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Multiplicity distributions and Bose-Einstein correlations
in high-energy multiparticle production in the presence of squeezed coherent states
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We generalize existing quantum-statistical approaches to multiparticle production processes in
high-energy physics by studying the effects of squeezed states on second-order Bose-Einstein corre-
lations and multiplicity distributions. The most important and surprising result is the appearance of
oscillations in the multiplicity distributions. These oscillations as we11 as related effects of anti-
bunching and enhanced bunching are investigated for various mixtures of squeezed coherent and
chaotic distributions. The experimental situation is briefly discussed.

I. INTRODUCTION

P= Q Q Q Q, (2)

where P(a) characterizes the distribution. Thus for a
coherent-state distribution one has

P(a) =5(a—a),
leading to a second-order correlation function

(2) (n(n —1))
(n)'

(3)

(4)

Lack of fundamental understanding of the dressing
mechanism of quarks into hadrons limits the theory of
multiparticle production to phenomenology. Even if a
QCD-based "dressing theory" is developed in the future,
it will be practically difBcult to apply it in processes
where large numbers of particles are produced without
invoking statistical methods. Furthermore, in many
particle-production processes one deals with identical
particles and this implies certain symmetry properties
which are taken into account automatically by quantum
statistics (QS). For these reasons quantum-statistical
models have been extensively used in the study of mul-
tiparticle production (cf., e.g., Ref. 1).

There are two main directions into which the applica-
tion of the methods of QS in particle physics have
evolved: (1) determination of radii, lifetimes, and amount
of coherence of sources through Bose-Einstein correla-
tions; (2) study of multiplicity distributions P(n } in anal-
ogy to photon counting in quantum optics and interpreta-
tion of these distributions in terms of hadronic sources
and fields.

So far most of these applications were limited to what
one could call "standard quantum statistics, " i.e., to
states which can be constructed from standard coherent
states

~

a ) defined by the relation

a ~a)=a~a),
where a is the annihilation operator.

The density operator can be written in the so-called P
representation as

while for a chaotic distribution

P(a)=exp( —
~

a
~

/(n ) )l(n(n ) ),
one has

g(2) (4')

The corresponding multiplicity distributions are (for a
coherent state) the Poisson distribution

and (for a chaotic distribution with k cells) the negative
binomial

(n +k —1)!
n!(k —1)!

(n)
k

(n)
(7)

As long as one limits oneself in Eq. (2} to positive-definite
functions P(a), one can show that 1&g' '&2 and that
correspondingly (6) and (7) are the narrowest and widest
multiplicity distributions. The condition that P(a) be
positive definite can also be used to define "standard" QS.

On the other hand, it is by now well known that the
standard coherent (Glauber) states are only a special case
of a much wider class of coherent states called squeezed
states, which have recently attracted much attention be-
cause of their fundamental quantum-mechanical impor-
tance, ' as well as the possible important practical appli-
cations they might lead to. The natural question is what,
if any, are the modifications one would expect in the ap-
plications of this more general QS formalism to particle
physics and in particular to the effects (1) and (2) men-
tioned above.

This question is not only of methodological interest,
but has its own physical motivation. To see this it is
enough to recall that while standard coherent states arise
from one-particle annihilation operators, squeezed states
arise from two- or more-particle annihilation operators.
They appear naturally in the study of quadratic (or
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higher-order, nonlinear) Hamiltonians

H =coQ tQ +0.Q f2+o.eQ2 (8)

liubov transformation. From Eq. (12) and the fact that
Uz is unitary one can prove for any function f (a, a ) the
relations

which describe, e.g. , superfiuidity. (The vacuum of a
superfiuid is a squeezed state. ) Given the important role
played by condensates and by models inspired from
superfluidity and superconductivity in the attempts to
understand quark-gluon confinement, the investigation
of the implications of squeezed states for high-energy
physics appears desirable. Moreover, as will be shown
below, these new, more general, coherent states lead,
among other things, to peculiar oscillations in the multi-
plicity distributions not found in standard QS.

So far no experimental evidence for this last effect has
been reported either in the quantum-optical literature or
in other fields, although other effects of squeezed states
have been reported in quantum optics recently. The
main purpose of this paper is to point out that such oscil-
lations could in principle be detected in rnultiparticle pro-
duction processes where hints of similar effects have been
seen. We will also show that the existence of squeezed
states opens up completely new possibilities with regard
to the applications (1) and (2) of QS in particle physics,
mentioned above.

In Sec. II we introduce the formalism of squeezed
states and give the expressions for the correlation g' ' and
the multiplicity distribution and exemplify the oscillating
behavior of P(n) We als. o mention the more general
heuristic modifications introduced by these new states.

In Sec. III three different mixtures of squeezed and
chaotic distributions are considered, and the correspond-
ing formulas for g' ' and P(n) are derived.

Section IV contains the conclusions of the paper and
discusses some experimental implications.

IL SQUEEZED COHERENT STATES

Let us consider a representation of SU(1,1) realized
with the unitary operators

Uz(r, H, A, )=exp[ ,'re ' —(a—)+ ,'re' a ]—
&(exp(iA.a a),

UzUz ——1, [a,a ]=1,

Note also that

~

A;rHA, ) = Uzexp(Aat —A a)
~

0)

=exp( Abt A'b)—Uz
~

0)

=exp(Abt —A'b) ~0;rHA, ) . (15)

From (12), (14), and (15}we see that
~

A;rHA, ) may be
viewed as ordinary coherent states with respect to the
operators b, bt, and as two-particle coherent states with
respect to the operators a, a t.

The correlation g' ' defined by Eq. (4) can also be writ-
ens

((a )'a')

I
A i I

—A i v
I

'—
I

A i I

'+
I
v

I

'+ 21 v
I

'
=1+

{
I

A i I

'+
I
v

I

'}'
(16)

A
&

——p*A —vA

where

(a a)—:(A;rHA. ~a a
~

A;rN)=
~

A&
~

, +
~

v~

We consider here the particular case in which A, =8=0
and A is a real positive number. Equation (16) siinplifies
now into

1g' '=1+ (e "—1)+ (1+sinhr)sinh ( —,'r),(n)

(17)

Uzf (a, a )Uz f——(b, b ), Uz f(a, a )=f (b, bt)Uz .

(13)

Equation (13) implies that Uza =bUz and hence the

~
A; r N, ) are eigenstates of the destruction operator b:

b
~

A, rHA)=, bUz
~

A ) = Uza
~

A ) = A
~

A;rN). .

(14)

where r, O, A, are real parameters, r &0. The. squeezed
coherent states

~
A; r N, ) are defined as

with

(n ) = A {cosh—,'r —sinh —,'r) +sinh —,'r .

~
A, rN) =U (rz, H, A)

~

A )=Uz(r, H, A)U&(A) ~0),
(10)

U, (A)=exp(Aa —A'a) .

From Eqs. (10) and (11)one gets

UzaUz=pa+va =b, Uza Uz=v*a+p*at=b

p=e ' cosh( —,'r), v=e ' + 'sinh( —,'r}, (12)

The operators b, b obey the boson commutation rela-
tions [b, b ]=1 and the transformation (12} is a Bogo-

We see that in this particular case there are two parame-
ters, A and r, which characterize a squeezed state. (In
the following we shall use instead of A the mean multipli-
city ( n ) .) This situation is to be compared with the case
of ordinary coherent states, where one parameter ((n ) )

suSces to characterize the multiplicity distribution [cf.
Eq. (6)].

In Fig. 1 we plot g' ' from Eq. {17)as a function of the
squeezing paraineter r for (n ) =5. We see that g' ' can
take values less than 1 (antibunching), between 1 and 2
(bunching), or larger than 2 (enhanced bunching). Thus
squeezed states generalize the "classical" distributions for
which 1 (g' '& 2. Correspondingly, narrower distribu-
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formula (cf., e.g. , Ref. 12)

P (n ) =exp[ —( n, ) l(1+ ( n,„)) ] (1+ n, h
)"+'

(n, )

&,„&(1+&,&)
(21)

Here ( n, ) and ( n, t, ) are the mean numbers of particles
due to the coherent and chaotic sources and L„is the
Laguerre polynomial. Note that the total mean multipli-
city is

&n &=(n, &+(n,h& . (22)

Equation (21) describes a partially coherent laser distribu-
tion. This equation, as well as Eqs. (6) and (7} which are
particular cases of it for ( n,„)=0 and ( n, ) =0, respec-
tively, have found wide applications not only in optics
and electronics' but more recently also in particle phys-
ics.

We consider now the superposition of a squeezed
coherent and a chaotic field. The corresponding distribu-
tion is known' in an analytic form for the case
& »

~

sinh(r/2)
~
exp(r l2), where 3 and r are defined in

Sec. II. It is characterized by three parameters r, (n, ),
and (n,h ) or r, (n ), and y= (n, ) l(n, h ).

A numerical investigation of this distribution shows"
that for 0 & y &50 and various values of r and (n ) the
characteristic oscillations found in a pure squeezed state
disappear. This illustrates the important role which even
a very weak chaotic background can have (for numerical
reasons, values of y &50 are difficult to handle), and is
exemplified in Fig. 4. On the other hand, the nonclassical
behavior of g' ' is already evident for y=50, as can be
seen in Fig. 5 where g' '& 1. In other words there is no
simple connection between the oscillation in P (n) and the
nonclassical values (less than one) of g' '.

B. Convolution of squeezed and chaotic distributions

Convolutions of coherent distributions with chaotic
ones have been widely used in classical approaches to op-

0 1 2 3

ties' and have recently been applied to particle phys-
ics. '6

Instead of considering a superposition of fields, chaotic
and squeezed, which corresponds to the situation where
the sources (and the corresponding fields). interfere, one
could envisage a case when the sources act independent-
ly. In this situation the probability distribution P(n} is a
convolution of two distributions P, (n, ) and P2(n2) refer-
ring to the chaotic and squeezed source, respectively:

P(n)= y P](n])P2(n2),
n1+n2 ——n

(23)

where P~(n&) is given by Eq. (7) with k =I, and P2(nz)
by Eq. (19).

The number of parameters is the same as in the previ-
ous case and the results are presented in Tables I-VI and
Fig. 6. We found that, as in the previous case, the oscilla-
tions in P(n} disappear for 0&y &50 (Tables I—III},but
at y=1000 they appear again (cf. Table IV). The g' '

FIG. 5. Second-order correlation g' ' for a superposition of
squeezed and chaotic fields with ( n, ) =6. a, y = 1; b, y = 50.
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FIG. 4. Multiplicity distribution P(n) for a superposition of
squeezed and chaotic fields; r =0.5, ( n, }=6, and y =50.

FIG. 6. g' ' for a convolution of squeezed and chaotic distri-
butions with (n, ) =6. a, y = 1; b, y =50.
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P(n)

Eq. (23)

P(n)
a =0.99
Eq. {24)

P(n)
a=0.5

Eq. (24)

0
1

2
3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

g(2)

0.855 K 10-'
0.860K 10
0.417K 10-'
0.130X 10
0.292K 10
0.511X 10
0.726X10-'
0.871 X 10
0.917X 10
0.877 X 10
0.790K 10-'
0.688 X 10
0.592K10 '

0.508K 10-'
0.435 X 10-'
0.373X10-'
0.320 X 10
0.274X 10
0.235 X 10
0.201 X 10
0.173X 10
1.19

0.202 X 10
0.668 X 10
0.248 X 10
0.660K 10-'
0.126
0.181
0.200
0.173
0.118
0.635 X 10
0.263 X 10
0.814K 10
0.182X 10
0.354 K 10-'
0.166X 10
0.147 X 10-'
0.125 X 10-'
0.105X 10
0.891K 10-'
0.764K 10-'
0.655 X 10-'
0.943

0.717K 10-'
0.640K 10-'
0.645 K 10-'
0.779K 10-
0.102
0.124
0.129
0.112
0.804K 10-'
0.497 X 10- '

0.284 K 10-'
0.171K 10
0.120K 10-'
0.971K 10-'
0.825X10 '
0.708 X 10
0.607 X 10-'
0.520X 10
0.445 X 10-'
0.382 X 10
0.327K10 '
1.28

TABLE I. Multiplicity distributions P(n) for a convolution
[Eq. (23)] and superposition of chaotic and squeezed probabili-
ties [Eq. (24)]; ( n, ) =6, y = I, r =0.5.

0
1

2

3
4
5

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20

(2)

P(n)

Eq. (23)

P(n)
a=0.99
Eq. (24)

P(n)
a=0.5

Eq. {24)

0.254K 10-'
0.497 X 10
0.466 X 10
0.278 X 10-'
0.119X10 '
0.385 X 10-'
0.988 X 10-'
0.206 K 10
0.356K 10-'
0.519X 10- '

0.650K 10-'
0.715 X 10
0.712X10-'
0.663 X 10- '

0.601X10 '

0.541 X 10-'
0.487 X10-'
0.439 X 10-'
0.396K 10-'
0.356K 10- '

0.321 X 10
1.41

0.100K 10
0.947 K 10-'
0.123 X 10
0.307 X 10--'

0.991K 10
0.281 X 10
0.640K 10-'
0.116
0.169
0.197
0.181
0.129
0.675 X 10-'
0.231K 10- '

0.373 X 10
0.208 X 10
0.977 K 10-'
0.995 X 10
0.428 K 10
0.148 X 10
0.138X 10
0.942

o.500X 10
0.450K 10
0.407 X 10-'
0.376K 10- '

0.375 X10-'
0.434K 10-'
0.586K 10-'
0.824K 10
0.107
0.119
0.109
0.807K 10-'
0.481 X 10
0.243 X 10- '

0.132X 10
0.103X 10-'
0.966K 10
0.876K 10-'
0.765 K 10-'
0.676 X 10
0.609K 10-'
1.23

TABLE III. Same as Table I, for ( n, ) =9, y = I, r = l.

TABLE II. Same as Table I, for ( n, ) =6, y =50, r =0.5. TABLE IV. Same as Table I, for ( n, ) =6, y = 1000, r =0.5.

P(n)

Eq. (23)

P(n)
a=0.99
Eq. (24)

P(n)
a=0.5

Eq. (24)

P(n)

Eq. (23)

P(n)
a=0.99
Eq. (24)

P(n)
a=0.5

Eq. (24)

0
1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

(2)

0.534 K 10-'
0.497 X 10-'
0.220 X 10
0.611K 10-'
0.120
0.175
0.199
0.177
0.125
0.704 K 10- '

0.310K 10- '

0.104K 10-'
0.255 K 10-'
0.419K 10
0.456K 10-4
0.975 X 10
0.454 K 10-'
0.121 K 10-'
0.156K 10
0.247K10 '
0.125 K 10
0.940

0.952K 10 '
0.641K 10-'
0.239 X 10-'
0.651 X 10
0.126
0.180
0.200
0.173
0.118
0.632 X 10
0.260K 10-'
0.788X10 '
0.159K 10 '
0.161K 10
0.753 X 10-'
0.540K 10-'
0.387 X 10-'
0.802 K 10
0.295K10 7

0.882 K 10
0.110K 10
0.946

0.447
0.506 X 10
0.171K 10-'
0.334K 10-'
0.635 X 10-'
0.911X 10
0.101
0.873 X 10-'
0.596K 10-'
0.319X 10
0.131K 10
0.398 K 10-'
0.805 K 10
0.814K 10
0.380K 10-'
0.273 X 10-'
0.196K10 '
0.405 K 10-'
0.149K 10
0.445 K 10-'
0.554K 10-'
1.80

0
1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
(2)

0.595 X 10- '
0.548 X 10-'
0.239 X 10-'
0.655 K 10-'
0.126
0.182
0.201
0.175
0.120
0.641 K 10-'
0.265 X 10
0.807 X 10
0.165X 10-'
0.172K 10-'
0.178X 10
0.543 K 10-'
0.392 X 10-'
0.828 X 10
0.346K 10-'
0.906K 10
0.111X 10
0.937

0.105X 10-'
0.551K 10-'
0.238 X 10-'
0.651 X 10
0.126
0.180
0.200
0.173
0.118
0.632 K 10
0.260 K 10- '

0.788X10 '
0.159X10 2

0.161K 10
0.753 X 10
0.540K 10-'
0.387 X 10-'
0.802 X 10
0.295 X 10-'
0.882 X 10-'
0.110K 10-'
0.947

0.497
0.572K 10-'
0.120X 10
0 329X 10
0.634K 10-'
0.911X 10
0.101
0.873X10 '

0.596K 10
0.319X 10
0.131K 10
0.398X10 '
0.805 X 10
0.814% 10
0.380K 10-'
0.273 X 10
0.196K 10-'
0.405 K 10-'
0.149K 10
0.445 K 10-'
0.554K 10
1.87
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P(n)

Eq. (23)

P(n)
a =0.99
Eq. (24)

P(n)
a=0.5

Eq. (24)

TABLE V. Same as Table I, for ( n, ) =9, y =50, r = 1. behaves similarly as in the previous case of field superpo-
sition. For @=1 it is limited to the classical domain,
while for y =50 it takes nonclassical values (Fig. 6).

C. Superposition of squeezed and chaotic probabilities

0
1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

g(2)

0.216x10-'
0.405 x 10-'
0.363x 10
0.206X 10
0.824x10-'
0.248 x 10
0.581 X 10
0.108
0.161
0.193
0.184
0.138
0.786x10-'
0.316x 10-'
0.781x 10-'
0.119x10-'
0.859x 10-'
0.840x 10
0.366X 10
0.668 x 10-'

. 0.243 x 10-4
0.940

0.848X10 '
0.134x 10-'
0.614x 10
0.237 x 10-'
0.926X10 '
0.275 x 10-'
0.635 x 10
0.116
0.169
0.197
0.181
0.129
0.672 x 10
0.229 x 10
0.350X 10
0.235 X 10
0.791 X 10
0.828 X 10
0.278 x 10-'
0.128x 10-'
0.164X 10
0.946

0.424
0.647 X 10-'
0.101x 10
0.268x10 '
0.491 x 10-'
0.139x 10-'
0.321 x 10-'
0.585 x 10
0.853x 10
0.993x 10-'
0.915x 10
0.651x 10-'
0.339x 10-'
0.116X 10
0.177x 10-'
0.119X10 '
0.400 X 10-'
0.418x 10-'
0.140X 10
0.646 X 10-'
0.831 x 10
1.80

P(n) =aP&(n
&
)+(1—a)P2(n2), 0& a & 1,

with

Pl =n ) +n2

(24)

This corresponds to a situation where in each event ei-
ther a chaotic or a squeezed distribution is found. In
high-energy physics one could conceive of such a possi-
bility in the following way: At a given center-of-mass en-
ergy multiparticle production events differ one from
another by the inelasticity, i.e., by the energy available
for particle production, because the leading particles take
in each event a different amount of energy. Suppose that
there exists a threshold energy below which the
phenomenon of squeezing or the phenomenon of thermal
equilibrium, leading to a chaotic distribution, cannot
occur (instead of inelasticity one can imagine the centrali-
ty of the collision as being the decisive factor which
triggers a certain reaction). In that case in some events a
squeezed coherent distribution will emerge while in other
events a chaotic distribution emerges. The overall multi-
plicity distribution is then given by

P(n)

Eq. (23)

P(n)
a =0.99
Eq. (24)

P(n)
a=0.5

Eq. (24)

TABLE VI. Same as Table I, for ( n, ) =9, y = 1000, r = 1.

and P, and P2 defined by Eqs. (7) with k =1 and (19), re-
spectively. a represents the fraction of events in which
the distribution P, is realized. We have now one parame-
ter more as compared with the previous case: namely a.

A numerical study of this case shows that the oscillat-
ing behavior of P(n) appears already at y=50, for
a=0.99 (Table II). The corresponding values of the
correlation g' ' as a function of r are represented in Fig.
7.

0
1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

(2)

0.252 x 10
0.471 x 10-4
0.418X10 '
0.234 x 10-'
0.929X10 '
0.276 x 10
0.638 X 10
0.117
0.170
0.198
0.183
0.131
0.684 x 10-'
0.235 x 10-'
0.371X10 2

0.355 x 10-4
0.792 x 10-'
0.836x 10
0.286 x 10
0.154x 10-4
0.166x 10-'
0.937

0.991X 10
0.135x 10
0.418x 10
0.234 X 10
0.926x 10-'
0.275 X 10
0.635 X 10
0.116
0.169
0.197
0.181
0.129
0.672 X 10
0.229 x 10
0.350x 10
0.235 X 10
0.791 X 10
0.828 x 10-'
0.278 x 10-'
0.128x 10-'
0.164X 10
0.946

0.496
0.~4x 10-'
0.250X10 '
0.118x 10
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FIG. 7. g' ' for a superposition of chaotic and squeezed prob-
abilities [Eq. (24)] as a function of r; ( n, ) =6; a, y =50, a =0.5;
b, y=l, a=0.5, c, y=1, and y=50, a=0.99. In case c, be-
cause of the value of a=0.99, both y=1 and y=50 give ap-
proximately the same results.
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From these examples follows, among other things, that
the oscillations can be quenched by chaotic fields and
that the observation or nonobservation of oscillations is
very sensitive to a chaotic perturbation.

Ideally, in order to detect experimentally squeezed
states through these oscillations, one would have to
choose specific experimental conditions where squeezed
states are expected to appear in their clearest form. The
observation that oscillations appear at large (n ) [cf. Eq.
(20)] (we have checked that at large (n ) and n the oscil-
lations become very frequent) may be useful in this
respect.

On the other hand, it would be important to gain more
physical insight into the relation between the squeezing
parameter r and some physical observable. We consider
this as the most important goal of future theoretical
research along these lines.

IV. DISCUSSION

Although the importance of the detection of coherent
states in high-energy physics is recognized, ' ' the experi-
mental evidence for these states is yet far from being
confirmed. ' Several different physical phenomena are
sensitive to these states, but there are serious difficulties
in disentangling various effects which could mimic coher-
ence. Thus in Bose-Einstein correlations the fact that in
almost all experiments g' '&2, does not yet necessarily
imply the existence of a coherent state, because reso-
nances, e.g., would also contribute to a lowering of the
Bose-Einstein correlation and this effect is not easy to es-
timate. Analogously, the observation that in certain re-
actions (e.g. , e+e ) the multiplicity distribution P(n) is
almost Poissonian, does not prove that it arises from a
coherent state, because any independent production
mechanism would also lead to a Poisson distribution.

For squeezed coherent states a similar ambiguous situ-
ation has prevailed. Thus sub-Poissonian distributions
have been observed in particle physics for decades, but
they usually appear at small c.m. energies where
conservation-law constraints are important and most
probably they can be attributed to these trivial effects.
Therefore, although squeezed states provide an elegant
formalism for sub-Poissonian statistics (cf. Ref. 18), no-
body could claim that these states have really been seen
in high-energy physics. As a rnatter of fact, even in quan-
tum optics the experimental proof of the existence of
squeezed states has been given only very recently, '

through the reduction of noise below the level corre-
sponding to a classical coherent state.

The observation' '" that squeezed coherent states in-
duce oscillations in the multiplicity distribution may fa-
cilitate the investigation of these new states, both in
quantum optics and in particle physics. The results of
the present quantitative investigation of the role of
squeezed states in multiplicity distributions show that (i)
if the squeezing parameter and the multiplicity are large
enough, oscillations in P(n) occur, (ii) the amplitude of
these oscillations depends on the magnitude of the chaot-
ic background, and (iii) it depends also whether the am-
plitude or the probabilities of the squeezed coherent and
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chaotic fields add. In the last case, it depends also wheth-
er or not the two sources (coherent and chaotic) act
simultaneously.

From these results one may conclude that while the
nonobservation of oscillations does not yet preclude the
existence of squeezed states, the detection of such oscilla-
tions would constitute evidence for these states. Unfor-
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FIG. 9. The same as in Fig. 8 at 546 GeV, this time, however,
fully corrected. The various q, values denote cuts in pseudo-
rapidity (from Ref. 21).

FIG. 8. Multiplicity distributions at 200 and 900 GeV
corrected for secondary interactions, gamma conversion, and
short-lived decays, but not for geometrical acceptance or trigger
efficiency. The solid line is the result of a fit to the observed
data of a negative binomial (from Ref. 21).
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tunately, it seems that this would still not be a proof"
for the existence of squeezed states, because there are
other mechanisms which could also produce oscillations
in P(n). Thus the superposition of several classical
sources with very different mean multiplicities would also
lead to oscillations. As a matter of fact, in particle phys-
ics such oscillations were predicted to occur as a conse-
quence of multiple Pomeron scattering. However, both
these alternatives are very interesting, too.

Experimentally, the situation is far from being clear.
Although it is true that no statistically significant oscilla-
tions have been reported so far in the literature, it is also
probably true, that, with present techniques, they could
not have been detected. The measurement of multiplicity
distributions at high energies is affected by systematic er-
rors which are not easy to control. Thus, e.g., in the
UA5 measurements, ' the observed distributions are usu-
ally corrected via Monte Carlo simulations in order to
compensate for the limitations in the geometrical accep-
tance and the contamination of primary tracks by secon-
daries. In this correction procedure a smoothness con-
straint is imposed ' which would hardly permit any exist-
ing oscillations to survive in the final result called "true"

distribution. Even with this caveat in mind the published
distributions present some structure which can be seen by
the naked eyed. To illustrate this, in Fig. 8 partially
corrected distributions obtained by the UA5 Collabora-
tion are shown and in Fig. 9 fully corrected distributions.
Note that even in the fully corrected distribution small
oscillations can be seen, although we cannot comment
about their statistical significance. There is, anyway,
clear evidence in this figure for at least one shoulder
around n =80, which could easily mask oscillations.

A systematic and careful investigation of multiplicity
distribution with special emphasis on oscillations appears
to be a rewarding task for future experiments. From the
theoretical point of view, a dynamical understanding of
the conditions under which squeezing is expected to
occur in particle physics is highly desirable.
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