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We generalize existing quantum-statistical approaches to multiparticle production processes in
high-energy physics by studying the effects of squeezed states on second-order Bose-Einstein corre-
lations and multiplicity distributions. The most important and surprising result is the appearance of
oscillations in the multiplicity distributions. These oscillations as well as related effects of anti-
bunching and enhanced bunching are investigated for various mixtures of squeezed coherent and
chaotic distributions. The experimental situation is briefly discussed.

I. INTRODUCTION

Lack of fundamental understanding of the dressing
mechanism of quarks into hadrons limits the theory of
multiparticle production to phenomenology. Even if a
QCD-based “dressing theory” is developed in the future,
it will be practically difficult to apply it in processes
where large numbers of particles are produced without
invoking statistical methods. Furthermore, in many
particle-production processes one deals with identical
particles and this implies certain symmetry properties
which are taken into account automatically by quantum
statistics (QS). For these reasons quantum-statistical
models have been extensively used in the study of mul-
tiparticle production (cf., e.g., Ref. 1).

There are two main directions into which the applica-
tion of the methods of QS in particle physics have
evolved: (1) determination of radii, lifetimes, and amount
of coherence of sources through Bose-Einstein correla-
tions; (2) study of multiplicity distributions P(n) in anal-
ogy to photon counting in quantum optics and interpreta-
tion of these distributions in terms of hadronic sources
and fields.

So far most of these applications were limited to what
one could call’> “standard quantum statistics,” i.e., to
states which can be constructed from standard coherent
states | a) defined by the relation

ala)=ala), (1)

where a is the annihilation operator.
The density operator can be written in the so-called P
representation as

p=[Pla)| {a})({a)})d%, 2)

where P(a) characterizes the distribution. Thus for a
coherent-state distribution one has

Pla)=8(a—a), (3)
leading to a second-order correlation function®

(2)— (n(n-—l)>=1 4)
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while for a chaotic distribution

Pla)=exp(— |a|2/{n))/(m{n)), (5
one has
g(z)=2 ) @)

The corresponding multiplicity distributions are (for a
coherent state) the Poisson distribution

—(n) (n)"

P(n)=e
n!

(6)

and (for a chaotic distribution with k cells) the negative
binomial

n

(n)
_(n+k—1) k
()= T (7
e

As long as one limits oneself in Eq. (2) to positive-definite
functions P(a), one can show that 1 <g® <2 and that
correspondingly (6) and (7) are the narrowest and widest
multiplicity distributions. The condition that P(a) be
positive definite can also be used to define “standard” QS.

On the other hand, it is by now well known that the
standard coherent (Glauber) states are only a special case
of a much wider class of coherent states called squeezed
states,* which have recently attracted much attention be-
cause of their fundamental quantum-mechanical impor-
tance, > as well as the possible important practical appli-
cations they might lead to. The natural question is what,
if any, are the modifications one would expect in the ap-
plications of this more general QS formalism to particle
physics and in particular to the effects (1) and (2) men-
tioned above.

This question is not only of methodological interest,
but has its own physical motivation. To see this it is
enough to recall that while standard coherent states arise
from one-particle annihilation operators, squeezed states
arise from two- or more-particle annihilation operators.
They appear naturally in the study of quadratic (or
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higher-order, nonlinear) Hamiltonians
H=w0a'a+0a™+o*a? (8)

which describe, e.g., superfluidity. (The vacuum of a
superfluid is a squeezed state.) Given the important role
played by condensates and by models inspired from
superfluidity and superconductivity in the attempts to
understand quark-gluon confinement,’ the investigation
of the implications of squeezed states for high-energy
physics appears desirable. Moreover, as will be shown
below, these new, more general, coherent states lead,
among other things, to peculiar oscillations in the multi-
plicity distributions not found in standard QS.

So far no experimental evidence for this last effect has
been reported either in the quantum-optical literature or
in other fields, although other effects of squeezed states
have been reported in quantum optics recently. The
main purpose of this paper is to point out that such oscil-
lations could in principle be detected in multiparticle pro-
duction processes where hints of similar effects have been
seen. We will also show that the existence of squeezed
states opens up completely new possibilities with regard
to the applications (1) and (2) of QS in particle physics,
mentioned above.

In Sec. II we introduce the formalism of squeezed
states and give the expressions for the correlation g* and
the multiplicity distribution and exemplify the oscillating
behavior of P(n). We also mention the more general
heuristic modifications introduced by these new states.

In Sec. III three different mixtures of squeezed and
chaotic distributions are considered, and the correspond-
ing formulas for g'? and P (n) are derived.

Section IV contains the conclusions of the paper and
discusses some experimental implications.

II. SQUEEZED COHERENT STATES

Let us consider a representation of SU(1,1) realized
with the unitary operators
U,(r,0,A)=exp[ —tre ~"%a")?+ Lre'®a?]
Xexp(ilaTa) ,

9)
[a,aT]zl ,

Uvlu,=1,

where r,6,A are real parameters, r >0. The .squeezed
coherent states® | 4;70A) are defined as

| A,rOL) =U,(r,6,A) | 4)=U,(r,6,A)U,(4)|0) ,
(10)
U,(A)=exp(Aa’— A*a) . (11)
From Egs. (10) and (11) one gets
U,aUl=pa+va'=b, U,a'Ul=v*a+p*at=s",
p=e *cosh(ir), v=e '*+%%inh(ir), (12)
lp|?=v|2=1

The operators b, blr obey the boson commutation rela-
tions [b, b ]J=1 and the transformation (12) is a Bogo-
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liubov transformation. From Eq. (12) and the fact that
U, is unitary one can prove for any function f(a,a ') the
relations
U,f(a,ahUl=r(b,b"), =f(b,bNU, .
(13)

Equation (13) implies that U,a =bU, and hence the
| A;r6A) are eigenstates of the destruction operator b:

U,f(a,a’)

b| A,r6A)=bU,| A)=Uya | A)=A | A;r6)) .
(14)
Note also that
| 4;r61)=U,exp(da'— 4*a)|0)
—exp(AbT— 4*b)U, | 0)
=exp(AbT— 4*b)|0;rO0) . (15)

From (12), (14), and (15) we see that | 4 ;76\ ) may be
viewed as ordinary coherent states with respect to the
operators b,bT, and as two-particle coherent states with
respect to the operators a,a .

”l;he correlation g’ defined by Eq. (4) can also be writ-
ten

((a')%a?)
g?¥= __2_
(a'a)
L Am— AT A v 2 )
(| A2+ |v|?? ’
CutA_vd® (16)
where

(afa)=(A;ror|a%a| A;ro0)=| 4, |2+ |v|2.

We consider here the particular case in which A=0=0
and A4 is a real positive number. Equation (16) simplifies
now into

@) _ 1 —r_
g =1+ <n>(e

( )2 ———; (1 +sinhr)sinh*(1r) ,

(17)
with
(n)= A*coshlr —sinhlr)’+sinh?Lr . (18)

We see that in this particular case there are two parame-
ters, A and r, which characterize a squeezed state. (In
the following we shall use instead of 4 the mean multipli-
city {n).) This situation is to be compared with the case
of ordinary coherent states, where one parameter ({n))
suffices to characterize the multiplicity distribution [cf.
Eq. (6)].

In Fig. 1 we plot g'¥ from Eq. (17) as a function of the
squeezing parameter r for {n)=5. We see that g'*) can
take values less than 1 (antibunching), between 1 and 2
(bunching), or larger than 2 (enhanced bunching). Thus
squeezed states generalize the ‘““classical” distributions for
which 1<g® <2. Correspondingly, narrower distribu-
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FIG. 1. Second-order correlation g as a function of the
squeezed parameter r for pure squeezed states with (1 ) =5.

tions than the Poisson distribution (sub-Poissonian) and
broader than the negative binomial with k =1 are com-
patible with quantum statistics. This means that the
standard bounds’ of multiplicity distributions represented
by Egs. (6) and (7) can be overcome.

The distribution P,(r,{n)) corresponding to a
squeezed state reads®
1

n!coshlr
| {n)—sinh?(ir)| /2

™ [coshir —sinh(17)](sinhr)!/2 ’

(n) —sinhZ%r

= Cosh(1r)[sinhir —cosh(ir)] ’

P,(r{n))= (Ltanhlr)"HX(Z,)e”?

1 (19)
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FIG. 2. Multiplicity distribution P(n) for a pure squeezed
state; » =0.5 and {(n ) =6.
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P(n)

FIG. 3. Multiplicity distribution P(n) for a pure squeezed
state with r =3, (n ) =30.

where H, are Hermite polynomials.

The remarkable feature of this multiplicity distribution
which has been found only very recently,!*!! is that for
fixed values of the squeezing parameter r and of the mean
multiplicity {n ), P(n) is an oscillating function of n. An
example of this is given in Fig. 2.

Equation (19) gives the exact result for the counting
distribution corresponding to squeezed states. However,
it involves big cancellations between the Hermite polyno-
mials and the factorials; for large values of » it is practi-
cally impossible to use this formula. An asymptotic ex-
pansion of the Hermitian polynomials is required. The
authors of Ref. 10 have considered this problem. Using a
semiclassical description of squeezed states in phase
space, they derived an asymptotic formula for Hermitian
polynomials, which is better than the one quoted in the
literature. We inserted their formula in Eq. (19) and ob-
tained the results of Fig. 3. As a matter of fact, it was
shown by Schleich and Wheeler'® that sufficient condi-
tions for oscillations to appear are r >>1 and (n) >>1.
In this case an asymptotic expansion of the Hermite poly-
nomials leads to

P, ~ A,cos’y, , (20)

where A4,,9, are functions of n given in Ref. 10.

III. MIXTURES OF CHAOTIC AND SQUEEZED-STATE
DISTRIBUTIONS

One cannot always expect squeezing to appear in a
pure coherent state. Our experience with standard
coherent states teaches us that often mixtures of coherent
and chaotic distributions appear. Thus in optics a laser
near threshold is not a pure coherent state but rather a
superposition of coherent and chaotic fields. Other mix-
tures are possible in terms of probabilities of the two dis-
tributions.

In the following three types of mixtures of squeezed
and chaotic fields will be studied and the corresponding
expressions for g'? and P (n) will be derived.

A. Superposition of squeezed and chaotic fields

As is well known the superpostion of coherent and
chaotic fields leads to the Glauber-Lachs-Perina-Mollow
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formula (cf., e.g., Ref. 12)

P(n)=exp[—{n,)/(1+<n h))]—ﬂfh—)-n—
¢ T U+ gyt
(n,)
X = G () |- 2D

Here (n,) and (n, ) are the mean numbers of particles
due to the coherent and chaotic sources and L, is the
Laguerre polynomial. Note that the total mean multipli-
city is

(n)=(n)+(ny) . 22)

Equation (21) describes a partially coherent laser distribu-
tion. This equation, as well as Egs. (6) and (7) which are
particular cases of it for {(n., =0 and {(n.)=0, respec-
tively, have found wide applications not only in optics
and”electronics12 but more recently also in particle phys-
ics.

We consider now the superposition of a squeezed
coherent and a chaotic field. The corresponding distribu-
tion is known!* in an analytic form for the case
A >> | sinh(r /2) | exp(r/2), where A and r are defined in
Sec. II. It is characterized by three parameters r, {n.),
and {ny, ) orr,{n),and y=(n,) /{ny).

A numerical investigation of this distribution shows!!
that for 0 <y <50 and various values of r and {n) the
characteristic oscillations found in a pure squeezed state
disappear. This illustrates the important role which even
a very weak chaotic background can have (for numerical
reasons, values of ¥ > 50 are difficult to handle), and is
exemplified in Fig. 4. On the other hand, the nonclassical
behavior of g is already evident for ¥ =50, as can be
seen in Fig. 5 where g'? < 1. In other words there is no
simple connection between the oscillation in P(n) and the
nonclassical values (less than one) of g‘?.

B. Convolution of squeezed and chaotic distributions

Convolutions of coherent distributions with chaotic
ones have been widely used in classical approaches to op-

Pin§
104
104
103
104
162
10
104
108

10_g——r°-[ﬂ—|—>
0O 10 20N

FIG. 4. Multiplicity distribution P(n) for a superposition of
squeezed and chaotic fields; r =0.5, {n.) =6, and ¥ =50.
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FIG. 5. Second-order correlation g'?’ for a superposition of
squeezed and chaotic fields with {n,)=6. a, y=1; b, y =50.
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ics.

Instead of considering a superposition of fields, chaotic
and squeezed, which corresponds to the situation where
the sources (and the corresponding fields)- interfere, one
could envisage a case when the sources act independent-
ly. In this situation the probability distribution P(n) is a
convolution of two distributions P(n,) and P,(n,) refer-
ring to the chaotic and squeezed source, respectively:

P(n)= 3 P(n,)Pyn,), (23)

nl+n2=n

and have recently been applied to particle phys-

where P (n,) is given by Eq. (7) with k =1, and P,(n,)
by Eq. (19).

The number of parameters is the same as in the previ-
ous case and the results are presented in Tables I-VI and
Fig. 6. We found that, as in the previous case, the oscilla-
tions in P(n) disappear for 0 <y <50 (Tables I-III), but
at y=1000 they appear again (cf. Table IV). The g®

g(z)A
2]
a
1- b
0 I 1

T -
0 1 2 3 I

FIG. 6. g'? for a convolution of squeezed and chaotic distri-
butions with {(n.)=6. a, y=1; b, y =50.
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TABLE 1. Multiplicity distributions P(n) for a convolution
[Eq. (23)] and superposition of chaotic and squeezed probabili-
ties [Eq. 24)]; {n.) =6, y=1, r =0.5.

P(n) P(n) P(n)
a=0.99 a=0.5
n Eq. (23) Eq. (24) Eq. (24)
0 0.855x10~* 0.202% 1072 0.717x 10!
1 0.860x 103 0.668% 1072 0.640x 10!
2 0.417x 1072 0.248 10! 0.645x 10!
3 0.130x 107! 0.660x 10! 0.779x 10!
4 0.292% 10! 0.126 0.102
5 0.511%x 10! 0.181 0.124
6 0.726 10! 0.200 0.129
7 0.871x 10! 0.173 0.112
8 0.917x10~! 0.118 0.804%x 10!
9 0.877x 10! 0.635x 10! 0.497x 10!
10 0.790x 10! 0.263x 10! 0.284 10!
11 0.688x 10! 0.814x 1072 0.171x 10!
12 0.592x 10! 0.182x 1072 0.120x 10!
13 0.508x 10! 0.354% 1073 0.971x 102
14 0.435x 10! 0.166x 1073 0.825x 1072
15 0.373% 10! 0.147x 1073 0.708 < 102
16 0.320x 10! 0.125x 1073 0.607x 102
17 0.274x 10! 0.105x 103 0.520x 107!
18 0.235x 10! 0.891x10* 0.445x 1072
19 0.201x 10! 0.764 < 10~* 0.382x 1072
20 0.173x% 10~} 0.655x10~* 0.327x 1072
g? 1.19 0.943 1.28

TABLE II. Same as Table I, for {n.) =6, y =50, r=0.5.
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TABLE III. Same as Table I, for (n.)=9,y=1,r=1.

P(n) P(n) P(n)
a=0.99 a=0.5
n Eq. (23) Eq. (24) Eq. (24)
0 0.254%x10~° 0.100x 1072 0.500% 10!
1 0.497x10°° 0.947x 1073 0.450x 10!
2 0.466 10~* 0.123% 1072 0.407x 10!
3 0.278x 1073 0.307x 1072 0.376 107!
4 0.119x 1072 0.991x 102 0.375x 107!
5 0.385x 102 0.281x 10! 0.434x 107!
6 0.988 % 102 0.640x 107! 0.586% 10!
7 0.206% 10! 0.116 0.824x 10!
8 0.356x 10" 0.169 0.107
9 0.519x 10! 0.197 0.119
10 0.650% 10! 0.181 0.109
11 0.715x 10! 0.129 0.807x 10!
12 0.712x 10! 0.675x 10! 0.481x 10!
13 0.663x 10! 0.231x 10! 0.243x 10!
14 0.601%x 10" 0.373x 1072 0.132x10°!
15 0.541% 107! 0.208x 10} 0.103x 10!
16 0.487x 10! 0.977x 1073 0.966 < 10~2
17 0.439x 10! 0.995% 1073 0.876 102
18 0.396 10! 0.428x 10?3 0.765x 1072
19 0.356 10! 0.148x 1073 0.676x 1072
20 0.321x 10! 0.138x10°? 0.609x 102
g? 1.41 0.942 1.23

TABLE IV. Same as Table I, for {(n.) =6, y =1000, r =0.5.

P(n) P(n) P(n) P(n) P(n) P(n)
a=0.99 a=0.5 a=0.99 a=0.5
n Eq. (23) Eq. (24) Eq. (24) n Eq. (23) Eq. (24) Eq. (24)
0 0.534x 103 0.952x 1072 0.447 0 0.595% 103 0.105x 10! 0.497
1 0.497x 102 0.641x 1072 0.506x 10! 1 0.548x 102 0.551x 1072 0.572x 1072
2 0.220x 10! 0.239x 107! 0.171x 107! 2 0.239x 10! 0.238x 107! 0.120x 107!
3 0.611x 107! 0.651x 10! 0.334x 107! 3 0.655x 10! 0.651x 10! 0.329 107!
4 0.120 0.126 0.635x10! 4 0.126 0.126 0.634% 10"
5 0.175 0.180 0.911x10! 5 0.182 0.180 0.911x 10!
6 0.199 0.200 0.101 6 0.201 0.200 0.101
7 0.177 0.173 0.873%x 10! 7 0.175 0.173 0.873x 10!
8 0.125 0.118 0.596x 10! 8 0.120 0.118 0.596x 10!
9 0.704 10! 0.632x 10! 0.319x 107! 9 0.641x 107! 0.632x 107! 0.319x 107!
10 0.310x 107! 0.260x 107! 0.131x 107! 10 0.265x 10! 0.260% 10! 0.131x 107!
11 0.104 < 10~! 0.788x 1072 0.398% 102 11 0.807x 1072 0.788 <102 0.398 %1072
12 0.255% 102 0.159x 102 0.805x 103 12 0.165x% 1072 0.159x 102 0.805x 103
13 0.419x 103 0.161x 103 0.814x10~* 13 0.172 107} 0.161x 1073 0.814x10~*
14 0.456x 107* 0.753%x10~¢ 0.380x10°¢ 14 0.178x 103 0.753x10-¢ 0.380x 10~¢
15 0.975x 1073 0.540% 1073 0.273x 1073 15 0.543x 103 0.540x 1073 0.273x% 103
16 0.454x10°° 0.387x 103 0.196x 103 16 0.392x10°° 0.387x 103 0.196x 10~3
17 0.121x1073 0.802x 10~ 0.405x 10~ 17 0.828 10~® 0.802x10~° 0.405x10¢
18 0.156x10~¢ 0.295x 107 0.149x 107 18 0.346x 107 0.295x 107 0.149x 107
19 0.247x 1077 0.882x10% 0.445x 10~ 19 0.906x 108 0.882x10~% 0.445%10°%
20 0.125x 107 0.110x 107 0.554x 108 20 0.111x 1077 0.110x 107 0.554x% 108
g? 0.940 0.946 1.80 g? 0.937 0.947 1.87
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TABLE V. Same as Table I, for {n.)=9, y =50, r =1.

P(n) P(n) P(n)
a=0.99 a=0.5
n Eq. (23) Eq. (24) Eq. (24)
0 0.216 1073 0.848% 102 0.424
1 0.405x 104 0.134% 102 0.647x 10!
2 0.363x 1073 0.614x1073 0.101x 10!
3 0.206x 102 0.237x 1072 0.268 % 1072
4 0.824% 1072 0.926 1072 0.491% 1072
5 0.248x 10! 0.275% 10! 0.139 107!
6 0.581x 10! 0.635x 10! 0.321x 10!
7 0.108 0.116 0.585x 10!
8 0.161 0.169 0.853% 10!
9 0.193 0.197 0.993x 10!
10 0.184 0.181 0.915x 10!
11 0.138 0.129 0.651x 10!
12 0.786x 10! 0.672x 10! 0.339x 107!
13 0.316 10! 0.229x10! 0.116 107"
14 0.781x 102 0.350x 102 0.177x 1072
15 0.119x1072 0.235x107° 0.119% 1073
16 0.859x 103 0.791x 1073 0.400% 1073
17 0.840x 1073 0.828%1073 0.418% 1073
18 0.366x 103 0.278x 1073 0.140%x 1073
19 0.668 10—+ 0.128x10* 0.646% 1073
20 0.243x10~* 0.16410~* 0.831x 1073
g? 0.940 0.946 1.80

TABLE VL. Same as Table I, for {(n,)=9, y =1000, r =1.

P(n) P(n) P(n)
a=0.99 a=0.5
n Eq. (23) Eq. (24) Eq. (24)
0 0.252x 1073 0.991x 102 0.496
1 0.471x10~* 0.135% 10?3 0.444 %1072
2 0.418x1073 0.418x1073 0.250x 1073
3 0.234x 1072 0.234x 1072 0.118x1072
4 0.929x 102 0.926x 1072 0.468 1072
5 0.276 10! 0.275x 10! 0.139x 10!
6 0.638x 107! 0.635x 10! 0.321x10!
7 0.117 0.116 0.585x 10!
8 0.170 0.169 0.853x 10!
9 0.198 0.197 0.993x 10!
10 0.183 0.181 0.915x10~!
11 0.131 0.129 0.651x 10!
12 0.684x 10! 0.672x 10! 0.339 10!
13 0.235x 10! 0.229% 10! 0.116 10!
14 0.371x1072 0.350x 102 0.177x107?2
15 0.355x10~* 0.235%10°° 0.119x10°3
16 0.792x 1073 0.791x 1073 0.400% 103
17 0.836x10~? 0.828x 103 0.418x% 1073
18 0.286x 1073 0.278x 1073 0.140x 103
19 0.154x10~* 0.128x10~* 0.646x 10~°
20 0.166x10~* 0.164x10~* 0.831x10°3
g? 0.937 0.946 1.87

behaves similarly as in the previous case of field superpo-
sition. For y=1 it is limited to the classical domain,
while for ¥ =50 it takes nonclassical values (Fig. 6).

C. Superposition of squeezed and chaotic probabilities

This corresponds to a situation where in each event ei-
ther a chaotic or a squeezed distribution is found. In
high-energy physics one could conceive of such a possi-
bility in the following way: At a given center-of-mass en-
ergy multiparticle production events differ one from
another by the inelasticity, i.e., by the energy available
for particle production, because the leading particles take
in each event a different amount of energy. Suppose that
there exists a threshold energy below which the
phenomenon of squeezing or the phenomenon of thermal
equilibrium, leading to a chaotic distribution, cannot
occur (instead of inelasticity one can imagine the centrali-
ty of the collision as being the decisive factor which
triggers a certain reaction). In that case in some events a
squeezed coherent distribution will emerge while in other
events a chaotic distribution emerges. The overall multi-
plicity distribution is then given by

P(n)=aP,(n|)+(1—a)P,(n,), 0<a<l, (24)
with
n =n1 +n2

and P, and P, defined by Egs. (7) with k =1 and (19), re-
spectively. « represents the fraction of events in which
the distribution P, is realized. We have now one parame-
ter more as compared with the previous case: namely a.
A numerical study of this case shows that the oscillat-
ing behavior of P(n) appears already at y =50, for
a=0.99 (Table II). The corresponding values of the
correlation g?) as a function of r are represented in Fig.
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FIG. 7. g'? for a superposition of chaotic and squeezed prob-
abilities [Eq. (24)] as a function of r; {n,) =6; a, y =50, a=0.5;
b, y=1, a=0.5; ¢, y=1, and y=50, @=0.99. In case c, be-
cause of the value of a=0.99, both y=1 and y =50 give ap-
proximately the same results.
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From these examples follows, among other things, that
the oscillations can be quenched by chaotic fields and
that the observation or nonobservation of oscillations is
very sensitive to a chaotic perturbation.

Ideally, in order to detect experimentally squeezed
states through these oscillations, one would have to
choose specific experimental conditions where squeezed
states are expected to appear in their clearest form. The
observation that oscillations appear at large (n ) [cf. Eq.
(20)] (we have checked that at large {(n ) and n the oscil-
lations become very frequent) may be useful in this
respect.

On the other hand, it would be important to gain more
physical insight into the relation between the squeezing
parameter r and some physical observable. We consider
this as the most important goal of future theoretical
research along these lines.

IV. DISCUSSION

Although the importance of the detection of coherent
states in high-energy physics is recognized, !”"! the experi-
mental evidence for these states is yet far from being
confirmed.! Several different physical phenomena are
sensitive to these states, but there are serious difficulties
in disentangling various effects which could mimic coher-
ence. Thus in Bose-Einstein correlations the fact that in
almost all experiments g'?’ <2, does not yet necessarily
imply the existence of a coherent state, because reso-
nances, e.g., would also contribute to a lowering of the
Bose-Einstein correlation and this effect is not easy to es-
timate. Analogously, the observation that in certain re-
actions (e.g., e Te 7) the multiplicity distribution P(n) is
almost Poissonian, does not prove that it arises from a
coherent state, because any independent production
mechanism would also lead to a Poisson distribution.

For squeezed coherent states a similar ambiguous situ-
ation has prevailed. Thus sub-Poissonian distributions
have been observed in particle physics for decades, but
they usually appear at small c.m. energies where
conservation-law constraints are important and most
probably they can be attributed to these trivial effects.
Therefore, although squeezed states provide an elegant
formalism for sub-Poissonian statistics (cf. Ref. 18), no-
body could claim that these states have really been seen
in high-energy physics. As a matter of fact, even in quan-
tum optics the experimental proof of the existence of
squeezed states has been given only very recently,!’
through the reduction of noise below the level corre-
sponding to a classical coherent state.

The observation!®!! that squeezed coherent states in-
duce oscillations in the multiplicity distribution may fa-
cilitate the investigation of these new states, both in
quantum optics and in particle physics. The results of
the present quantitative investigation of the role of
squeezed states in multiplicity distributions show that (i)
if the squeezing parameter and the multiplicity are large
enough, oscillations in P(n) occur, (ii) the amplitude of
these oscillations depends on the magnitude of the chaot-
ic background, and (iii) it depends also whether the am-
plitude or the probabilities of the squeezed coherent and
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FIG. 8. Multiplicity distributions at 200 and 900 GeV
corrected for secondary interactions, gamma conversion, and
short-lived decays, but not for geometrical acceptance or trigger
efficiency. The solid line is the result of a fit to the observed
data of a negative binomial (from Ref. 21).

chaotic fields add. In the last case, it depends also wheth-
er or not the two sources (coherent and chaotic) act
simultaneously.

From these results one may conclude that while the
nonobservation of oscillations does not yet preclude the
existence of squeezed states, the detection of such oscilla-
tions would constitute evidence for these states. Unfor-

P T SR

0 2 1:0 60 80 100 120
n

FIG. 9. The same as in Fig. 8 at 546 GeV, this time, however,
fully corrected. The various 7. values denote cuts in pseudo-
rapidity (from Ref. 21).
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tunately, it seems that this would still not be a “proof™
for the existence of squeezed states, because there are
other mechanisms which could also produce oscillations
in P(n). Thus the superposition of several classical
sources with very different mean multiplicities would also
lead to oscillations. As a matter of fact, in particle phys-
ics such oscillations were predicted to occur as a conse-
quence of multiple Pomeron scattering.2’ However, both
these alternatives are very interesting, too.
Experimentally, the situation is far from being clear.
Although it is true that no statistically significant oscilla-
tions have been reported so far in the literature, it is also
probably true, that, with present techniques, they could
not have been detected. The measurement of multiplicity
distributions at high energies is affected by systematic er-
rors which are not easy to control. Thus, e.g., in the
UAS measurements, 2! the observed distributions are usu-
ally corrected via Monte Carlo simulations in order to
compensate for the limitations in the geometrical accep-
tance and the contamination of primary tracks by secon-
daries. In this correction procedure a smoothness con-
straint is imposed?! which would hardly permit any exist-
ing oscillations to survive in the final result called “‘true”
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distribution. Even with this caveat in mind the published
distributions present some structure which can be seen by
the naked eyed. To illustrate this, in Fig. 8 partially
corrected distributions obtained by the UAS Collabora-
tion are shown and in Fig. 9 fully corrected distributions.
Note that even in the fully corrected distribution small
oscillations can be seen, although we cannot comment
about their statistical significance. There is, anyway,
clear evidence in this figure for at least one shoulder
around n =80, which could easily mask oscillations.

A systematic and careful investigation of multiplicity
distribution with special emphasis on oscillations appears
to be a rewarding task for future experiments. From the
theoretical point of view, a dynamical understanding of
the conditions under which squeezing is expected to
occur in particle physics is highly desirable.
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