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Scaling and correlations of squeezed coherent distributions: Application to hadronic multiplicities
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It is shown that a k-mode squeezed-coherent-state distribution is the most general one in describ-
ing hadronic multiplicity distributions in particle collision processes. An exact expression for the
k-mode squeezed coherent multiplicity distribution is derived. The properties'of this distribution
are compared with the Glauber-Lachs distribution and it is shown that pure squeezed states show
asymptotic scaling. The correlation properties of this distribution are shown and its usefulness in
pion-interferometry experiments is discussed. The domain of reach of these states is shown to be
wider than that of the Glauber-Lachs distribution.

I. INTRODUCTION

Asymptotic scaling laws of various photon-counting
distributions have become the focus of interest in view of
their applicability to various physical phenomena. These
include stochastic models of multiparticle production in
high-energy collisions. The idea of applying stochastic
methods developed for studying photon-counting statis-
tics of light beams to particle production processes was
used in the early days of high-energy collisions, when it
was noted by Knox, Giovannini, and others that a for-
midably complex dynamical process such as a hadron-
hadron collision can be explained by a simple statistical
picture independent of dynamical details. ' Among the
experimentally observed properties that lent themselves
to a stochastic interpretation were the multiplicity distri-
butions of hadrons emerging from collisions, or, in
quantum-optical language, the counting statistics of the
hadrons and also the correlations of the outgoing pions in
rapidity space. These correlations were similar to the
Bose-Einstein correlations observed in light beams when
the emitting sources are Gaussian, the resulting counting
distribution being a negative-binomial one. The scaling
forms and the departure from scaling of various photon-
counting distributions such as the thermal (negative-
binomial) distribution have been studied only recently, as
their usefulness in describing multiplicity distributions
has been noted. A counting distribution P„ is said to ad-
mit asymptotic scaling if

lim (n )P„=g(z),
pf ~oo

(pt )~oo

where z=n /(n ) is a dimensionless quantity. This is
known as Koba-Nielsen-Oleson (KNO) scaling in particle
physics.

Hadronic multiplicity distributions apart, asymptotic
scaling forms are of interest in quantum optics. For a
general photon-counting distribution, it implies that for a
large number of photons, the shape of the counting distri-
bution is independent of the variables upon which the

number of photons is dependent. These days the
significant violation of KNO scaling has led workers to
study not only asymptotic scahng forms but also the gen-
eral conditions under which scaling is violated systemati-
cally.

For complete knowledge of the dynamics of the radia-
tion field responsible for the production of any kind of
particle (photons, hadrons, pions, etc.), we require the
counting distribution of the field and all its characteris-
tics. Depending on the statistics of the counting distribu-
tion of the radiation field, we realize that a particular
class of states will be more useful to work with in a given
context. We also get some knowledge of the source of the
radiation. For example, chaotic light possesses a
geometric counting distribution whose statistics imply a
noisy source. On the other hand, a coherent source is
characterized by Poissonian counting statistics. These
states (sources) are termed "classical" as they admit a
Glauber P representation.

There are other nonclassical states which have different
counting distributions exhibiting squeezing and anti-
bunching such as binomial states, logarithmic states, and
squeezed states. In this paper we are concerned with the
properties and applications of squeezed coherent distribu-
tions. These do not arise from classical sources. They
show purely quantum-mechanical properties such as anti-
bunching and squeezing. These distributions have been
seen in neutrino-induced and low-mass diffractive ha-
dronic multiplicity distributions. It is the aim of this pa-
per, to show that the most general distribution that
characterizes e+e, pp, neutrino-induced, and low-mass
diffractive collisions is the k-mode squeezed-coherent-
state distribution. We show the evolution of this idea for
multiparticle production in which the stochastic and the
nonstochastic elements of the dynamics are clearly del-
ineated. If we assume that the sources of hadronic pro-
duction are squeezed-coherent-state sources rather than
completely coherent or completely chaotic, then, not only
can we explain the scaling violation at high energies in
hadron-hadron collisions but a plethora of data in e+e
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hadron-nucleus, and neutrino-induced collisions by a sin-

gle distribution —the generalized squeezed-coherent-state
distribution. We may also mention that to the best of our
knowledge the multiplicity distribution of k squeezed
sources has not been derived earlier in the literature nor
have their scaling properties and correlation properties
been studied. We shall present the results of this model
and try to give a physical interpretation for some of the
parameters introduced in the model.

II. THE SQUEEZED-COHERENT-STATE
DISTRIBUTION VERSUS OTHER DISTRIBUTIONS

The idea of using squeezed coherent states to describe
pion radiation in hadron-hadron collisions was motivated
by the fact that in pion interferometry experiments,
correlations in rapidity space of pairs of identical bosons
(pions) are measured. As is well known from condensed-
matter physics in a system of identical bosons, correlated
pairs of bosons can correspond to a situation when the
"vacuum" (source) from which the bosons are emitted ac-
tually emits correlated pairs of particles, i.e., if a and a
are the creation and annihilation operators of single bo-
sons, the actual vacuum is described by the quadratic
operators (a ), (a ), and aa . Such a vacuum (or source)
is also, therefore, called a two-photon vacuum (source).

Previously, the technique used to describe these corre-
lations was to assume that there was some coherence in
the source (emitting the pions). If the source is complete-
ly coherent then the two-particle correlation function
(defined later) g (0)=1, whereas if the source is com-
pletely noisy (thermal) g (0)=2, but in reality the source
is a mixture of these extremes. The distribution describ-
ing such a source is the Glauber-Lachs distribution

(n)"
((n )+1)"+' (2)

For k sources, we have the negative-binomial distribution

pk (n+k —1)!((n)/k)"
n!(k —1)!(1+( n ) /k )"+" (3)

Both these distributions show the asymptotic scaling
law (1):

Mk —1k z exp( —kz)
(k —1)!

(n)~oc

where, for k = 1,

g(z)=exp( —z) .

(4)

With the introduction of a coherent component S, the
distribution of k partially noisy, partially coherent
sources is the Glauber-Lachs distribution:

whose scaling properties have been extensively discussed
by Carruthers and Shih. This is also used to character-
ize pion condensates in nuclear rnatter. There are, how-
ever, two cases out of the reach of such a distribution:
g (0) & 1 and g (0) & 2. Phenomena admitting such
correlation functions [in particular g (0) & 1] have been
observed experimentally and will be discussed later. Be-
fore discussing the distribution that will encompass this
situation, let us review the scaling properties and domain
of reach of the Glauber-Lachs distribution. In the case of
a classical noisy source, the averaging over field fluctua-
tions for a single source gives the Bose-Einstein distribu-
tion

(N lk )"exp[S/(1+ N lk ) ]L„" '( kS /N(1+ N—lk ) )

(1+N/k )" +

where L„" ' is the generalized (k —1)th Laguerre polynomial of order n, N is the noise amplitude, and S is the signal
amplitude.

Introducing a new parameter, m=(S/N) allows one to interpolate between the multiple Poissonian distribution
which is found to explain e+e data till 20 GeV and the negative-binomial distribution which explains pp data. Then
the average multiplicity becomes (n ) =N+Sor (n ) =N(1+m) so that N=(n )/(1+m) and S=(n )m/(1+m). In
terms of m the expression (6) becomes

[ ( n ) /( 1+m )k ]"exp[m ( n ) /( 1+m + ( n ) /k ) ]L„" '( —[km ( m + 1 ) ]/(m + 1+ ( n ) /k ) )

t 1+[(n ) /(1+m )k]]"+"

Initially the parameter k was identified as the number of
jets. In the limit m ~0, since

)( )
(n+k —1)!
(n )!(k—1)!

we have expression (3). The limit m ~ oo gives the Pois-
sonian (for k= 1). This implies that e+e collisions are
mostly coherent and pp collisions are mostly noisy.

However, since the above formula was introduced by
Carruthers and independently by Biyajima the UA5 re-
sults changed the situation dramatically. It was found
that there was systematic violation of KNO scaling so
that the simple k-mode negative-binomial distribution
with integral k no longer fits the pp data. Instead it is a
systematic variation of k with energy in the following
manner:
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k '=a+& ln(s)

with a = —0.098+0.008, b =0.0282+0.009, and s in
GeV, which gives a good fit to pp data.

The simple explanation of k as the number of jets was
no longer applicable, nor did expression (6) neatly de-
scribe both the e+e and pp distributions by one func-
tion. This led to the consideration of distributions other
than the negative binomial or the more general Glauber-
Lachs distribution which not only accommodated the
systematic violation of KNO scaling but kept k integral
and amenable to a physical interpretation. One such dis-
tribution is the generalized squeezed-coherent-state distri-
bution.

We go on to find the squeezed-coherent-state analogue
of the Glauber-Lachs distribution. To do so we have to
generalize the photon-counting distribution from the
single-mode case to the multimode case. First, let us
define a single-mode squeezed coherent state. It is ob-
tained from a coherent state by the application of the uni-
tary operator

S(g)=exp —,'(ga a —g*aa) .

~

a &. Alternatively, we can think of the squeezed-
coherent-state vacuum as an eigenstate of an annihilation
operator b, where b and b are related to a and a by

b exp(i8)sinhr a

coshr a ~ (11)
coshr

—exp(i8)sinhr

where g = r exp(i8).
As an aside, it is interesting to note that this transfor-

mation is the Bogolyubov transformation and squeezed
coherent states may either be viewed as pairing between
original bosons or as coherent states of Bogolyubov quasi-
particles. '

The multiplicity distribution for the real source (i.e.,
8=0), (=r,

P„=(x /2)"(1 —x~)'~~exp[ —a (1+x )]

X(1/n!)H„([a (1+x) /2x]'~ ), (12)

where x = tanh( r ) =sinh( r )/cosh( r ). Although it appears
that P„depends on both a and r, the relation

&n &=a +sinh r

Thus

[a,g& =D(a)S(g)[0,0&, (9)

enables us to express everything in terms of the parame-
ter

& n & =
~

a
~

'+sinh'g . (10)

Thus, squeezing adds more particles to a coherent state

where D(a)=exp(aa —a'a) and ~0& is the vacuum
state. It is seen that since S(g) is quadratic in a and a,
we can think of this vacuum as a coherent superposition
of two photon states. For such a state, the average num-
ber of particles is

(sinh r )/a =s and & n & .

The parameter s is analogous to the parameter m used in
the previous discussion of the Glauber-Lachs distribu-
tion. It is convenient for brevity of expression to also
define q =1/(s+1), then in terms of s and &n & (and q)
we have a =&n &q and sinh r=qs&n & so that
x '=sq & n &/(1+sq & n & ).

Hence the expression (12) becomes

exp( —
& n & q I I +[s q n&& /( I + s & n & q ) ] '~~

) )(sq & n & /4)" ~~

P =
n!(sq&n &+1)

XH„([ &n &qI I+[(I+sq&n &)/4sq&n &]'~ +[sq&n &/4(l+sq&n &)]'~zI]'~~), (13)

hn
&n&

'2
&ataata &

—(&a a &) (14)

From expression (12) we have

s gives a measure of the relative squeezing to coherence
and & n & is fixed experimentally for a given energy so that
s is the only variable at a given & n &. In general, we have
two variables s and & n &.

The relative dispersion in the multiplicities are given

by the first moment of this distribution:

hn 1 —x
&n & a (I+x) a2

2x
2

to first order in X. For a Poissonian (b,n) /&n &=1/a,
thus, depending on the sign of x we can have sub-
Poissonian or super-Poissonian statistics. Recalling that
I =tanh(r) for r & 0 we have a distribution narrower than
the Poissonian and for r &0 we have a distribution
broader than the Poissonian. Figure 1 shows this effect.
For x ~~a, i.e., s & 1,

An
'2

(1—x )[2x +[a(1—x)] I

[(1—x )a [a (1—x )+2x ]I+x
hn

&n&

2
2(1 —x )(1+2a )

x

For x «a, i.e., s & 1, So to first order the distribution width is independent of
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The above expression for P„could be greatly simplified

by using

H„(y ) H„(y)
n, ! n„! m!(n —2m )!m=0

I 2
n =n

(21)
where

y=(k —1)/2 .

The expression for P„"becomes

P„"=exp[—ka (1+x)](1—x )"~ (x/2)"

X g y H„z (&ky)2 /m!(n 2m—)!,
m=0

(22)

where y =[a (I+x) /2x]'~ . This can be expressed in
terms of s and ( n ) in a similar fashion to expression (13).
For k =1, y =0, and only yo ——1 contributes to the surn-

mation, reducing Eq. (22) to (12).

III. COMPARISON WITH DATA

The distribution (22) is the most general one in our
description of the observed multiplicity distribution for
the following reasons: For various values of the squeez-
ing parameter r this distribution shows both sub-
Poissonian and super-Poissonian statistics. Hadronic dis-
tributions in pp collisions show broad sub-Poissonian
statistics with a long multiplicity tail which gets broader
and broader with the increase of energy. Figure 2 shows
the k=3 squeezed-coherent-state distribution for (n )
=13.6,x = —0.20 and (n ) =26.1,x = —0.35, respectively

[recall that x=tanh(r)], along with the corresponding
ISR (62.2 GeV) and UA5 (540 GeV) data; a for each of
these is thus fixed by Eq. (10). The departure of the
squeezed-coherent-state distribution from the Poissonian
one is completely parametrized by the parameter s and
(n) (which is experimentally observable). As strong-
interaction dynamics (hard processes) becomes more
dominant, the squeezing parameter changes to make the
distributions broader. The skewness of the counting dis-
tribution rests on the number of sources k and the width
is related to the moment hn/(n). The single-mode
squeezed-coherent-state distribution has been used by
Shih and Carruthers to fit neutrino-induced collisions in
which the distribution is super-Poissonian (b,n /( n ) & 1).
However, for low-energy events they remark that even
the squeezed-coherent-state distribution for r &0 is not
narrow enough to describe the data well. "' A close
reexamination of the neutron-induced hadronic multipli-
city data presented in Ref. 11 shows that the multiplicity
curve is asymmetric, thus the single-mode squeezed-
coherent-state distribution will not fit the data. Contrary
to Shih's analysis that the squeezed-coherent-state distri-
bution can only describe high-(n ) data, a generalization
to k modes enables us to fit the entire range of data. Fig-
ure 3 shows the k =3,x=0.50 fit to the same data as Ref.
12 and verifies our conjecture. This is also the case for
high-mass diffractive events where again the Poissonian is
too wide to fit the data. " When the model was initially
proposed in Ref. 7, to explain pp data, the physical inter-
pretation given for k was that each qq pair acts as an in-
dependent squeezed-coherent-state source. However, this
subsequent comparison of e+e, pp, and vp data at 29
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FIG. 2. The comparison of the CERN ISR 62.2-GeV data
and the UA5 540-GeV data with the squeezed-coherent-state
distribution for x = —0.20 and (n ) = 13.6 (narrower curve) and
x= —0.35 and (n ) =26.1 (broader curve). The value of a is
determined by Eq. (10), k = 3.

Z = n/(n)

FIG. 3. The vp data for (n ) =4.18 and the squeezed-
coherent-state fit for k=3 and x= +0.5. The second curve
shows the same distribution for k =3, x = —0.5.
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GeV from recent experiments shows that for the same en-

ergy although the e+e data points show a distribution
narrower than pp and vp (see Fig. 4), the skewness of the
distribution is similar to pp collisions and k=3 fits this
data for various values of s. Thus our earlier interpreta-
tion is unlikely as it requires that k=1 should fit e+e
data. While the k= 1 squeezed-coherent-state distribu-
tion is symmetric, preliminary data show that these dis-
tributions are asymmetric. ' ' Thus our earlier interpre-
tation of k is unlikely, rather it seems more likely that for
central collisions s is the only projectile-dependent vari-
able. Although we have achieved our aim in keeping k
integral (and interpreted as the number of sources) and
energy independent, the actual issue of the physical inter-
pretation of k can only be resolved when higher-energy
e+e and pp data are available. If at higher energy the
e+e distributions persist in showing the skewness simi-
lar to pp distributions at the same energy, the issue can be
resolved. It is very important to note here from the
motivational point of view that the negative-binomial dis-
tribution which is used as the universal empirical distri-
bution to describe all data has b, n/(n ) =1/(n )+1/k,
and hence can never be super-Poissonian (b n /( n )
& 1/( n ) ) as k can never be negative.

IV. BOSE-EINSTEIN CORRELATIONS
IN THE SQUEEZED-COHERENT-STATE MODEL

The squeezed-coherent-state model also explains the
two-particle correlations seen in pion interferometry ex-

~ I & I & & s &

( t I I / 1 I I t I
[ 1 1 1 t I / I I

Up

pp ANN

e+e HRS

1.0

(a aa a) —(a a)g'(0) =
((a a))' (23)

and thus can be seen to be related to the moment
bn/(n ) derived earlier. A radiation field is said to be
antibunched if g (0) & 1, which means that the probabili-

ty of detecting a coincident pair of particles is less than
that from a coherent field described by a coherent state
which has the Poissonian distribution. Antibunching is
considered to be a "clear demonstration of the quantum
nature of the radiation" since it means anticorrelation in

particle detection. ' When g (0) is not equal to 1, the
states are said to have nonzero Hanbury-Brown —Twiss
effect. ' Those familiar with quantum-optical techniques
will recall that in general g is a function of time interval
ht between the arrival at the detector of two photons;
whereas in particle physics the relevant variable is pseu-

dorapidity y and the stationary situation hy=0 is the
pseudorapidity plateau. For a squeezed coherent state

g (0) is given by

2sinh (r)+sinh (r)(2a +1)—a sinh2r

(a +sinh r }

(24)

The state
~
a, r ) is bunched only if the numerator of the

second term in Eq. (24) is positive. Calling this f(a) the
roots of f(a) are

+[sinhr(1+2sinh r)]'
a&, a2 ——

1/2 7

[2(coshr —sinhr )]'~

which in terms of x are

periments in a consistent manner. The quantity which

determines these correlations is the second-order correla-
tion function given by

(a a aa)
((a'a ) )'

which can be written as

+[x(1+x )]'~

[2(1—x }(1—x )]'~
(25)

0.&

For r ~ 0 the roots are real and distinct and the
coefficient of a is negative. For a p a2 and a &a& we
have antibunching, i.e., super-Poissonian statistics; for
a, & a &a2 we have bunching. For r &0, f(a) is always
positive so we have g (0) & 1 and sub-Poissonian statis-
tics. Thus, as our analysis of data has shown, vp (and vp)
interactions cannot be described by classical distributions
such as the negative-binomial distribution. For a pure
squeezed state a =0,

g (0)=2+1/x (26)

] I I I I I I I I t I i I I I I s I s i I I I t a I s t i I0 0
0 1 2

FIG. 4. The relative multiplicity curves at 29 GeV for pp,
e+e, and vp data. The relative widths are to be noted.

The above distribution is to be compared with the pure
Poissonian distribution which has g (0)= 1 and no Bose-
Einstein correlations, whereas for a single negative-
binomial distribution, g (0)=2 and the Glauber-Lachs
distributions which haveg (0)=2—[m /(1+m) ].

Thus, the two-particle Bose-Einstein correlations are
much stronger in squeezed light than in thermal light for
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particular values of the squeezing parameter. %e may
also interpolate between coherent and thermal light for
other values of this parameter. For a k-mode squeezed
coherent state,

gk (0)= 1+(1/k )[g (0)—1], (27)

Thus we see that for a value of the squeezing parameter
1+coth r =k the squeezed coherent state shows the
same bunching properties as that of thermal light. It is
interesting to note that whereas for a single-mode state,
no real value of r shows g (0)=2, for a k-mode squeezed
state, a finite value of r shows the characteristics of a
classical source. What we have seen from this discussion
is that the multiplicity distribution in hadronic collisions
is similar to a laser and the width is characterized by the
"quantum noise" in the system not the classical noise as
is inferred by the negative-binomial and the Glauber-
Lachs distributions, since only quantum sources can
show g (0) & l.

V. CONCLUSION

In hadronic production processes, purely classical dis-
tributions such as the Glauber-Lachs distribution have
been a successful phenomenological tool. However, we
feel that particle creation in high-energy collisions is an
inherently quantum process and therefore it is more ap-
propriate to use a set of intrinsically quantum states such
as squeezed states. Moreover, since the ingredients of
strong interaction dynamics are completely parame-
terized by the squeezing parameter r, or the ratio of
squeezing to coherence s, we can link up various process-
es such as hadron-proton, proton-proton, electron-
electron, and neutrino-induced collisions, and isolate

where g (0) is given by Eq. (24). Thus, for a k-mode
squeezed state

2 1 2sinh r+(2a +1)sinh r —a sinh2r
k (a +sinh r)

(28)

those aspects of these collisions that are universal and
projectile independent. It has been noted that highly
nonlinear, nonquadratic Hamiltonians generate these
states. The possibility of nonlinear, nonquadratic interac-
tion is stronger in quantum chromodynamics where, un-
like the case of photons (having no self-coupling), three-
gluon self-coupling is very strong and dynamically impor-
tant.

It has been shown by Biyajima in an elegant fashion
that the generalized Glauber-Lachs distribution for k
sources is a general solution for a Fokker-Planck —type
equation with the pseudorapidity playing the role of time
for this the negative-binomial distribution is the station-
ary solution. ' We are attempting a similar formulation
for the k-mode squeezed-coherent-state distribution with
the nonstochastic elements characterized by the squeez-

ing parameter the results of which will be published later:
then the connection between strong-interaction dynamics
and squeezing will be clearer.

In conclusion, we would like to state that stochastic
classical models are unable to accommodate the role of
energy and momentum in hadronic processes, whereas in
the quantum squeezed-coherent-state model we can easily
do so (through the squeezing parameter), without having
to sacrifice the conservation laws of strong interactions
such as charge and color. To do so however, we must
generalize these squeezed coherent states to SU(2) and
SU(3) so as to enable us to impose global charge- and
color-conservation constraints. Leading laser physicists
have presented academic discussions of SU(2) squeezed
coherent states. ' A generalization to SU(3) and its sub-
sequent use in hadronic production processes in order to
give a physical interpretation to the squeezing parameter
is the subject of future investigations.
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