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Modification of the equivalence theorem due to loop corrections
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We show that, because of mixing between longitudinal vector bosons and pseudo-Goldstone sca-
lars and because of differences in external leg amputations, there are loop corrections to the
equivalence theorem, which relates S-matrix elements of W+ and Z to those of their respective
pseudo-Goldstone partners. We derive general compact expressions in the form of multiplicative
factors to account for these effects. An explicit one-loop calculation is performed to demonstrate
the consistency of our formulation. In the limit when the physical Higgs and/or the top quark be-
come very massive, we obtain a result that there is no mH, lnmH, m, , or lnm, ' dependence in these
factors if on-shell or finite-momentum subtractions are used for renormalization. However, we have
not been able to, nor do we think it likely to, arrive at this conclusion for higher-order loops.

I. GENERAL DISCUSSION

There is considerable interest in the "equivalence
theorem, "' which states that at high energy S-matrix ele-
ments involving longitudinal Wand Z processes are equal
to those with proper replacements by the corresponding
external pseudo-Goldstone bosons in the same theory.
There are physical circumstances which spur such a
study. On the one hand, it is generally easier to calculate
matrix elements with incoming and outgoing scalar bo-
sons than with vector bosons. More importantly, in the
event that one is interested in a strongly interacting
Higgs system, one may invoke this theorem and experi-
mentally use longitudinal 8' and Z to probe the dynam-
ics. Thereupon, it should be of importance to validate
this theorem under quantum loop corrections. We shall
show that the theorem as stated earlier should be some-
what modified.

We will work with the standard model. To begin with,
we note that a simple way to derive the equivalence
.theorem is via gauge transformation, i.e., through Ward
identities. Thus, let the gauge-fixing term be G. It fol-
lows easily that

invert all the external particle legs and project onto the
appropriate mass shells. To put it differently, while the
Ward identity of Eq. (1.1) deals with Green's functions,
the equivalence theorem is a statement of S-matrix ele-
ments. To go from one to the other, one needs to take
care of the external legs. There are two effects one will
encounter along this procedure: the amputated longitu-
dinal 8' propagators are different from the pseudo-
Goldstone scalar propagators, and there is mixing be-
tween W —and 1t)

—under loop corrections. These are the
structural issues we want to resolve in this paper. They
are essential in normalizing amplitudes involving longitu-
dinal vector bosons and relating them to amplitudes with
pseudo-Goldstone bosons. Needless to say, the true dy-
namics must be studied on a process-by-process basis.

We can take care of the mixing between W* and P* by
choosing 8 to be some proper nonlocal functions so
that mixing in fact does not exist in any loop order.
Also, by properly renormalizing a ~, which is tan-
tamount to choosing a proper gauge parameter, Eq. (1.2)
holds for renormalized quantities as well. Here, we write

Wkp Z1/2( Wkp)renW'

(6 physical fields) =0
in the simplest case when we want to establish an
equivalence theorem with only one external longitudinal
vector boson.

y+ Z 1/2
( y+ )ren

& w =Zw(ct w)""
(1.3)

A. 8'+ Bosons 0+ z —
& /2z —1/2~+ ren

fV

For example, the gauge-fixing term for the charged
vector bosons may be

G*=B„W*"+a wH*ttp (1.2)

where a~ is a gauge parameter and H —+ may be some
nonlocal functions. Through this, one can relate the lon-
gitudinal W* to the pseudo-Goldstone boson P

—at high
energy. It is immediately obvious that in order to obtain
S-matrix elements from Eqs. (1.1) and (1.2), one needs to

G 4 Z 1/2t g ( W+p )ren+ renH+renykren]P (1.4)

Now, we decompose the vector propagators into trans-
verse and longitudinal parts

where Zz and Z& are the wave-function renormaliza-
tions for W +—and P—,respectively. Equation (1.2) then
becomes
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( T( 8'—"(x }W+ '(y ) ) )
W4d p ip. (x —y)

(2m}' i

p v

X PV PP
p

2

pPpv agr

A —(p) p B+(p—)

We can simplify Eq. (1.7) somewhat by using a Ward
identity. For the unrenorrnalized Green's functions, we
have

p p„( T( W+"(x ) +' "(y ) ) )
apr

H+H ( T(P+(x )P (y) })=

(1.5)
We write

(1.9)

and write the scalar propagators as

(T(q'(. )q'(y }})=f d 1 . 1

(2n) i Ck( 2) and

8 =p +a gem gr+7TI
+ 2 2

Then, Eq. (1.1) after amputation becomes

ip„( ( 8'*")'~'," physical fields )

Kk relly k rell

+ +„„(P~,
"" physical fields) =0 (1.7)

which is the properly modified equivalence theorem un-
der loop corrections. Here

Bk«n (C+)—i Z (C+«&)—i

and the subscript ~amp means that the indicated external
legs have been amputated. At the tree level,
8 +—""=C ""=p +a m, and H —+""=m . Then Eq.
(1.7} is just the usual equivalence theorem. Note that be-
cause of Eq. (1.4}, the modified identity of Eq. (1.7) is re-
normalization covariant, in the sense that if we change a
renormalization prescription, then Eq. (1.7) will be multi-

plied by a common wave-function renorrnalization factor.
Obviously, there is no physical consequence. We shall
verify explicitly in Secs. II and IV through explicit one-

loop calculation that all the renormalized quantities are
in fact finite. An important issue which we will investi-
gate is the following: what is the limiting form of the
modification factor H~B —/C +— when the Higgs self-

coupling or the Yukawa coupling for the top quark be-
come strong, i.e., when mH or m, &&m,p, where m is any
other mass scale in the problem?

In this case, we are basically interested in the
modification due to strong interactions. While one may
argue that effects of the electroweak interaction may be
only a few percent and that one can live without them in
the modification factor, the same cannot be said of strong
interactions. Here, the potential effects can be of order
unity and it is important to account for them. We shall
show that to the one-loop level, there is no mH, lnmH or
m„lnm, dependence at any gauge parameters a for the
modification factor, if renormalizations are done on shell
or at a finite momentum p ((mH or m, (Ref. 6). In this
sense, it turns out that the equivalence theorem needs no
modification. At this point, we should entertain the pos-
sibility that this may well be a one-loop result. We have
not been able to put forth a power-counting or a syrnme-
try argument to arrive at such a conclusion for higher-
order loops.

Note that Eq. (1.7) is true for off-shell p of the vector-
boson momentum as well. This is important when one
wants to apply it to, say, a two- W fusion process.

C*=p +a~H+K +Fr*, (1.10)

B. Z Boson

The treatment of longitudinal Z is complicated by its
mixing with the photon field A. Nonetheless, a pro-
cedure can be devised to parallel that of the charged-
boson case. Here, we shall make a simplifying assump-
tion that Z and 3 mix with the pseudo-Goldstone boson
Ijl3 but not with the physical Higgs boson h. (This is true
to the one-loop order and would be true to all orders if
CP invariance were the case. )

Thus, we define a column vector field

Z
V =

P .

which will be renormalized as

(1.12)

V =Z i/2Vren (1.13)P p

where Z' is a 2X2 matrix. We now use as our gauge
condition

GO
——B„V"+aOHOP3,

where ao is a symmetric 2X 2 matrix and

Hz
Ho ——

(1.14)

(1.15)

is a column vector. p3 is a Hermitian component of the
Higgs doublet

yO

1 (u+h+i$3)
2

(1.16)

in which we will strictly enforce the tadpole condition
(h ) =0, where h is the physical Higgs field. This means
5. —+

(p =0)=0. Equations (1.9) and (1.10) give

p2
2+- k

and

g kren 28 p (1.11)
Ck p2+ K

in which ~L, which are the more complicated quantities
to calculate, have been eliminated.
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=Z1/2 ren(Z l/2}t tap — ap =ap,

(Z —l /2)tHrenZ —l/2
p p

(1.17)

Then, the gauge condition of Eq. (1.14) is rnultiplicatively
renormalized

G Zl/2[g ( Vtt)ren+&renHrenyren]
P (1.18)

Hz and H„are some nonlocal functions chosen so that
there will be no mixing between Z and P3 and A and P3,
respectively. The parameters are renormalized according
to ( t denotes transposed)

then the physical photon is

( A "h„„„l)""=—sinO„(Z")"'"+cosO„(A")"" . (1.24)

In Secs. III and IV we shall explicitly carry out a one-
loop calculation to verify that the procedure outlined
here is correct. In particular, all the renormalized quan-
tities will be shown to be indeed finite. The rotations of
Eqs. (1.23) and (1.24) are not necessary to this order.

As with the 8'—case, we can use a Ward identity

( T[(B„V"+aoHog3)(x )(t} V"+aoHot)t3)'(y ) j ) =0

(1.25)
We shall choose ao'" such that it is diagonal.

The Ward identity in a simple case with only one Gp of
Eq. (1.14) is

(B„V"physical fields)+aoHo($3 physical fields) =0 .

p 1
+&oHo'3Ho~o =&o

3

(1.26)

Now we decompose the matrix vector propagator as

(1.19)
which is used to eliminate L. Specifically, if we
parametrize

C2 P+Ho——aoHo+ F3

( T( V„( ) V'„(y ) ) )
4d p ~ t'p(, x —y)

(2n) i

then

L aoHo p
2

C3 (p +rr3+HoaoHo)I uoHoHo
(1.27)

X gp„—
PttP v 1 PttP v 1+

p2 T(p2) p2 L(p2}

(1.20) II. ONE-LOOP BOSONIC CORRECTIONS
FOR $V+

and the scalar propagator as

&T(q,(.}q,(y}}&=f (2m ) i C3(p )
(1.21)

L renarenH ren

+ ( Ijf 3
j

phy»cal fields ) =0 (1.22)

At this point, one must sort out from our mixed vector
propagator the correct combinations to form the physical
Z and A. A similar problem of co, P mixing was treated
before and the methodology there can be transferred to
our problem. Briefly, we solve for the eigen vector
(cosOz, sinOz) of the matrix

lim
(p +m ) p

1(p'+m,') T""(p )

The equivalence theorem, which is again renormalization
covariant, takes the form

ip„(( V")'j'," physical fields)

W+ =(1+-'5Z )(8'+)"'

=(1+ l fiz )(y+ }ren

mtv=(1+5Z )(ming, )"",
(2. 1)

In this section, we will give the one-loop corrections
for the factor H+8+/C+ in Eq. (1.7). We will separate-
ly give the fermion contributions in Sec. IV. First, we
will examine the infinities of the counterterms and show
that the renormalized quantities are indeed finite. Then,
we will present the same factors in the heavy-Higgs-
boson limit. Note that the Feynman rules to this order
are just those in E.

&
gauges. Because the calculation is a

standard one, we do not belabor the details.
We will fix our counterterms by adopting on-shell sub-

tractions, by which we mean that the constants

then the physical Z is

(Z~~h„„.„,)""=cosOz(Z")""+sinOz( A")"" . (1.23}

are determined from the transverse vector propagator
A + and the scalar propagator C+ at p = —m w. We
write

Similarly, we find the eigenvector ( —sinO„, cosO„) of the
matrix H+=mw+m +, (2.2)

1
lim p Tren(p 2

)

where m + is chosen to completely absorb the mixing be-
tween t)It+ and IV+ for an arbitrary external momentum
p.



2240 YORK-PENG YAO AND C.-P. YUAN 38

We have

A. The in6nite parts
5Z~ = n1PlH

g 11
8~' 24

g2
5zlV ~ 4

25 1 c2 s2

6 2
+ aw+ az+ a 5Z~ ——

8m

2
1 ma, 2 2

2 8 mH+4 wl H

g2
5Z~ ——

Sm2 ~ —4

—3
2

3 1

4c , +2aw m
g
8m.

2
1 mH ——,', lnmH

16 m2
. (2.5)

T

1 2+ —$ + Qz+$ Qg
4c2

m
W 2 +8 H 8 WnmH

8~2 16 m 2

g' 1 17

8H n —4
3 1 1

az
4c 2 4

(2.3)

m
77 = P+ g 2 1 H 3+—,lnmH —4a wlnmH

2

8m' 16 m'

2 mg 1 mH
~L — 2awmw 2 +—,lnmH

8n. 16 mw2

Sn n —4 4c2 4 2 4

3 2$ ag

T

p +———aw+ s-g 1 2 3 3 1

87/ n —4 4C

1

4c
Qz

Again, substituting these into Eq. (2.4), we find that

g+ren [p +&ren(~ ren)2][ 1+0(
B+«n [&2+&ren(~ ren)2][1+O(g2)]

I+ren ~ ren[1+O(g2)]

and thus

(2.6)

—s a2

g2 3 1 1
L 2 4 w w 2

+ 2+ 2
—2c Qz

8~ n- 4c 4c

1——s az—2

2

where c=cosea, and s=sin8a. Using these infinite
parts, we see that the inverse propagators

C+ren
& 2( 1+5Z

+a/"(mg") (1+5Z~+5Z +5Z~)

+2arenm renm + +~ +
(2.4)

B+ren p + ren( ren)2(1+5Z +5Z )+

and

g +renH+ren

C+ren =mtv, "[1+0(g )] . (2.7)

There is complete cancellation of the heavy mass effects
between the counterterms fixed by on-shell subtractions
and the ~'s and m to give rise to this result. One can do
subtractions at a finite p &&mH and retain this cancella-
tion, but minimal subtraction scheme would spoil it. An
interesting question is whether this can hold to all orders.
One can easily show that naively the number of powers
in external momentum p to which one can expand at X
loop before the Higgs-boson effects go away is 2(N+1).
Therefore, unless there is a dynamical argument, it seems
unlikely that these mH (and 1nmH) in the modification
factor B+H+ /C+ can be—ab—sorbe—d by wave-function and
physical parameter renormalizations at higher-order
loops. A two-loop calculation may provide a partial
answer.

Let us digress to elaborate somewhat on minimal sub-
tractions, which correspond to setting 5Zw=5Z&
=5Z =0 in Eq. (2.5). Then one has

are finite.

g + rcnH + rcn

C+ ren
(minimal subtraction)

B. Heavy-Higgs-boson limit

Here, we keep terms proportional to mH, lnmH, and
discard all others. We have expressed the strong cou-
pling A, =g mH /4m w. It is the dependence on it that we
are principally interested in. We have

2

=rnP 1+ —a~lnmH+O(g )
8m 8

We see that there is strong Higgs effects lnmH left behind
in the modification factor, except in the Landau gauge
aw ——0.
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III. ONE-LOOP BOSONIC CORRECI'IONS
FOR Z

mz

0 +mo=
mz

0 +
mz

(3.4)

Z 1/2

a 11

1+
21

2

a 12

2
22 7

1+
(3.1)

We write the wave-function renormalization and the
renormalized gauge parameters, respectively, as where mz and mA are so chosen as to cancel out the

(Z —p2) and the ( A —p&) transitions completely. The in-

verse scalar and longitudinal vector propagators are
parametrized as

3 p +azmz+2azmzmz++3 7

aren 0z
(3.2)renao

Z 1/2 ren(Z1/2)r

0 ren
A

in which a' are all of one-loop order g . Note that Z'
is not symmetric, i.e., a ' &a '. The bare gauge parame-
ters are found to be

az'(p'+azmz+~i) ~i" p'—
aza

zA

azaA
&

—1(p2+ A)

for which the Ward identity of Eq. (1.26) gives

P mL —P 2azmzmz+azmza3 ——0,

(3.5}

az azA

azA

&ren( I+& 1 1 }

21 ren+ 12 ren)a az a aA

l (a 21&ren+& 12&ren)z A

&ren( 1 +&
22

)
(3.3)

and

mL
——0,A

ZA
GATI +mzm A

=0 . (3.6)

%'e express the nonlocal function Ho as
The finiteness of the renormalized quantities to be

checked are

12

I «n (Zl/2)rLZ1/2— 12
ZA mz (&ren) —lp2

Ho'" ——

5Z11a 3+ + +

a 12

mz+mA

m,""+m,
(3.7)

and

C3'" ——p (I+5Z~ )+az ( z ) (I+5Zy +12 +5Z )+2 zmzmz+&2 .

The product which forms the modification factor in Eq. (1.22) is

I ren ren ~ren

Cren
3

Cren
3

6Z~ 5Z
[p +az (mz«) (I+a +5Z }+xi] 1+'

2 2 2

12 12
zA a 2 2 a

azmz ~, + m, +p m, +m„
2 2

mz +mz
(3.&)

For the modified equivalence theorem of Z, we need only
the upper component of Eq. (3.8}. Also, because the
lower component of this equation is already of one-loop
order, so is Oz, we need not rotate to obtain the
equivalence theorem for the physical Z.

As a side remark, we will fix a ' so that

12
ZA + mz —0

2 2=p =0
(3.9}
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(3.10)

A. Infinite parts

We have

a 11
2

1

2 & 4
1 2 1———4c + +c aw
3 6c

Then, it follows from Eq. (1.22) that

p„((A")I'," physical fields) &
——0 .

p =0
Here we need a mass-shell requirement for this result to
hold for the amputated photon amplitude, in contradis-
tinction to pure electrodynamics.

We now determine the wave-function and mass renor-
malizations, a " and 5Z, by on-shell subtractionsz'
(p = —mz ) from the transverse vector propagator T
Similarly, the wave-function renormalization 5Z& is

3

fixed from the inverse scalar propagator C3, also at

p = —mz. The constants a ', a ', and a are not need-
ed for our present purpose and their values will not be
written down; suSce to remark that we have checked
their consistency throughout the procedure.

Note that if we set c = 1 and m w=mz, the results for Z
are identical to those for 8'in this limit. It follows that

+ ren( ren)2(1+ 11+5Z )+ Z

[p +az (mz~ ) ][1+0(g )]
Cren [~2+&ren(121 ren)2][1+O(g2)]

and

5Z ' mz'"+mz

=mz'"[I+O(g )] . (3.13)

Therefore, the upper component of the modification
factor in Eq. (3.8), which is pertinent to the longitudinal
Z equivalence theorem, is mz'"[I+O(g )]. Again, be-

cause of on-shell or finite-momentum subtractions, the
theorem is valid without strong Higgs-boson effects, at
least to the one-loop order, in any of the R

&
gauges.

g2
Zp 8~2 n —4

3 3, 1+ 2Qw+ Qz
c ' 4c

IV. ONE-LOOP FERMIONIC CORRECTIONS

g2
z 8~2 n —4

7 2——+7c—
6

We have deliberately separated out the fermionic
corrections, because we want to study the heavy top lim-

]2C ' 4c
' it, i.e., the dependence on strong Yukawa couplings.

(3.11)
g 1 3 3 2 cmz=
ger n —4 2 4c ' 2

mz + ——c — &w

g' 1, 3, , 1n3- p +———&w — &z
8~2 n 4 4c2 2 2 4c2

A. W+ Bosons

For 8'+, let us denote

2 2 2 2m, 1 m, 3m„3mdF= g — + — +— +—
2 2 2 2

amilies 2 m w 2 mw 2 mw 2
(4.1)

z g 1 2 3 2~c = a'zmz —3c +
8W ~ —4 2 4c

+(— c )12w+ ~z2 1

2 4 2

It follows that the quantities in Eq. (3.7) are finite.

B. The heavy-Higgs-boson limit

Here we have

where a color factor of 3 had been inserted for each
quark. We have also put in a mass for the neutrinos for
convenience. The infinite parts are

g2
w. —

8~ n —4 „,.„.„
8~2 n —4

a = lnma,
1

8 24c

g2

8~2 c'
m

2——', lnma+ —,'az lnma
16 mz

2

families

g2
m mw( F)—

8m2 n-4
(4.2)

g2
5Zmz =

g2 mz
IFlz =

7T3= P

g Qzrnz2 2

Sm c

2
1 ma

2mz
2

2+—lnma —
8

0,'z lnma
16 mz

2ma 3 2 1 2
2 + 2 1nma —

2 0'zlnma
mz 8c 4c

2ma
+ —', lnma

16 mz2

(3.12)

m+=
2 P ( F), —g2

8~2 n —4

g 1
2

2
7TL ~wmw( —F) .

8~2 ~ —4

We see that the renormalized quantities of Eq. (2.4) are
finite, as they should be.

In the heavy top limit, with gd Vd Vz, understood,
where V;. are the Kobayashi-Maskawa matrix elements,
we have
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2

8m

2
3 m,

5Z += 8~' n —42 mw

3 m

8 mw

They cancel once more when substituted in Eq. (3.7).
In the heavy top limit, we have

g', —1O 8c' 17a
&&

— 1nm, + +8' 9 9 36c

5Z
8a

2 2
3 mt 3 md

+lnm, —
2

+—
4 mw 4mw

3 mg 3

n —42m' 8 mw

3 m) 3
2 2

+lnm, ——+—
2 +—

z4m 4m

5Z = + lnmtg 1 3 mt

Svr & —4 2c m 4c

2
g2 1 3 m,

z 8~2 n —4 2c m Z

m
E

2mz

m+=8 m
2

m = ~mar

2
2

8~2 n

3 m, 3 m+-
2mw 8mw

3 m] 3 md+1-' --,'-- '
4 mw 4mw

T

3 mt 3+
2mw 8mw

2 2
m, 3 md

+ lnm,
mw mw

(4.3)

mz=
2 m~

8m.

g' 2
2

F3= P
8m

17

36c

2
1 3 m, 2+ lnm,

n —4 2c mz

2
3 m,

4c m

2
1 —3 mt

+ lnm ]
n —4 2c mz

2

4c m

3 mt 10 8c
+lnmi 2 2 +

4c mz

(4.5)

2 1
7TL = cx wm w8' n—

+ lnm, 2

3 m] 3 mg
+

mw 8 mw
r

3 m] 3 md

4mw 4 mw

2 2 2
Z g 1 —3 mr mt

~L 2 Z Z 2 2 + lnm
2 28m 4 2c mz 4c mz

Once again, m, and lnm, cancel in the renormalized
quantities of Eq. (3.7).

B. Z Boson

For Z, the infinities are

—j0 8c' ]7
36c2

Fg2

8m' n —1

5Z~- g
2 2

3 mt 3 m
+ lnfP2 In —42c2 m z 4c m2z

m, = mz( F), —g2

8~2 n —4

1 p( —F),
n —4

2

m'L —— azmz( F) . —z g
8~2 n —4

(4.4)

When we substitute these into Eq. (2.4), we see that m,
and lnm, drop out. We thus arrive at the same con-
clusion as in Eqs. (2 6) and (2 7). In words, the
equivalence theorem is true without heavy top effects in
the form of m, or lnm, to the one-loop order. Just as
with the bosonic case, naive power counting does not sug-
gest that this result can be inferred for higher-order
loops. '

V. CONCLUSION

We have shown that because of loop corrections the
equivalence theorem, which relates S-matrix elements in-
volving longitudinal 8'* and Z bosons to those with their
corresponding unphysical pseudo-Goldstone scalar s,
needs some modification from how it was understood.
This modification comes in the form of multiplicative fac-
tors, one for each external longitudinal vector boson.

We have explicitly shown that the renormalization
properties of the gauge conditions used by us to arrive at
the equivalence theorem and at the same time to take
care of vector scalar mixing are consistent, at least to the
one-loop order.

Furthermore, we have obtained a result in the heavy-
Higgs-boson and/or heavy top limit that there is no
modification in powers of m~, lnmH, m, , or 1nm, , again
to the one-loop order. However, we have not been able
to find an argument to show this decoupling of heavy
mass effects for higher-order loops by naive power count-
ing. We consider it an interesting exercise to perform a
two-loop calculation to render a partial answer.

We must emphasize that even though the equivalence
theorem needs to be appended with these multiplicative
modifiers, its usefulness as a calculational tool is by no
means tarnished. In the case of strongly interacting
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Higgs bosons or tops, where perturbative approach is
helpless (unless the modifiers can be shown not to carry
large mass effects), one must learn to isolate them so that
results from longitudinal vector-boson experiments can
be properly normalized and interpreted to unravel the
true strong interaction dynamics of the matter-scalar sec-
tor.
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