
'

4m„
1 1

Tr(gf 4+ m )(p'z —m )
p, ap3 a (k —m„)

XTr(gf3+m)(p&. a —myf )(P& +m)(p3 a —msgr )

32g 4 3f i3fz4m
4m

1+ 2m'(k a)'
f
k

f

4

kp, ap2a (fkf +m )

32g, ig, 3f &3fz4m

3m~ ( fkf +m2)

where the final form follows from averaging over the direction of the axion: ((k a) ) =—,'.
(iii) (a b"+b' a'), (c c"+c' c'), (d d" +d' d*), (b a"+a' b*). The prototype for these diagrams is the in-

terference between diagrams c and c':

g (c c"+c'c')=
spin

&g,'(f )3f)4f24f23m 1 1
Tr(A/3+ m )(p, —m )(II4+m )(p2 —m )m' (I —m„)(k —m )

—16g.'&f ~3f /4f 24f23m
'

4m~

Remember for the pp and nn processes an additional factor of ( —1) must be in included because of the relative minus

sign between the direct and exchange diagrams.
(iv)

(a a"+a' a'), (a c'"+c' a'), (a d'"+d' a');
(c a'"+a' c"), (c d" +d' c'), (c b"+b' c');
(d.a'*+a' d'), (d c"+c' d'), (d b"+b' d');
(b c"+c' b'), (b d" +d' b'), (b b" +b' b') .

These diagrams are by far the most challenging to evaluate. The prototype calculations are for (a a"+a' a'),
(a c'"+c' a'), and (a d" +d' a'):

16g,~ mg (a a"+a' a')=
spin m'. (k —m„)(I —m )

2 2 . 2
—k I +2(k !) —2m k (I a)

(p a)'

4m (k l)(k a)(! a)+
(p a)'

1(k a)
(p a)'

3+2p 16g f m fkf fl f

m (
f
k

f

'+m )( I
f

'+m'„)

2P4m 2

g (a c'*+c'.a")=
spin

m4 (k —m„)(I —m )

3 —2P 16g f m fkf f1 f

m ( fkf +m„)(fI
f

+m„)

2m I (k a) 4m (k 1)(k a)(l a)
(p.a )' (p.a)'

2 4 2

~( d,„d,, 16g f m 1 1

m„(k—m„)(I —m„)
3 —2P 16g f m fkf f1f

m„(fkf +m )(f1
f +m„)

~ 2 q 2m k (I.a) 4m (k.1)(k.a)(1 a)
(p a) (p.a )

where the final expressions follow from averaging over the direction of the axion: ( (k a) ) = —,
' and

((k a)(l.a)(k. l )) = —,'(k. l ) . There are kinematical constraints on the quantity k. l, so that ((k I ) ) is not necessarily
equal to —,'. We define ((k.l ) )—:p/3; in the degenerate limit kinematics require that p=O. In the nondegenerate limit
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(a d'+d a'), (a.b'+b. a'), (c.d'+d. c'),
(c b'+b c'), (a' d" +d' a"), (a' b"+b' a"),
(c' d" +d' c"), (c' b"+b' c") .

All of these interference terms vanish as they are proportional to

Tr(p'+m)(p a —m/)(p'+m)y5Tr(p+m)ys(If+m)(p a —md) .

Summing all the diagrams, we obtain, for n +n ~n +n +a,
2 4m 2

m4
(I -P}

I
k

I

' I1 I

'
(IkI +m ) (I1I +m„) (IkI +m )(I1I +m )SPIIl

z „,i x(l —x2)4 1+x 1 0845
o (1+x2)2, 1 —x 3

so that p(ND) ~1.()845. For simplicity the indicies on g„andf,, have been suppressed. Remember that for the pp and

nn processes an additional factor of ( —1) must be included.
(v)

and, for p+p~p+p+a,
2 4m 2

m4
SPlll (IkI +m ) (I1I +m ) (IkI2+m„)(I1I2+m„)

In the degenerate limit P=O, and our result agrees with that of Iwamoto. ' For n +p~n +p+a we obtain

4P
( I1I'+m'}( Ik I'+m')

256f m (Ran +Rap } 2
I

1
I

3m 4 ( I1 I

'+m'„)'

+ 256f m Ran +Rap
I
k

I

3m 2 ( IkI2+m2) (I1I +m )(IkI +m„) (I1I +m )

2(3 —P)2+

For g,„=g, and I1 I, I
k

I
»m, this result is a factor of (7—2P}/(3—P) times that for n+n~n+n+a or

p +p ~p +p +a.
In order to make our calculation of the axion emission rate tractable we have neglected the momentum dependence

of
I

JM,
I

. In the degenerate regime Iwamoto has included the momentum dependence of
I
JK

I
in his calculation it

leads to a factor of F(x)=1——,'x arctan(x ')+x l2(1+x 2) multiplying his rates [x =m„/2pp(n)]. For the density of
interest, X„p=4)&10'g cm, this reduction factor is F=0.64. %e can estimate the effect of the momentum depen-
dence on our rates. The momentum dependence of

I
A,

I
appears in the form of factors such as

I q I
/(

I q I
+m ) .

Taking
I q -3mT, this factor is 0.86(T =80 MeV), 0.81(60 MeV), 0.74(40 MeV), 0.57(20 MeV), and 0.37(10 MeV).

With this fact in mind we take
I

JK
I

to be constant.
Making this approximation it is straightforward to write down the total axion emission rate, from all three processes:

e =64(m "T"/m )f (1 P/3)g.'„I(y„y,)+(1——P/3)g,' I(y„y,)+ I(y„y,)

4(6—4P) Ran +Rap+ I(y, ,y, ) (A 1)

where the first term accounts for n+n~n+n +a, the
second term for p+p~p+p+a, and the third and
fourth terms for n +p ~n +p +a. I (y, ,y2) is as defined
in Eq. (8); also note, that as defined, I(y,y) =I(y), where
I (y ) is defined in Eq. (7). For reference,
64m T m f =1.66X10 ergcm sec 'f TM,v.
Note that P=3((k I ) ) depends upon the level of degen-
eracy; for very degenerate conditions P=O; while for non-
degenerate conditions P=1.0845. Taking for the mo-

ment g,„=gz and y, =yz, we see that the pn bremsstrah-
lung process is a factor of 4(7—2P)/(3 —P) (= —", for
P=O;=10 for P=1) more important than either the nn

or pn processes. The factor of 4 traces to the absence of
the statistical factor of —, for identical particles in the ini-

tial and final states; and the factor of (7—2P)/(3 —P)
traces to the stronger coupling of charged pions to nu-
cleons.

From this expression the effective axion-nucleon cou-
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2 =gaN

2 2
1 5 —2P Ran +Rap 6—4P

9 2 9
gan +gap

2

2

pling for the pn process, defined just below Eq. (9), can
easily be read off:

Given that f—1, the validity of the one-pion-exchange
approximation is open to question: what about the in-
clusion of two-pion, three-pion, . . . , exchange, other
meson-exchange diagrams, collective nuclear effects, etc.?
We will not address these issues here.
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