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Effect of finite mass on gravitational transit time
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The dependence of the gravitational transit time on the mass of the particle is derived in this pa-
per. The result confirms, as might be expected, that for highly relativistic particles the effect of a
finite mass on the gravitational time delay is negligible compared to special-relativistic effects. As
an application, the travel times of photons and the relativistic neutrinos from SN1987A are calcu-
lated to show explicitly the negligible effect a finite neutrino mass has on the arguments of Longo
and Krauss and Tremaine who used the nearly simultaneous arrival of photons and neutrinos as a
test of the Einstein equivalence principle.

The gravitational-time-delay effect for massless parti-
cles is one of the most remarkable predictions of the prin-
ciple of equivalence. ' Recently data regarding the transit
time between photons and neutrinos from SN1987A
(Refs. 2 and 3) have been used to test the principle of
equivalence. ' It is desirable to know explicitly the effect
of a finite neutrino mass in these estimates, particularly
so since a bound on the neutrino mass has been obtained
from the dispersion in energy of the neutrino transit
times from the same source. In this paper we derive a
formula for the transit time, which includes the effect of
the metric, for a particle of finite mass and discuss its
possible significance.

We use geometrical units c =1 and G =1 and we con-
sider the motion of the particle in a spherically sym-
metric metric

ds =B(r)dt A(r)dr —r(dB +si—n Bdg )

and assume B and A are given by the Robertson expan-
sion

General relativity gives 13=0 and y = 1.
The radial component of the freely falling equation of

motion is
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where c, and c2 are two constants of motion. The con-
stant c2 can be obtained directly as

cz ——B '(r)[1 —vt (r)], (4)

where vL is the proper velocity defined by vL ——dl/dr
with the proper length given by (dl) = A dr +r dP and
the proper time given by dr=B't dt. Note that for a
zero-mass particle c2 ——0. The constant c, may be deter-
mined in terms of the impact parameter rp', dr/dt van-
ishes at r =rp. This gives

c, =[B '(rp) —cz]rp .
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The transit time from r to rp can be calculated from
(3), (4), and (5). To first order in the small expansion pa-
rameter M/rp (except as it occurs in cz), we arrive at

t(r, rp)=

and thus finally
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The effect of finite mass of the particle is contained in the parameter c2, which, as we have noted, has value 0 for a zero
mass particle and for which case (7) reduces to the well-known expression for the transit time of massless particles. The
total transit time for travel from r =R to r =r, is

t(r„R)=t(r„rp)+t(rp, R) .

Here R denotes the location of the source of particle emission and r, that of observation (Earth). It is now convenient
to parametrize c2 in terms of its value at r =r, :

2

cz=B '(r, )[1 vt (r, )]=B '(r, )— (9)

38 2335 1988 The American Physical Society



2336 S. K. BOSE AND W. D. McGLINN 38

where m is the particle mass and E the received energy. Treating M/r, as small, collecting (7), (8), and (9) we obtain

(1—m '/E')'"
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as our final expression. Of course the limit m =0 can be taken in this expression.
If one assumes a highly relativistic particle E && m and r, = ra as is the case for the neutrinos from SN1987A, t (r„R )

can be written as to+5t where to=(1+m /2E )D and

1/2

5t =M 1+y+ ~ ln
R —rp

2 E rp R +rp
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tp is the dominant special-relativistic effect while 5t is the gravitational-time-delay effect.
To compute the transit time from SN1987A, we take D =52 kpc, rp ——10 kpc, and M = 10"yMO, where y is expect-

ed to lie in the range 1.4—6. The resulting transit time is then given by

m
t =2.68X 10' sec 1+[1+(2.16y +10.16)y X 10 ] +4.32yy X 10E2 (12)

Here the notation y is used to admit the possibility that the metric parameter may vary with particle, a particular
type of violation of the Einstein equivalence principle. From this we see the difference in transit time of a photon and a
particle of mass m and energy E is

r

m
b t =2.68X10' sec [1+(2.16y +10.16)y X 10 ] +4.32y(y —y ) X 10

E2
(13)

whereas the difference in transit time of particles of the same mass but different energies E, and E2 is given by

ht~z ——2 68X10 sec[1+(2.16y +10.16)y X10 ]m12 l 1

E', E,
(14)

It is clear in (14) that the effect of gravitation (term con-
taining y) on this dispersion time is down by a factor be-
tween 10 and 10 compared to the dominant term
which is the special-relativistic time dispersion and, as
was done in Ref. 6, can be safely ignored in estimating
the mass m leading to the bound m (15 eV for the neu-
trino mass from the input 6,2 ( 10 sec for E, =7.5 MeV
and Ez ——40 MeV. In (13) the term involving ym /E is

the gravitational effect on the difference in transit time
between a photon and a relativistic particle of mass m

due to the mass of the particle. It is clear that for
"reasonable" values of y that this term is down by a
factor between 10 and 10 from the special-
relativistic effect on this time difference and thus can be
ignored as was argued in Refs. 4 and 5. Equation (13) be-
comes

2——2.68X10' sec +4.32y(y —y )X10—7

(15)

From (15) we see that if ht &0 then y &y, a
violation of the equivalence principle. On the other
hand, if one assumes only that

~
Atr

~
& T and if

T ~~2.68)& 10' seem /E for the observed neutrinos
then one obtains a bound

i y —y'
i

&8.6X10 (16)

With T =6 h (Ref. 10), which indeed satisfies
T ~~2.68)&10' seem /E for the observed neutrinos,
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y =6 one obtains for
~ y —yr ~

3. 1)&10,in agreement with Refs. 4 and 5.
In summary, we have calculated the explicit depen-

dence, Eq. (10}, of the gravitational transit time on the
mass of the particle. This eftect of a finite neutrino mass
is found to be negligible on the test of the Einstein

equivalence principle as already argued by Longo and
Krauss and Tremaine.
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