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Multimode resonant gravitational-wave antennas: How many modes is enough?
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A model for multimode gravitational-wave antennas is presented. A complete sensitivity analysis
is carried out for a simplified, but realistic degenerate case. We discuss the optimum configuration,
proving that it is set by the two requirements that the last oscillator be light enough to achieve a
sufficiently large energy coupling factor P and the mass ratio p satisfy a simple optimization condi-
tion. We show that the constraints imposed by current technology set an optimal number of modes.
It is not advantageous to increase the degrees of freedom beyond this value, as this would add
thermal noise to the total noise figure, without substantial gain in the efficiency of signal conversion.

I. INTRODUCTION

The search for gravitational radiation' demands more
and more sensitive detectors to improve the chances of
capturing impulsive events generated in nearby galaxies.
The main efforts to increase the sensitivity of resonant
detectors have focused, in recent years, on reducing the
thermal background noise, with the adoption of cryogen-
ic antennas and high Q materials, on reducing the losses
in the readout circuitry and the amplifier noise, with the
use of superconductive electronics, and finally on improv-
ing the eSciency of the conversion of vibrational energy
to a measurable electrical signal. Much improvement is
still possible in the first two fields, especially with the
construction of detectors that will operate at a tempera-
ture below 0.1 K and the development of nearly quantum
limited SQUID amplifiers, but the problem of the elec-
tromechanical coupling (i.e., the transducer) is the one
that can in principle allow a very large gain.

The efticiency of the electromechanical conversion is
customarily described by the coupling coefficient p (Ref.
2), defined as the fraction of mechanical energy
transformed into electrical energy in one period of oscil-
lation (a more formal definition is given in Sec. II). This
parameter is invariably, at present, much smaller than
the limiting value of unity that is in principle achievable
in passive devices.

A major milestone in the evolution of high-coupling
transducers has been the development of resonant de-
vices. 3 In this scheme the signal energy deposited in the
antenna is transferred to a light oscillator incorporated in
the transducer design and tuned to the antenna resonant
frequency mo, so that the signal is transformed to a larger
amplitude of vibration. The second oscillator acts as an
impedance-matching stage between the massive antenna
(M, = 1 —5 tons) and the mechanical input of the trans-
ducer. As only this second oscillator takes part in the en-
ergy conversion, the coupling factor p, that is inversely
proportional to the oscillator mass M„can be made a
factor @=M,/M, larger. It would seem that, by making
M, arbitrarily small, one could easily achieve P=1.
However, by decreasing M„ thermal noise generated in

the second oscillator eventually becomes the dominant
noise source in the whole detector. The present state of
the art of other parameters (temperature, g's, amplifier
noise, electrical matching, etc.) sets an optimum value of
p=2X10 (Ref. 4) and, with values close to this, the
best linear transducers realized so far have achieved a p
of a few 10 (Ref. 5).

Furthermore, the detector behaves as a tightly coupled
two-mode system, and its intrinsic bandwidth is limited
by the fretluency splitting of the two normal modes, i.e.,
b,co=coo&p. The choice of the value of p implies there-
fore a tradeoff between detector bandwidth and eSciency
of the energy conversion.

In order to overcome this problem, Richard has pro-
posed and pursued a scheme that uses resonators of pro-
gressively decreasing mass to transfer the signal from the
antenna down to the transducer in several steps. As the
mass ratio between each resonator and the next is now
closer to unity, the energy transfer is much faster and the
impedance matching can be more effective.

This paper will address the issue of whether it is advan-
tageous to increase the number of intermediate oscillators
to an arbitrary value, or rather if there exists a point of
diminishing return or even an optimal value for the num-
ber of modes in the detector.

A sensitivity analysis of a multimode system is in prin-
ciple quite complex, because with the number of modes it
increases the number of noise sources to be considered
and the complexity of their frequency dependence, as
well as the dimensionality of the "parameter space. " Nu-
merical calculations * and approximate analytical rela-
tions for three modes have been reported so far.

We will show here how the analysis of bandwidth and
matching conditions developed for one- and two-mode
detectors ' ' can be extended, under general simplifying
assumptions, to more complex systems in order to infer
the potentials and limitations of such devices.

II. A MODEL FOR MULTIMODE DETECTORS

We are concerned here with the analysis of an elec-
tromechanical system like the one shown in Fig. 1, each
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FIG. l. A schematic diagram of the degenerate multimode
gravitational-wave antenna considered for analysis.

resonator is modeled as a simple mass M on a spring.
The spring constant K is chosen in such a way to obtain
the desired uncoupled resonant frequency o1 =(K,/
M )' . Damping can be neglected in the response func-
tion, ' but will be considered later as a noise source, and
the various oscillators are arranged on a linear chain. We
identify the first one with the antenna: its mass M, is the
mass of the quadrupole mode that interacts with the
gravitational wave (GW) and must always be as large as it
is feasible because it determines the GW absorption cross
section. It is generally of the order of 10 kg. We shall
neglect in the following the interaction of GW's with any
of the oscillators except the first. The last resonator is
the transducer, and its mass must be set by the above
considerations. The position of each mass M is de-
scribed by a coordinate x measured with respect to an
inertial reference frame.

We shall consider a system composed of N resonators
with effective masses (the mass taking part in the vibra-
tional mode considered) increasingly small:

M))M2) &M~ )&M~ .

The action of a transducer is customarily described by
two equations relating force and velocity at the mechani-
cal end with voltage and current at the electrical one:"

F=Z))u+Z, 2I, V=Z2, u+Z22I, (l)

where u =(d/dt)(x1v —x1v, ). We have assumed, for
definiteness, that the transducer senses the relative
motion between the last two masses, as shown schemati-
cally in Fig. 1. Other solutions are possible but this does
not change the qualitative features of our model, as the
vibration sensed is mainly determined by the motion of
the smallest mass.

In passive devices, to which we limit this analysis, the
four coeScients Z; are linear differential operators. The
energy coupling coefficient P is defined, in terms of this
description, by the relation

I Z»
I I zzi I

MN
I zzz I

the second definition is useful to define a "figure of merit"
m„ for the transducer, independent of mass MN of the
last oscillator. The coupling strength m„[sometimes re-
ferred to as the electromagnetic (em) mass of the trans-
ducer] is limited by current transducer technology

We can estimate the energy stored in the transducer by
averaging over a period the power available in it:

U, = dt Fu*+VI'

+ ~2 + 2i + 22

where an asterisk indicates complex conjugation.
Note that the first term represents the mechanical en-

ergy stored in the last oscillator, and therefore will be
considered in the mechanical part of the Lagrangian.
Analogously, the last term is the dc electromagnetic ener-

gy stored in the transducer and is to first approximation a
constant. We will assume in the following a lossless,
linear transducer for which Z&2 =Z2&.

We can now write the Lagrangian for this system:

L~ =L~ech —Ue

1-
QM, x, —gE (x —x, )'. J J

—f«[
I Ziz I(x1v —x~ 1)*+~+Zzzi']

j= 1, . . . , N (4)

so that, after Fourier transformation, and defining as usu-
al oi o =E~ /M . —and pj:Mj. +,/—Mj, the equation of
motion for the jth mass can be arranged to read

2 ( 2 2 2 2ojxj —1+ + oj +pj oj +1) j pj oj + lxj+1

=[Fj(oi) F, +, (o)—)]/Mj .

The Nyquist driving term F (co) is the Fourier trans-
form of a stochastic process with Gaussian distribution
and zero mean (F, will in addition contain a term due the
GW pseudoforce), so that the system will exhibit small
oscillations about the equilibrium position.

Readout schemes that make use of electrical resonant
circuits have been proposed' and realized. ' Because of
the low quality factor Q of such devices in kHz region, it
is not advantageous to tune them close to the higher-Q
mechanical resonances. For this reason we have neglect-
ed "kinetic" terms from the electrical variables. Should a
tightly coupled electrical resonator be considered, it is al-
ways possible to make use of classical electrical-
mechanical analogies' to model it with an additional
equivalent mechanical oscillator. ' When the resonant
features of the transducer, if any, are separated and dealt
with in the outlined fashion, it can be proven' that the
presence of the additional electrical variable I (or V if a
different amplifier model is used) does not affect the dy-
namics of the mechanical, resonant part of the detector.
The only effect one needs to consider is a possible tuning
of the last oscillator resonant frequency due to the addi-
tional restoring force exerted by the em field. ' In other
words, the eigenvalue equation of the resonant system is
unaffected by the presence of the energy conversion pro-
cess, except for adjusting one parameter. For this reason
we shall simplify the analysis by leaving out the electrical
variables from the dynamics of the system, and by taking
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into account the effect of amplifier and other electrical
dissipations only in the noise analysis, '

by referring them
to the last oscillator as additional mechanical driving
terms (see Sec. IV). This procedure has the advantage of
making the analysis independent of the characteristics of
the transducer used: for a given device, however, the La-
grangian (4) can give a complete description of the dy-
namics of all the variables, both mechanical and electri-
cal.

III. SIMPLIFYING THE MODEL:
TOTAL DEGENERACY

Before writing down the equations of motion for the
multimode detector, we shall make some simplifying as-
sumptions on the parameters. First, we shall assume that
the ratio between the mass of each resonator and the one
next to it is constant:

p,, =MJ+&/Mi
—=p &1 .

The mass ratio p is therefore set by p '=(Mz/M& )

and gets closer and closer to 1 as N increases. The
preceding assumption is not a very restricting one: al-
though other schemes are possible, a geometric progres-
sion is a very natural choice, based on the symmetry of
the problem, and it is likely to be an optimal one. If we
consider the linear chain of oscillators that constitute the
detector as an impedance matching network between the
antenna and the transducer, it is desirable to have the.
maximum homogeneity along the line, in order to reduce
reflections of the sound wave.

On the same ground we shall also assume total degen-
eracy: all oscillators have the same resonant frequency
K;, /M, =coo, = coo; this also implies K, /M, +, ——@coo.

The spring constant of the last oscillator will be chosen
in such a way as to give a resonance at cop when tuned up
by the transducer

IV. EIGENFREQUENCIES AND AVAILABLE
BANDWIDTH

With the notation introduced above, the matrix of
coefficients of our system assumes a simple tridiagonal
form:

z —p 0 0
—1 z —p 0
0 —1 z —p

0

—1 z —p
0 —1 (z —p)

(9)
The general, nondegenerate case can be rederived by let-
ting p~pj =p (coo~+, /coo~) and z~z =(1+@'—x ) in
each jth equation.

The determinant of the matrix (9) satisfies a simple re-
cursion relation

D& zD&, pD& 2

with the initial conditions

Dp ——1, D1 ——z —p,

(10)

and it can then be explicitly' written in terms of Tchebi-
chev polynomials of the second kind U„:

D~=(&p) [U~(z/2&9) &pU~ &(—z/2+8)]

=(&p) [sin[(N+ 1)p]/sing vp sin(NQ)—/sing),

z= 1+p—(co /coo),

z is a parameter similar to the mechanical impedance of
an oscillator; it is here a dimensionless quantity relating
force and displacement.

(K~+hE, )/M~ ——coo . where g=arccos (z/2&p); to first order in v p the roots
of this equation are

We can now write the N mechanical equations of
motion in a convenient form by dividing the jth equation
by M coo and normalizing from now on all frequencies to

2.
COp'.

k~
km. —&p sin

N+1
(12)N+1

Therefore, for v'p «1, the eigenfrequencies are simply
given by

—xJ,+ ( —co /coo+ 1+p, )xi px J +i—2 2

0 1+8 2&pcos-kn
N+1 , k=1, . . . , N, (13)

The Nth equation is different from the others because
X~+1——0, the last mass floats on its spring without a re-
storing force from the other side. We will show that,
apart from this feature, the problem is formally identical
to a classical textbook problem of classical mechan-

s 14, 19

It is worth repeating that this set of equations only
defines the eigenvalue problem, i.e., the mechanical part
of the detector. For a full sensitivity analysis we shall
add the appropriate terms describing the coupling to the
motion detector and the amplifier.

For simplicity, we introduce the shorthand notation

so that all normal modes lie in what we define as the
available bandwidth, given by

m N —1
b,co A), =2&@sin——:2a~v'p

2 N+1 (14)

with —,
' (a~ (1.

When the mass ratio p is increased, the corrections due
to the second term in Eq. (12) become more important
and the frequencies of the normal modes deviate from the
values of zero-order solution (13). It is easy to verify that

=[F,(~) F, +,(cu)]/M, coo—j=1, . . . , N 1, —
(7)

]+(—~ /coo+1)xA F~(co)/M„coo . ——
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even in the most extreme case considered, the available
bandwidth never increases above the limits set by Eq.
(14), although an overall shift of the mode pattern is no-
ticeable. The approximations made in what follows will
hold only if N and the ratio Mz/M i are chosen to satisfy
the condition p &&1 which is not too strong a restriction,
given the obvious experimental constraints.

The obvious advantage of a multimode detector is that
it allows us to choose the parameter p, and therefore the
available bandwidth, by selecting N appropriately.

However, the available bandwidth is not necessarily
the useful bandwidth, as the signal-to-noise ratio can
drop to insignificant values in large sections of this fre-
quency region, either between the modes" or on the
eigenfrequencies themselves.

In order to derive the conditions that allow us to fully
exploit the detector potential bandwidth we now have to
compute the signal-to-noise ratio spectral density, and
then find design criteria that will ensure its maximum
flatness over the available bandwidth.

V. NOISE AND SIGNAL IN MULTIMODE ANTENNAS

Although the eigenmodes of the system can be easily
computed, ' they are not too useful to evaluate the anten-
na sensitivity, as the picture based on independent nor-
mal modes neglects important correlation effects.
Moreover, as discussed in Ref. 9 and verified by experi-
mental evidence, the signal-to-noise ratio tends to peak
in between the normal modes when the system is dom-
inated by thermal noise, while it concentrates about the

eigenfrequencies only when amplifier noise is predom-
inant. This behavior cannot be predicted on the basis of
independent, noninteracting normal modes, and therefore
we will take the cumbersome, but more accurate ap-
proach that consists of summing all the noise contribu-
tions due to the various sources as they appear at one
point of the system, typically the output. As we have left
out of the description of this system the electrical vari-
able that describes the electromechanical transduction
process, we will refer all measurements to the displace-
ment of the last oscillator, i.e., xz. The amplifier noise is
folded into this picture by modeling' the wideband noise
with a random error on the detected velocity, and the in-
put noise with an additional noise force acting on the last
mass plus a contribution to wideband noise. This is
equivalent to referring the two amplifier equivalent noise
sources to the input of the transducer (mechanical port)
while preserving the white behavior of their spectrum.
This implies two reasonable approximations: first, we
neglect the frequency dependence of the transducer tran-
simpedances, i.e., we consider the coupling parameter P a
constant with respect to frequency; second, confound the
transfer function of the amplifier input noise with that of
the thermal noise force associated with the last oscillator;
the error introduced is irrelevant unless the system is
back-action limited.

We now proceed to construct an expression for the
signal-to-noise ratio of such a system starting from the set
of linear equations (7). We recall that, when optimum
linear filtering is applied, ' we have

S/N = dco X (~)signal dco ~
H, (co)Fg(co)

~

2~ x (co)„„„~g (H, (co)
( SF (co)+

)
H~(co)

) Sr +S„
J

(15)

X~
H (co)=

J

=(Mi~o) '( Aj, iv(co)+iMA,

(16)

where A - ~ are the minors obtained from Dz by cancel-
ing the jth rom and the ¹hcolumn. It is fairly straight-
forward to prove that

A~ ~ ——( —1) '(&p)' 'U

so that, recalling Eq. (11), we have simply

~
HJ(co)=(Micoo) '(&p)' '

~ D, ](co)IDtv(co)
~

(17)

We recall also that, for a short burst of gravitational
radiation deposing an energy hF. =kz Td (it is customary
to express energies as temperatures times Boltzmann's

where the Hz(co) are the transfer functions relating the
motion of the Nth mass to the jth driving force. As each
force F, (with the exception of F, ) appears in two con-
secutive equations, the transfer functions are

constant kz) in the antenna, one can write

I
Fg(~)

I
'=2kB Td Mi ~ (19)

The detection noise temperature is defined as the value of
Td for which S/N= 1 in Eq. (15).

The noise force spectral densities (bilateral) are related
to the dissipation by Nyquist theorem and defined (in
terms of the quality factor Q. of the jth oscillator) as

Sr (co) =2k' T,M cooIQ =2ktt T,M, coo(p' 'IQ, ) . (20)
J

Finally we account for the electronics noise assuming
for definiteness a voltage amplifier. The usual amplifier
model consists of an ideal (noiseless) amplifier plus an in-

put impedance and two noise sources that we shall as-
sume uncorr elated, voltage noise that is entirely
transferred to the amplifier output (wideband noise) and a
current source that generates circulating noise currents in
the input circuit (and has therefore a resonant signature).
It is customary to express the spectral densities of these
two quantities in terms of an amplifier noise temperature
T„and a noise match impedance R, „such that
S k~ T R

p
and S~ k~ T /R pt
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Si, =ksT„(R,p, + ~
Z2~ ~

/R, , )

=ksT„~ Z2i ~

(A, '+A, ), (21)

The wideband noise source S„„must include also the
wideband contribution from the input noise, ' i.e., the
noise voltage arising from the circulating noise current

where, Eq. (2) for P and co=coo have been used.
The input current noise Sl ——k~T„A, IZ22 is often

called back action, referring to the fact that it is convert-
ed back into the system by the reverse action of the trans-
ducer and appears as an effective additional mechanical
noise. %ith the approximations outlined above it is
modeled as an additional force Fz ——Z, 2I„, such that

where with A, we indicate as usual the ratio between the
overall electrical impedance and the amplifier noise
match impedance. This provides an error on xtc that can
be represented, using the relation V =Z2&x, as

SF„=1»i I Sba ™tv'(@~kitTn

=Micoks T„(l3Ap ') . (23)

sv
S„

=(cooMi ) 'ktt T„(1+k )/(PAp '), (22)

Other noise sources, due to dissipating elements in the
transducer and/or the readout circuit, are modeled as
resistors in the input circuit, and taken into account by
modifying accordingly Re Zzi.

Putting together all the terms in Eqs. (17)—(24) we can
reexpress Eq. (15) as

2~1 d COS/N(oi)da)= g (D ) 2T, (pJQJ+i) '+(DN i) T„PA/p '+DtvT„(1+A. )/(PAp ')
2~ a)o =p

(24)

8 =2T, /T„Q, j=l, . . . , N —1,
8~=2T, /T„Q„+pl, , 8N+, =p(A, +A. ')/p .

(25}

The explicit linear dependence on p of the last noise
parameter 8&+, plays a crucial role in the optimization
procedure that follows. Using these parameters, and the
definition (11) of DJ(co), we can define the total noise
spectral density

N

N(co}= g [U.(y}—v'pU. ,(y)] 8 +, ,
j=p

where

y =cost(=(1+p —co /coo)/2v'p

(26)

and U, =0 should be intended. It can be seen from Eq.
(13) that, for the frequencies of interest to our problem
—&&y&&.

Note that the merely algebraic step of multiplying
through by Dtv (that in practice corresponds to divide by
the transfer function H, from the antenna input to the
output), is in all respects equivalent to referring the mea-
surernent to the antenna input.

Equation (24) gives a closed-form solution for the
signal-to-noise ratio spectral density of gravitational-
wave antennas with any number of modes. The second
term, representing the back-action force, is often includ-
ed in the last term of the sum, as it has the same frequen-
cy dependence, by redefining an effective temperature
T,tt= T, (1+T„QNPA. /2T, ) (Ref 4). H.owever, this
effective temperature only applies to the last oscillator,
while all other masses are at the same temperature T, . In
order to avoid this unphysical representation, we have
found it convenient to define the noise parameters 8 cor-
responding to dimensionless noise sources:

We can now cast Eq. (24} in a compact and suggestive
form:

KT~ Np
Td

dco
~ N(a))

HATT.

P~ N(y)

(28)

=coo(1+v'p) . (29)

It has been proven that the best noise temperature of a
detector is obtained when the signal-to-noise ratio is uni-
formly distributed over the available bandwidth. The re-
quirement of maximum useful bandwidth can be ex-
pressed by the condition N(coo)=N(co+) where co+ are
the normal-mode frequencies (y =6—,

'
) limiting the avail-

able bandwidth. This gives, within our approximations,
the same result as requiring the second derivative of N(y)
to vanish at y =0 (co=coo), as it can be proven by direct
computation. By applying this condition to Eq. (26) we
obtain 83(2—p) = 8&, i.e., to first order in p,

p, ,(N =2)=(pA, T, /Q T„L+p }{, )/2(1+A, ) (30)

It is remarkable that such a simple equation accurately
describes the sensitivity of a system in principle quite
complex, and that it applies to any detector that can be
described by the equations of motion (7) with driving
forces (20). Note that the only frequency dependence in
Eq. (28) is in the noise spectral density N(co },so that it is
sufficient, for all frequency considerations on the signal-
to-noise ratio, to examine 1/N(co}.

A famous example: the two mode system-It is inst. ruc-
tive to rederive results found in the well-studied case of a
two-mode system ' ' before trying to generalize them to
any number of modes. From Eq. (13) we immediately
find

co+=co()[1+p—2v'pcos(km/3)) (k =1,2)



2332 MASSIMO BASSAN 38

as derived in Refs. 9 and 16 for two-mode antennas.
In this optimized case, when the signal-to-noise ratio is

roughly constant over the bandwidth, we can substitute
the integral over frequencies with the product of the max-
imum usefu1 bandwidth times the function value at the
center frequency coo, i.e.,

T~ T N(coo)cero/4(co) (31)

VI. USEFUL BANDWIDTH AND OPTIMIZATION

We shall now generalize this criterion to a system with
N & 2, requiring both first and second derivative of N(coo)
to vanish, in order to ensure that I/N(coo) is a stationary
point.

Using properties of the Tchebichev polynomials, it
can be proven that

N

[d N(co)/d co] = g (a, +pa. , )8 +, ,
J=o

a = —j(j+2), j even,

a =(j+1), j odd .

(33)

(34)

Recalling that 0&+& is explicitly of order p, we find
that to first order in p, Eq. (33) leads to the following gen-
eralization of (30):

a 8+(
Jp, ,(N) =

2ga. ,8, +, +ax, (1+A, )/PA,
J

j=0, 1, . . . , N —1 . (35)

In detectors of the present generation (T, = 1 K,
Q=106, T„=10 ~ K) the noise parameters 8J have

values of the order of 10 ', while (pA, )
' can be quite

large (= 5)& 10~ or larger) due to the difficulties in proper-
ly matching a SQUID. It is then natural to approximate
(35) with

pg N —i

p, ,(N) = g ( —&1 /&~)8J+i .
1+A, J. 0

Note that a p, , & 0 does not necessarily always exist,
e.g. , when an intermediate inass has a very low Q. Inser-
tion of intermediate resonators can degrade the system

so that the noise temperature of the detector can be ap-
proximated by

Tg (p,p——, )
' {2T,/Q, +p, ,T„[PA,+(I, + I)/Pi, ]J .

(32)

Note that once the identification &p= Leo/coo= n/t, co.o
(t, is the sampling time) is made, Eq. (32) is formally iden-
tical to the simple condition for energy sensitivity first de-
rived by Giffard. ' While in that derivation the band-
width was set by the electronics with the choice of an op-
timum t„here we are adjusting the antenna hardware pa-
rameters (masses, couplings, and impedances) in such a
way that optimum filtering will take full advantage of the
detector's available bandwidth.

rather than improve it, if it is not done properly. The
coefficients (a. /az) show that the masses near the end of
the chain (closer to the amplifier) contribute a little more
x to fix p pt In general these coefficients of order unity if
N is not too large, can be neglected with respect to the
more relevant differences in Q's so that, defining a global
thermal noise source

8,„—=8, +8,+ . +(8~—P&)=2(T, /T„)g Q, ',

we can write

(36)

where the last term on the right-hand side is only
relevant for back-action limited detectors. Note that Eq.
(36) is formally identical to Eq. (30) that was derived for
%=2.

Again, we approximate the frequency integral with a
rectangle of width given by Eq. (14) and height evaluated
at any point in the bandwidth. It is easy to show that at
the center of the band (co=coo, y=0), any other noise
source (those in odd-numbered positions) contribute to
N(co) with weight 1, while the others are negligible to
lowest order in &p. Similarly, at y =+0.5 all terms ex-
cept those in positions labeled with multiples of three add
with unit coefficient. We shall then take the most conser-
vative approach of assuming (,N(co)) =+J8~. This also
satisfies the heuristic approach of requiring all noise
sources to contribute equally' for a well designed detector.
We then have

T~-(T„ /2 a~+ p, , )[ 8, h+Pk +p, ,(A, +1)/PA], (37)

where a& is a parameter of the order of unity given by
Eq. (14). In the following we shall substitute for 1/a~ its
largest value, i.e., 2 with little error.

Equation (37) shows that once the mass ratio is opti-
mized, every resonator contributes equally to the noise
temperature (if the Q's are comparable), independently of
its mass and of the specific location. It should be men-
tioned that Eq. (37) also shows why the model is inade-
quate to treat in a satisfactory way a continuum limit to
this system. A transition to the continuum would require
N~ Oo, p~1, and therefore an infinite number of noise
terms that add with equal weight; however the GW sig-
nal, collected only in the first mass of the chain, does not
increase: this, besides being inconsistent with the limit
p~ 1, would produce a vanishing signal-to-noise ratio.

Optimization of Eq. (37) with respect to p would again
yield Eq. (36), confirming the consistency of the deriva-
tion. The optimized value of the detection noise tempera-
ture is then

(38)

It is then evident from Eq. (37) that increasing the
number of modes introduces more thermal noise in the
detector (as 8Th is roughly proportional to N), while it in-
creases the fractional bandwidth Vp and allows a larger
value of P. Competition between these effects must give
an optimum value for N.
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Note that the condition on the ratio (M between succes-
sive masses depends very weakly on the number N of
resonators used; it is mainly determined by the matching
of the amplifier and transducer to the mass or masses
with the lowest Q. It might seem that nothing can be
gained by going toward more complex systems as one
cannot increase &p, a parameter that determines both
the bandwidth and the sensitivity [see Eq. (37)] of our
detector. Fortunately we still have a degree of freedom,
namely, the mass of the last oscillator Mz ——M&p
which strongly depends on N, and through which we can
set the desired coupling coefficient P.

The proper optimization procedure is then as follows.
First note from Eq. (38) that

p»8th/A, =%8, /A, (39)

N =1+[in(m„/M&P)/ln(p, z, )] (40)

obviously rounded to the closest integer. Equation (40) is
a slowly varying function of the three arguments in-

is required for the system to be back-action limited,
which is necessary to achieve the Giff'ard limit T& 2T„. ——
N has actually yet to be determined, but we can safely as-
sume (and prove a posteriori) that taking P& 108&/A, will
satisfy all practical needs. Obviously, for passive trans-
ducers, P is limited to a max value of unity. In some
cases a lower value of P could be desirable, e.g., to
prevent electrical losses to degrade the Q's of the
mechanical oscillators; in any case, once P is chosen, Eq.
(36) unambiguously gives the optimum value of p.

Finally, recalling from Eq. (2) that P scales linearly
with (M~)

P= m„/MN ——m„/M
& p

we can derive the number of oscillators needed to achieve
proper electromechanical matching:

volved, and gives a numerical result between 2 and 4 for
most cases of practical interest (see Table I). This proves
that the number of oscillators required to match a GW
antenna to its amplifier will seldom exceed three, and
could even be limited to two for high coupling, ultralow-
temperature systems such as the one suggested in the
fourth column of Table I.

In general, Eqs. (36), (39), and (40), along with the con-
straint on P mentioned above, constitute a set of equa-
tions to be solved self-consistently for P, p, and N, but the
approximate solution given here is accurate for most
cases of interest.

VII. CONCLUSIONS

The proper impedance matching between an antenna
and the amplifier is still an outstanding problem in
gravitational-wave experiments, and prevents current
detectors from achieving the so-called "Giffard limit" in
sensitivity Td 2T„. S——everal researchers have addressed
the problem, both theoretically and experimentally,
with different approaches. We have shown that a general
sensitivity analysis of a multimode gravitational wave an-
tenna can be set up and numerically evaluated. We have
then introduced the definitions of available bandwidth
and useful bandwidth and showed that the latter ap-
proaches the first in the optimal cases. The analysis has
been explicitly carried out in a particular, degenerate case
that, due to its regularities, allows a closed form solution
for a system with an arbitrary number of oscillators. The
relevance of such a degenerate detector is related to its
likelihood to actually represent a real multimode detec-
tor. Although the noise temperature of this system can-
not be evaluated analytically [a numerical integration of
Eq. (28) is required in most cases of realistic interest],
some simple approximations can be made for the opti-
mized case of a system with Hat response in the whole

TABLE I. Comparison of antenna parameters and predicted sensitivity improvements for a typical
room-temperature detector (Ref. 25) (characterized by a high value of A,), for the cryogenic detectors
(Ref. 5) at Stanford (high P) and Rome (high Q's) and for an antenna of the next generation for which a
realistic estimate of noise parameters has been made, based on the results obtained so far by various
GW groups. For cryogenics the antennas estimates (Ref. 27) are given for A, and T„,as no measurement
on the input noise of practical dc SQUID's has been performed to date. Note that for the third-
generation antenna, where the use of ultralow temperature should further reduce the thermal noise, a
high value of m„as the one indicated would permit a match to the amplifier with just two modes.

Parameters

Ml (kg)
m„(kg)

T„(K)
02

Td

Popt

Nop
Expected Td
Aco

Room-temperature
antennas (1 mode)

1200
1.8x 10-'

0.6
0.72

4x 10-'
=10 K

7.7 x10-'
3—4
2 K

50 Hz

Stanford

2400
1.5 x 10-'

0.01
8 x 10-'

0.12
13 mK

1.2 x 10-'
3

300 pK
70 Hz

Rome

1135
10-4
0.01

3 x 10-'
5x10 '
12 mK
6x 10-4

3
80 pK
44 Hz

Third-generation
antenna

1135
30
0.1

4x 10-'
5 x 10-'
15 pK
10
2—3

15 pK
57 Hz
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available bandwidth, leading to two simple conditions on
the optimum number of modes and on the mass ratio )tt.

For the current state of the art of detector parameters
these conditions show that three-mode systems can per-
form better than present two-mode detectors, while little
or no gain is to be expected by increasing N beyond 4.

The correct design strategy then calls for choosing the
appropriate value of P [Eq. (39)) that will make the
thermal noise of the mechanic@1 oscillators negligible
with respect to electronic noise, or minimum if other con-
straints apply; the optimum mass ratio p, , is then deter-
mined [Eq. (37)]. Finally Eq. (40) yields the number N of
modes needed to noise match the antenna to the
amplifier. In this fashion the problem of matching the
mechanical system to the amplifier is solved without re-
quiring prohibitive Q values to the antenna.

This allows an increase in sensitivity, with respect to a
two-mode system [where Eq. (30) uniquely determines

Mz] that is proportional to (P~/P2)' for thermally
dominated antennas.

Although this analysis is limited to linear, passive
transducers, it indicates the way to achieve a back-
action-limited system, and has therefore potential conse-
quencies relevant to the programs to develop back-
action-evading read-out schemes.
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