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Using the Schwinger-Dyson equations the behavior of quark and gluon propagators is studied in

the Landau gauge for momenta from the deep Euclidean to the confinement regime. We find that
while at short distances quarks and gluons propagate like free particles, over longer distances, of the
order of a fermi, the gluon propagator is greatly enhanced as are the triple-gluon and quark-gluon
couplings. These in turn suppress the propagation of massless quarks over long distances to such an
extent that they have no physical particle pole, exactly as expected of a confining theory. We study
the way the world changes as the number of massless flavors of quark is increased from zero. Even
one generation of light fermions has a sizable deconfining efect on the one-gluon-exchange part of
the interquark potential, greater than suggested by naive perturbative counting. These results

highlight the usefulness of this continuum approach to nonperturbative QCD as a method of inves-

tigating the mechanics of confinement.

I. INTRODUCTION

When at high energies an electron and positron annihi-
late, they create for a tiny fraction of a second a quark
and antiquark that jet apart. Many have modeled by
Monte Carlo simulation how these separating partons
emerge as hadrons at macroscopic distances. ' But if
QCD is the theory of strong interaction, it should be pos-
sible to calculate in terms of the fundamental parameters
of the theory, its scale A and the masses of quarks, exact-
ly how such a process proceeds. To achieve this we have
to understand how to compute basic entities of the theory
such as the propagators and couplings not just over short
distances where perturbation theory can be successfully
applied but over the longer distances of the size of had-
rons, where a nonperturbative treatment is essential.

The Schwinger-Dyson equations provide a natural
vehicle for such nonperturbative calculations, being
the field equations of the continuum theory. Unfor-
tunately, the complete infinity of these nested integral
equations is insoluble and simplifying assumptions are
necessary to make any problem tractable. If we consider
the pure gauge sector, as an illustration, the equation for
the full two-point function involves the complete three-
and four-point functions. These in turn satisfy equations
which introduce the full five- and six-point functions ex-
plicitly. These in turn satisfy equations. . . ad infinitum.
However, the beauty of a gauge theory lies in the way the
Ward identities mean that the n-point function deter-
mines the (n + I )-point function, or at least that part of it
that we may regard as longitudinal. This enables the
Schwinger-Dyson equations to be truncated in a natural
hierarchical fashion as Baker, Ball, and Zachariasen
have stressed. Then one can consistently model the be-
havior of the two-point functions, namely, the propaga-
tors, without the need to solve the infinity of equations.
Although it is impossible formally to state how much one
loses by such sirnplifications and truncations, the results

are suSciently realistic to make one believe they provide
an adequate modeling of the small-scale universe inside
the hadron interaction region —a step beyond perturba-
tion theory.

Our aim here is to solve the coupled Schwinger-Dyson
equations for the gluon and massless quark propagators.
These are, of course, gauge-dependent entities and, for
reasons advertised in Refs. 8 and 9, we choose to work in
a covariant gauge (in the Landau gauge, in particular}.
To solve the coupled gluon and quark equations we adopt
an iterative procedure. The strategy will be to solve the
gluon equation in the absence of fermions, i.e., with

nf ——0. This is the subject of Sec. II. Having found the
behavior of the gluon propagator at essentially all
relevant momenta, we feed this into the fermion equation,
which forms the basis of Sec. III. We then determine the
behavior of the fermion propagator for massless quarks
and of the longitudinal part of the quark-g1uon vertex.
With these so specified we compute the contribution of
quark loops to the gluon propagator. We show in Sec. IV
that, as in the treatment in Ref. 10, their effect is far from
negligible. We consequently introduce one flavor of
quark into the gluon equation and solve this again. This
solution is then substituted back into the fermion equa-
tion and thus resolved. Iterating a few times yields quark
and gluon propagators that self-consistently satisfy the
Schwinger-Dyson equations. The number of massless
flavors is then increased to two and three in turn and the
equations similarly solved. All this is detailed in Sec. IV.
In Sec. V we discuss our results, which considerably ex-
tend those previously obtained in axial gauges, ' and give
our conclusions.

II. THE GLUON EQUATION

The aim of this section is to solve the Schwinger-Dyson
equation for the gluon propagator in a world without
quarks. This is largely a necessary recapitulation of the
work of Refs. 5 and 8 with most of the details given in
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the Schwinger-Dyson equation, Fig. 1, is an integral rep-
resentation for the transverse part of its inverse

11" (p) = (p'5""—p "p")1

&(p)
(2.2)

being an identity for the longitudinal part. This equation
(Fig. 1} for the gluon renormalization function Q(P) has
been solved in the Landau gauge in Refs. 8 and 9. Our

I

Ref. 9. This gluon propagator is the foundation of all the
calculations we subsequently discuss.

In Refs. 8 and 9, it has been shown that a satisfactory
approximation to the Schwinger-Dyson equation for the
gluon propagator, Fig. 1, is obtained by neglecting first
all but the one-loop contributions, next by assuming the
ghost contributions are essentially unrenormalized, and
lastly by including only the longitudinal part of the full
triple-gluon vertex, which is determined from the gluon
propagator by the Slavnov-Taylor identity. "' With the
transverse part of the gluon propagator given by

truncation of the Schwinger-Dyson equations requires
but a one-loop ultraviolet renormalization and this intro-
duces just a single parameter: the QCD scale A. The
solution shows Q(P) to have a characteristically perturba-
tive behavior for p »A and to increase as I/p for
p &&A, when all orders of perturbation theory are
relevant, as expected of a confining theory.

However, a useful simplification of the equation of Fig.
1 has been proposed by Mandelstam. As seen from Refs.
11 and 12, the longitudinal part of the full triple-gluon
vertex always involves terms proportional to I/0, with
arguments p, k, k', where k'=k —p. There is obviously a
partial cancellation of these with the Q(k), Q(k'} factors
in the full propagators of Fig. 2(a). The approximation
suggested by Mandelstam is to assume this cancellation
is complete and simply write the full vertex as I/Q(k')
times the bare triple-gluon vertex. This reduces the equa-
tion depicted in Fig. 1 to that in Fig. 3, where as in Ref.
8, we have neglected even the unrenormalized ghost con-
tributions, noting their effect is numerically small. Pro-
jecting the equation, Fig. 3, with the tensor
P""=5"' 4p "p'/p—and performing the angular integra-
tions gives simply

=1+, , f dk'Q(k)
g(p)

dk Q(k)
6p2 8 p2 3k' 24k'

(2.3)

where go is the bare coupling, C„ the color factor for a
gluon loop, viz. , N„and a is an ultraviolet cutoff intro-
duced to render the integrals finite, which strictly deter-
mine Q(p, a). In Ref. 9 we have shown that this has all
the structure of the more complete equation of Fig. 1, but
in a far simpler form. Its solution for Q(p) has the same
qualitative behavior mentioned above for the equation
with the full triple-gluon vertex and its more complex re-
normalization. Since these solutions have all the right
features and Eq. (2.3) so much easier to solve computa-
tionally, we use it as the basis for our study of the behav-
ior of both gluons and quarks we report here.
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FIG. 1. The complete Schwinger-Dyson equation for the in-
verse gluon propagator with no fermions. The spiral lines
represent gluons and the dashed lines ghosts. The dots denote
full (as opposed to bare) propagators and vertices.

FIG. 2. (a) The one-loop gluon contribution to the inverse

gluon propagator of Fig. 1 with the momenta labeled; (b) the
one-loop quark contribution to the gluon propagator with the
momenta labeled.
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FIG. 3. Mandelstam approximation to the Schwinger-Dyson
equation for the inverse gluon propagator (cf. Fig. 1).

ZG(ir/p)~R (p) = &(p, ir)

and a renormalized coupling g(p) by

(2.4)

Equation (2.3) is ultraviolet divergent in terms of the
bare coupling go. Let us define a renormalized gluon
function QR (p) following the treatment of Ref. 4 by

perturbation theory). The standard renormalization-
group improvement of the perturbative expansion of Eq.
(2.8) gives asymptotically

a, (p)
&R(P)=&R(I )

a, (p}
(2.10)

here, yo/Po ———,'.
Since it is not possible to find an analytic solution to

Eq. (2.7) for subasymptotic momenta, we represent QR(p)
by a simple parametrization which reproduces this
asymptotic form, Eq. (2.10), by introducing

I

&oai(C ) p'
Q„(p)= 1+ ln + 1 . (2.11)

'll p

We then input into the right-hand side of Eq. (2.7) the
form

g (p)=ZG(a. /p, ) go . (2.5)

QR (P)

R P
(2.6}

so that

Using Eqs. (2.4) and (2.5) the running coupling,
a, (p) =—g (ju)/4m, satisfies 'b„

N 2 2 'd„
p p

n=1 p +9n

&R(P)= Ap

p
M 2

+Q„(p) g a„
n=& p +pn

(2.12)

1

&R(P)

1

&R(P)

Chai(p) f dk [8(k,p )

—d'(k, P, )]SR(k),

(2.7)

) oai(V}
+ ln

QR (P } QR (JM ) 4n. P2
(2.8)

where yo ———', Cz to be compared with the usual perturba-
tive answer of yo ———",C„—the difference arising from
our neglect of ghost loops. Similarly expanding Eq. (2.6)
gives

1 1 o lnp,
a, (p) a, (p) 4n. p~

(2.9)

from which we see Po
——2yo = —", C„(cf.Po = —", C„ofusual

where the integral is now ultraviolet finite with the kernel
cP(k,p) being simply read off' from Eq. (2.3). Although
the coupling a& and the gluon renormalization function
O'R are seemingly quite different from their analogs in

Refs. 4, 8, and 9 with their more complete treatment of
the triple-gluon vertex, their qualitative behavior is simi-
lar. The consistent renormalization of the Schwinger-
Dyson equations is nontrivial and we shall distinguish the
running coupling a, (p) defined from the triple-gluon ver-
tex from a2(p), a3(p) that are similarly related to the
quark-gluon vertex used in Secs. III and IV (see Secs. IV
and V for a comparison).

Expanding Eq. (2.7) in powers of ai(p) we see that

allowing all of A, a„, b„, c„,d„,p„, and q„ to vary. This
is possible in the Mandelstam approximation as all the
angular integrals have been explicitly evaluated in Eq.
(2.3). This contrasts with the discussion of the gluon
equation with the full triple-gluon vertex, ' where both
Q(k) and Q(k —p) appear. A similar situation will arise
in the evaluation of the fermion equation (Sec. III), where
the variation of the parametrization within the angular
integrals has to be avoided because of the computing time
required. As explained in Refs. 8 and 9, the appearance
of the term Ap /p in the representation Eq. (2.12) does
not prejudge that such an infrared singular behavior is re-
quired. The coeScient could turn out to be zero. How-
ever, as discussed in Refs. 3-6, 8, 9, and 13, this in fact
does not happen for nf ——0, neither from numerical nor
analytic investigations.

Setting QR(p)=1 with p =10 GeV, self-consistent
solutions to Eq. (2.7) have been found for 0.01 &p &40
GeV for a range of a, (LM)K[0. 15,0.3], i.e., 150&A &700
MeV. The results, illustrating the input-output agree-
ment, are shown in Fig. 4 for four values of ai(p). The
parameters of the solution with ai(p) =0.25 are listed in

Table I as a typical example. These solutions form the
basis for our calculations in Secs. III and IV. The
momentum scale of the integral equations is wholly
specified by p and the value of the coupling a(p) at

2 2
p =p.

III. THE FERMION EQUATION

The real world, of course, does not just contain gluons,
but also the colored fermions "seen" in deep-inelastic
scattering and in e+e annihilation. Perturbatively, the
effect of these quarks can be estimated from their contri-
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FIG. 4. Glu. Gluon renormalization function 9'&(p) as a function
ofp' for four values of a&(p) =0.15, 0.2, 0.25, 0.3 with n =0

q "I'„(p,p') =SF '(p) —SF '(p'), (3.4)
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is can e
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'
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full equations in Sec. IV.
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(3.1)

SF(p) = 9'( ) (3.2)

where N, is the number of colors and n is th benum erof
'g -quar flavors. The naive counting given by this ex-

pression suggests that, perturbatively at least, the effect
of even three flavors of light quarks will be small.

In a nonperturbative study, however, it is clear that we
must calculate the dynamical effe t f th f
ore we make any statements as to their relative impor-

tance compared to gluons. Writing the full fermion pro-
agator for a massless quark as

2 " P(p} P(p')

1+ (P+P )p(P+)Ii )
V(p)

1 1

P(p' } 2 &2

(3.5)

Usmg this, and our solution for the gluon function 0n unc ton p)

tion for t
in ec. , we now have a closed integral

r the fermton renormalization function V(p .
equa-

~ ~

tt ys the renormalization function P(p) that we wish to
determine in analogy with Q(p) for the gluon.

D son e ua
'

As a rst step toward this, we exam' th S hine e c winger-
yson equation for the inverse fermion pr

'
n propagator, Eq.

goCF y„k"Ifd~k " (k25""—k "k")

x Q(k)9'(k') . (3.6)

TABLE I. Parameters of the luon fun
specified in ~~. 2.1

e g uon function 0& (p) as
in ~~. ( .12) for the solution with a ( )=0 25 f

nf ——0,2, 4, 6.
a&p= . for

Noteote here we are only concerned with the class of solu-
tions to the fermion equation E (3 3)q, in which no

A

a&

p& (GeV)
b,
C)

q& (GeV)

0.032 54
0.9744
0.4501
1.198
0.1079
0.3870
0.6605

0.020 82
0.9761
0.4524
1.296
0.1155
0.3250
0.6194

0.01046
0.9467
0.3935
1.128
0.1299
0.2441
0.5188

0.003 833
0.9454
0.4120
0.4215
0.1054
0.1695
0.4620

FIG. 5. The corn lp ete Schwinger-Dyson equation for the in-

verse uark roq r propagator. The solid lines represent quarks, the
spiral lines luons. Thg . he dots denote full (as opposed to bare)
propagators and vertices.
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dynamical mass is generated, which we believe is not un-

realistic for the first generation of quarks. Formally such

a solution always exists for vertex functions of the form
of Eq. (3.5). The important question of chiral-symmetry
breaking has been addressed in Refs. 14 in toy models

and more realistically in Refs. 7, 15, and 16.
Returning to Eq. (3.6) we take its trace, having multi-

plied by Ij to obtain

goCF Tr(I(y„jt"I „)=1— d k
&(p) 16ir 4p k' k

x(k'Ã" —k "k")Q(k)P(k') . (3.7)

Explicitly evaluating the trace and performing the
Lorentz contraction gives

(3.8)

where

Ii(k,p)= ik k p —~1p k (k p)—
I2(k,p)=k p k(k p—) —2k p (k p)

+2(k p)3 —2p (k p) +2p k

=(k2+p )[k p —(k p) ] .

(3.9)

It is not possible to solve Eq. (3.8) analytically, and so
we will choose a parametrization for 9 (much as for 9 in
Sec. II) and attempt a numerical solution. Before we do
this, however, it is necessary to investigate analytically
what form our parametrization should take.

(i) If P(p)-j4 /p as p —+0 then the left-hand side of
Eq. (3.8) behaves as p /p in this limit. The behavior of
the right-hand side of the equation is given by the form of
Q(k), which, from Sec. II, behaves like p /p as p ~0.
On dimensional grounds we get the same behavior for the
right-hand side, and we see that consistency is not possi-
ble in this limit.

(ii) If P(p)-const as p ~0 then by a similar argument
to (i) above, the left-hand side behaves like a constant,
while the right-hand side behaves like p /p . Again con-
sistency is impossible.

(iii) If 9'(p )-p /j4 as p ~0 then the left-hand side of
the equation behaves like j42/p . The behavior of the
right-hand side is the same as in (i) and (ii) above, and we
see that consistency is possible.

The above analysis reveals that a consistent solution is
permitted for V vanishing at small p2, as Ball and Za-
chariasen have deduced in an axial gauge. However, we
have not yet proven that the fermion equation does
indeed demand this behavior. In order to demonstrate
that, we must numerically investigate Eq. (3.8) to see if
such a solution is in fact allowed.

As for the gluon equation, let us cast Eq. (3.8) in the
form

2C
=1— f d4k Q(k)R(k, p)

V(p)

'C, (F) f d k Q(k)P(k')X(k, p),
&(p)

(3.10)

where

R(k,p)=, z 2 [I,(k,p)+k p (k p) ], —
k k'p

1 22 2 i kp —(kp)X(k,p)= I, (k,p) kp +(k p) +—2p
k k' p &'+p'

P(p)
V(k'}

(3.11)

At this stage V(p) is formally V(p, jl.,a), where A, , a. are infrared and ultraviolet cutoffs, respectively, introduced to
make the integrals in Eq. (3.10) finite. Infrared divergences only arise from the 1/k term in Q(k) and only then in the
second integral involving X(k,p), the other being infrared finite. To deal with the ultraviolet divergences we define a
running coupling by

g0ZG (~/p )
g'(j4) =

1 (g2OCF/1—6m4) f d4k&( pk)Q(k, a)

where we introduce the renormalized functions Qz (as in Sec. II) and V„specified by

ZG(tc/p)g~(p) = Q(p, v),

(3.12}

(3.13}
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ZF(~/p, A/p)V„(p, k, )=P(p, l, , a) .

The definition of g (p) in Eq. (3.12) involves infrared finite quantities and so this coupling is independent not only of
a, but also A, . By virtue of Eq. (3.10), Eq. (3.12) can be written

goZ&(a /p )ZF (a /p, k/p )V, (p, k, )
g'(p) =

I+(goCF/16m )Z F(x/p, A/p) f d'k X(k,p)Q(k, x)V„(k', k)
(3.14)

Because of Eq. (3.12) the numerator and denominator of Eq. (3.14) must have canceling A, dependence. Equation (3.10)
can now be written in terms of the coupling a2(p): g,

—(p)/4n, which can be manipulated into the form

4(p)
a,(p) QR(p)

r

fd k Qii(k)[R(k, p) —A(k, p)]
a2(p) 4m'

(3.1 5)

For a discussion on the consistency of this definition of the coupling with that of the triple-gluon vertex a, (p) intro-
duced in Sec. II, see Sec. V. In the perturbative regime we can expand this in powers of a2(p) giving

1 o- pln
a2(p) a2(p) 4~ pi '

where Po' ———', C„+—,'CF. Some algebraic rearranging allows us to write the ultraviolet renormalized equation as

V„(p,A, ) a2(p)CF=1—,Jd'k Q„(k)[%'(k,p) —%'(k,p)] .
„P ~ 4ir'

(3.16)

f d k Sit(k)[X(k,p)V„(k', A, ) —X(k,p)V, (k",A, )]
r P~~

(3.17}

where k"=k —p.
So far we have performed essentially a one-loop ultraviolet renormalization. To discover the asymptotic form of V,

we can now expand 9'= I+O(a2). As in standard perturbation theory in the Landau gauge, 7 is finite to one loop.
Thus to O(a2},

2~const (3.18)

asymptotically.
Before we can proceed further, we must deal with the infrared divergences which arise from the enhanced A p /k

term in the gluon propagator. Let us explicitly display the A. dependence of Eq. (3.17) by writing it as

&,(p ~) =1+A(p, p)+ 8(p,p)+C(p, p)ln— (3.19)„p,A, „(p,&) p

where A, B,C are determined by the integrals of R,X in Eq. (3.17). A is trivially infrared finite while 8 and C are linear
in V„. Nevertheless, C has an explicitly derivable analytic expression independent of the form of V„(p, A, ). The A. depen-
dence can now be eliminated by first evaluating Eq. (3.19) at p =p' and substituting the value of V„(p', A, ) to give

1

C p~p
t(P„(p, k, ) B(p,p) V„(p,k—, )[1+A(p—,p)]I=, I V„(p,k) —8(p', p) —P„(p', A )[1+A(p', p)]I .C(p', p)

(3.20)

Since both the left- and right-hand sides of this equation are linear in 7„, let us define a factor Z,R(iL/p) such that

ZiR(Alp)9. (p k)=SR(p)

Multiplying Eq. (3.20) by Zia, all quantities are then we. l defined in the limit X~O, so that

&R(p) 8(p,p) C(p, p) 1, C(p, p) &R(P}, B(p'~)
p (

I+A(p, p)+ p (
+, p [&g(p) 7ii(p )], y A(p, p)+

(3.21)

(3.22}

In order for the Ink, terms to cancel, V„(p', A. ) must be
the same function of p' as V, (p, i, ) is of p. Unlike an ul-
traviolet renormalization where the value of V„(p) is not
determined, the nonlinearity of Eq. (3.22) specifies

I

Pii(p'). We can then solve Eq. (3.22) to determine O'R(p)
completely. However, an easier way to proceed is to re-
turn to Eq. (3.20) with V„(p, A, ) now replaced by Vii(p).
It is then clear that the left-hand side is a function ofp in-
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dependent of p', and the right-hand side is a function of
p' independent of p, and hence each side is a constant,
which can be written as 1n5/IM. Thus 9R (p) satisfies

&R(I ) 1 5=1+A(p, IM)+ B(p,p)+C(p, p)ln-
p

I I I I I I lli I I I I I I III

(3.23)

with 5 a parameter determined by this equation, which is
of course symbolically the same as Eq. (3.19), but now
with all quantities independent of the arbitrary infrared
cutoff, A, . That this is a correct procedure was explicitly
shown by first solving Eq. (3.22) to find a solution VR(p),
and then determining the value of ln5 from Eq. (3.23) for
al/ values ofp for which we numerically solved the equa-
tion. For 0.01(p ( 100 GeV, we found that In5 varied
by only a few percent. Solving Eq. (3.23) directly with
ln5 a parameter is, however, far more efficient numerical-
ly, since self-consistency determines ln5 directly, rather
than implicitly through Eq. (3.22), which is an identity
for p equal to the arbitrarily chosen p'. Of course once
we have obtained a solution, the two approaches are iden-
tical. Of course, 5 can be regarded as a dynamically gen-
erated infrared cutoff. A priori, its value could be any-
thing. Remarkably, we find that 5/tu is always
—10 —10, so that 5 is a few MeV —quite a sensible
value.

We choose a parametrization for O'
R (p) which not only

vanishes at small p, but also reproduces the asymptotic
form Eq. (3.18). We use

N f p2
&R(P)= X

n=1 p +r„
(3.24)

where f„,r„are parameters to be determined. ' The use
of such a form in a numerical problem may appear to
have prejudged that VR(p)~0 as p~0. However, we
can equally well consider adding a constant fo to Eq.
(3.24) and then, as discussed in Ref. 13, fo would be
found to be —10, its exact value depending on the
range of pz over which consistency with Eqs. (3.22) and
(3.23) is imposed. Justified by this and in keeping with
the analytic arguments given before, we report only solu-
tions with f0=0 here. Again we choose tu =10 GeV
and set VR(p)=1. Remarkably we find adequate input-
output agreement to within l%%uo for N =1, a result of the
simple asymptotics for 7 in the Landau gauge. Other
gauges' ' would require more complicated forms. We
solve Eq. (3.23) for a range of values of a, (IM) as before.
The results are plotted in Fig. 6 and the parameters for
the a2(IM ) =0.25 case listed in Table II.

We have been able to show numerically, that the fer-
mion equation does indeed have a solution vanishing as

p ~0, as found in an axial gauge by Ball and Za-
chariasen. This behavior is the direct result of the in-
frared enhancement of the gluon propagator. This
means, as seen from Fig. 6, that though massless quarks
do propagate as essentially free particles over short dis-
tances (large momenta), over long distances (small mo-
menta) their propagation is suppressed. Here large and
small are relative to a scale A related to the usual scale of

0
.01

I I I I I I I I 1

1
p' (Gev')

10

FIG. 6. Fermion renormalization function V&(p) as a func-
tion of p' for four values of al(p)=0. 15, 0.2, 0.25, 0.3 deter-
mined from the gluon function Qz(p) with n&

——0 of Fig. 4.

QCD. Indeed this suppression is sufficient to remove the
particle pole on mass shell at p =0. This surely is an as-
pect of a confining theory. More detailed discussion of
all our results appears in Sec. V.

IV. QUARK LOOPS

TABLE II. Parameters of the quark function 9'„(p) as
specified in Eq. (3.24) for the solution with az(p, )=0.25 for
n&

——0,2,4, 6.

ny

fi
rl {Gev)
6 (MeV)

1.0208
0.4049
8.905

1.0095
0.2980

12 AHA

1.0086
0.1998

12.394

0.9972
0.1167

10.268

Our solutions obtained so far should be self-consistent,
as long as the dynamical effect of fermion loops in the
gluon equation are small. Preliminary studies' indicate
that this is not so, and we therefore must return to the
gluon equation, this time including the contribution of
quark loops, shown diagrammatically in Fig. 2(b). The
contribution of one massless fermion is given by

n~"= II,(5 "p' p~p")—
goTF Tr[y"S~(k)I L(k, k')SF(k')]

d'k
16~4 k k'

(4.1)
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Here HF is the fermion loop contribution to the gluon
self-energy, TF is the appropriate color trace, with the
other quantities defined in Sec. III. Using our form for
the longitudinal part of the quark-gluon vertex, Eq. (3.5),

and our explicit parametrization of the fermion renor-
malization function V)I(p}, all the integrations in Eq.
(4. 1) can be performed analytically. With V)1(p) simply
represented by f,p i(p +rI ), we find

HF ——
flgoTF 3 (P +rl ) p +rl

ln
12~2p2 2 p2

'
r 2

( 4r 2~ 2 +p 4 }I /2

p2 4

——p +—r,5 p 5

(p +r )(4r +p )' +(p )' (3r +p }
ln

[(4 2+ 2)l/2 (p2)1/2]r2
figoTF2

ln
12'

(4.2)

HF ——
T 2flgo F

g( 2 2) 1
K

(4.3)

giving us the renormalized contribution of the fermion
loops to the inverse gluon propagator

where for the moment we have introduced an ultraviolet
cutoff K. The ultraviolet renormalization of this term (see
Sec. II) essentially consists of subtracting its value at
p =tu . From Eq. (4.2) we write

V. DISCUSSION

The truncation of the Schwinger-Dyson equations,
which is necessary to make the study of the two-point
functions tractable, means that we have not treated the
three-point and higher functions precisely. Thus the re-
normalized couplings we have introduced a;()u)
(i =1,2, 3) are not equivalent as gauge invariance
demands. Each of these can be expressed perturbatively
as

f ia2()M) TF
HF —— [g(p', r I ) —g(u', r i )],3' (4.4)

a (p) a((u) 4n p2 4n
(5.1)

where the coupling a2(p) is defined from g (II2)

= ZG (K'lp)ZF(Klp, )g o IZia (k. Ip, ), where ZG, ZF are
given by Eqs. (2.4) and (3.13). It can be explicitly
checked that g(p, ri ) is well behaved in the limits

p ~0, r, ~0 as it should be. Note that in Eq. (4.2) we
have reproduced the correct perturbation logarithmic
divergence.

Our next step is to include nf flavors of massless fer-
mions in the gluon equation, Eq. (2.7) by adding Eqs. (4.1)
and (4.4) to Eqs. (2.2) and (2.3) and solving the resulting
equation, together with the fermion equation, Eq. (3.23),
as a coupled system. The two equations involve the two
unknown functions 9'2( (p), 92((p) with all other quantities
specified. To deal with both equations simultaneously,
however, is a cumbersome numerical exercise, so we
adopt an iterative approach. In the limit nf ——0 the solu-
tions obtained in Secs. II and III satisfy the coupled sys-
tern identically. For nonzero nf we take our solution for
V2I(p) and include it in the fermion loops in the gluon
equation. This is then solved to give a new QADI(p}, which
in turn is substituted into the fermion equation. This too
is resolved. This is repeated until we have found self-
consistent solutions to both equations. It is found that
this procedure converges relatively quickly so long as nf,
the number of flavors is varied in small steps. Self-
consistent solutions for both Qz (p) and 22I (p ) are ob-
tained for nf ——0 to nf ——6. The results for nf ——0,2,4,6
are plotted in Figs. 7 and 8 and the parameters of the
a(p) =0.25 solutions given in Tables I and II.
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FIG. 7. Gluon renormalization function Q~(p) as a function
of p for nf ——0, 2,4,6 and (a) a&(p)=0. 15, (b) a&(p)=0. 2, (c)

a, (p) =0.25, and (d) al(p) =0.3.
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these equations allow such quantities to be studied to all
orders in perturbation theory. The first step in this pro-
gram is the investigation of the gluon propagator in the
pure gauge sector. As reviewed in Sec. II, this behaves
effectively like I /p for small momenta and perturbative-
ly as a logarithm of p at large momenta. These are
features of a11 our solutions for all values of the coupling
ai(IM) we have considered. It is clear from Fig. 4 that the
small and large momenta regimes are delineated by A&.

Indeed, the coefficient of the enhanced term, viz. , Ap,
Eq. (2.12), is well represented by a form of A, times
lnIM /Ai to a power (see Fig. 9). The appearance of the
logarithms we believe to be a reflection of the fact that
the exact form for G(p) is really I/p modified by loga-
rithms, which we have neglected in the simple expression,
Eq. (2.12), and so are mocked up by the constant A.

The infrared enhancement of the gluon propagator we
find implies a Wilson area law, ' which many regard as a
criterion for confinement. At a more naive level, the
Fourier transform of the time-time component of the full

0.4 0,4

0.2 '

0 1 i iiiil
O.OI O. l

p (Gev l

0.2,

1 I I I lill 0
IO O.OI O. l

p (GcV l

ii
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I I I

t
I I I

)
I I I

FIG. S. Fermion renormalization function P&(p) as a func-
tion ofp' for nf ——0,2,4,6 and (a) a&(p) =0.15, (b) a&(p) =0.2, (c)
a~(p) =0.25, and (d) a&(p) =0.3.

which specifies po" and the scale parameter A;. A com-
plete analysis would make all of these equal. However,
our treatment is inevitably imperfect for the three-point
functions. This is reflected here in the differences

pp=2&p=2( &Cg &nf TF}

o' ——T'C ~ + 4 CF (5.2)

Of course, the exact lowest-order perturbative results
pp = —", C„,'nF TF and ——(in the Landau gauge)

yo ———6'Cq ——', nFTF are both independent of the Casimir
CF as a result of gauge invariance.

Our equations, Eqs. (2.7) and (3.23), depend explicitly
only on a;(p), which we have taken to be equal. Al-
though, of course, the running of the coupling does impli-
citly enter in the equations for QR(p), V„(p). Neverthe-
less, at a practical level, our renormalizations have made
the equations ultraviolet finite independently of any par-
ticular parametrization of the functions Vz (p }, Qz (p). In
this sense, the forms of the renormalization are forced
upon us and provide a convenient modeling of the effect
of the ultraviolet renormalizations.

Using these prescriptions we have studied the gluon
and quark propagators in QCD at essentially all relevant
momenta using the Schwinger-Dyson equations. The
beauty of this approach is that with a suitable truncation

A (GeV')

FIG. 9. Scales of the gluon's infrared enhancement, Ap
from Eq. (2.12), and of the quark's suppression, r, /f, from Eq.
(3.24), marked by dots as functions of A&, Eqs. (5.1) and (5.2) for
our nf ——0 solutions. The error bars were determined from an
analysis of the input/output agreement of these solutions. The
curves show

0.673

AP2 0497Al ln
1

2
' —5

Pl 2

f =Al 0.36+107 ln
AI

These are more to guide the eye than serious analytic expres-
sions.
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FIG. IO. One-gluon-exchange contribution to the static inter-
quark potential V(r) as a function of r from our solution for the
gluon propagator for a&(p)=0.25 with nf ——0 (solid line) and

nf ——2 (dotted line). The renormalization constant has been
chosen (somewhat arbitrarily) to maximize agreement with the
phenomenological potential of Quigg and Rosner (Ref. 19) in
the region determined by the cc and bb spectra. Their potential
is shown for comparison.

gluon propagator is related to the potential between stat-
ic color charges. For completeness we show the potential
so derived from our a(p)=0. 25 solution in Fig. 10. The
infrared enhancement generates a linear increase in this
potential at large distances. This is, of course, only the
one-gluon-exchange contribution to the potential, which
is necessarily vector in character. The complete potential
(in a non-Abelian theory) is not a simple iteration of the
one-boson-exchange term, but involves multigluon ex-
changes, too. These inevitably generate a scalar com-
ponent to this potential and it would be interesting to
know how this compared with the simple vector part we
can readily compute, which on its own would lead to a
Klein paradox. However, the calculation of the complete
potential involves an understanding of the full four-
fermion Green's function, which we are far from being
able to treat.

We now turn to the fermion equation, Eq. (3.23). As
mentioned at the end of Sec. III we have shown that a
consistent solution exists for massless quarks, which has a
vanishing propagator at small p . This can be seen as the
nonpropagation of quarks over large distances. Again
the momentum scale at which this suppression arises is
related to A of Eqs. (5.1} and (5.2}. Just as the enhance-
ment of the gluon is parametrized by A p /p, the
suppression of the quark is represented by f,p Ir, and
just as ArMz-AI modulated by logarithms, (r, If, )-AI
modified by logarithms, too. This is borne out by Fig. 9.

In contrast, the other dimensional parameter 6, intro-
duced in Sec. III, has no obvious A dependence being al-
ways around 10 MeV. As a dynamically generated in-
frared cutoff this is a physically sensible value and
perhaps bodes well for the study of ferrnion solutions that
break chiral symmetry, to which we shall return in Ref.
16.

The contribution that quark loops make to the gluon
propagator is found to be sizable (as in Ref. 10) and so, in
Sec. IV, we have solved the gluon and quark equations
simultaneously. Although the gluon propagator remains
enhanced at low momentum and the quark propagator
suppressed there, too, a nonzero nf significantly dampens
both effects. The gluon is no longer so strongly enhanced
and though for more flavors the intrinsic scale A„Eqs.
(5.1) and (5.2), decreases, just as it does in perturbation
theory, the coefficient of the pole decreases tnore dramat-
ically. For aI(p) =0.3, the introduction of two flavors of
fermion reduces the enhanced term to 70% of its nf ——0
value. For four flavors, this figure is 40%. The effect is
more pronounced for smaller a„being 45% and 18%, re-
spectively, for aI(tu)=0. 15. Thus with more than eight
flavors of massless quarks, we suspect no enhancement
will occur. This trend is seen in the parameters of Table
I. Consequently, the Fourier transform of the gluon
propagator now has a smaller increase at large distances,
as shown in Fig. 10 for nf ——2. Although this is only for
the single-gluon-exchange part of the potential, it does in-
dicate that with a number of massless fermions much
greater than three, deconfinement will occur. Although
perturbatively virtual qq pairs do screen the color charge,
here in the nonperturbative regime of low momenta, their
effect is far greater than the naive counting of N, : —,', nf
of Eq. (3.1) would suggest.

Although the solutions of Figs. 7 and 8 are for "real"
QCD with N, =3, they can equally well describe the solu-
tions for any N, )3 where a, ~3a, /N, and

nf ~nf N, /3. Thus, for example, Fig. 7(d) with
a(tu) =0.3 and N, =3 and nf 0, 2, 4, 6——can be regarded as
a plot with a()u) =0. 15, N, =6, and nf ——0, 4, 8, 12, respec-
tively. So, as expected, for large N„a fixed number of
flavors play a smaller role in keeping with the philosophy
of the 1/N, expansion. However, Nc =3 is very far from
the large-N limit as far as fermion flavors are concerned.
A heuristic criterion for neglecting the fermion contribu-
tions in the low-momentum region would appear to be
simply nf /N, & 1, whereas at high-momentum only
2nf/11N, «1 is required. Thus in the real world with

X, =3, fermions play a crucial role in strong-interaction
physics.

Although the quantitative aspects of our analysis sure-
ly depend on our particular simplification of the
Schwinger-Dyson equations needed to make the problem
tractable, the resulting behavior of the quark and gluon
propagators is nevertheless consistent with their being
free over short distances yet completely confined inside
hadrons as experiment requires. These qualitative
successes validate the use of the Schwinger-Dyson equa-
tions as a means of calculating effects beyond the reach of
perturbation theory.
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