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We analyze results on m-~ scattering using a framework based on nonlinear chiral Lagrangians
both at the tree level and at one-loop order. Overall the data can be well understood up to energies
of 0.7-0.8 GeV, as well as at threshold, and some of the Lagrangian parameters are well deter-
mined. As a side comment, we note that the Skyrmion solution is stable given this experimental
fourth-order Lagrangian, but its mass is about 70% too high.

The reaction sr'+rt ~trr+tr is in many ways the
purest and most fundamental hadronic process in QCD.
It involves only the self-interactions of the lightest parti-
cle in the theory. Indeed, m-m scattering may be treated
by the only rigorous methodology for low-energy
QCD —chiral symmetry. The pion has a special role as
the nearly Goldstone boson associated with the dynami-
cally broken SU(2)t XSU(2)tt chiral symmetry which
would be an exact symmetry of QCD in the limit

m„, md ~0. Since the masses are not far from this limit,
chiral SU(2} is expected to be a very good symmetry, be-

ing almost as valid as isospin symmetry but with far more
subtle dynamical consequences. The subject of m-m

scattering' and its connection with chiral symmetry '

has a long history. The modest purpose of this work is to
update the phenomenological discussion in order to pro-
vide the best determination of some of the parameters of
the effective chiral Lagrangian and to provide visual evi-
dence for the compatibility of the data with chiral sym-
metry.

The modern discussion of chiral symmetry utilizes
nonlinear effective Lagrangians. These are organized
in an expansion in terms of the energy, or eqivalently in
terms of numbers of derivatives. One defines the SU(2}
matrix X,

2 =exp

transforming as

X~L XR (2)

Working at this order one can identify F with F =94
MeV by consideration of the axial-vector current, and
m =m„. An expansion of L2 in powers of the pion field
easily reproduces the Weinberg scattering lengths (see
below). At this order, all of pion physics is uniquely

under SU(2)t )& SU(2)tt transformations, with
i =1,2, 3 being the pion field. The lowest-order effective
Lagrangian involving X occurs at order E (as both a t)„
and m count as one power of E=energy)

F2 2F2
Tr(t) Xt)"X )+ Tr(X+X ) .2 4 p 4

specified in terms of F„and m

The effective Lagrangian at order E has been worked
out by Gasser and Leutwyler (on whose work we rely in
much of this paper). They find, in a slightly different no-
tation

X=2,+X4, (4)

where the hadronic parts of X4 are

[Tr(t)„Xt)"X )]'

G2
+ Tr(t)„X t)„X )Tr(t)"X t}'X )

+ [Tr(m X)] + Tr[t)„Xt}"Xm„(X+X )]

m [Tr(r3X)]

s = (p~+ptt )

t =(p —pr)',
u =(p —ps)

the m-~ scattering amplitudes are determined by crossing
symmetry in tertns of a single function A (s, t, u) as

and the a; are dimensionless coefficients typically of or-
der 10 —10 . The e5 term arises from second-order
isospin breaking, is extremely tiny, and will be dropped
from now on. At low enough energies the effect of X4 is
small compared to that of X2, while at high enough ener-
gies they become comparable and yet higher-order terms
in the energy expansion are also equally important.
However at low and moderate energies the use of only X2
and X4 seems sufficient. The parameters a; encode the
very-low-energy behavior of theories with dynamically
broken chiral symmetry. Different underlying theories
will predict different values of these parameters, and ulti-
mately we should be able to obtain them as predictions of
QCD.

In terms of the standard Mandelstam variables
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T
& rs. (s, t, u)= A (s, t, u)5 tt5 &+ A (t, s, u)5 r5tt&

+ A (u, t, s)5 s5&r . (7)

T'(s, t, u)=2T(+0;+0) —T(++,++)
= A (t, s, u) —A (u, t,s),

T (s, t, u)=T(00;00)+T(00, + —)

+T(++,++)
=A(t, s, u)+A(u, t, s) .

(8)

In turn, the partial-wave amplitudes can be projected out

TI'(s) = J 1(cos0)Pi(cos8) T'(s, t, u) .
64m

(9)

These have the following form in the region below inelas-
tic thresholds:

1/2 . I
e sin5i

s —4m
(10)

They can be decomposed into amplitudes of definite iso-
spin as follows:

T'(s, t, u) =2T(+ —;+—) —2T(+0;+0)

+ T(00;00)

=3A (s, t, u)+ A (t, s, u)+ A (u, t,s),
At tree level to order E, the on-shell amplitude can be
worked out by expanding Eq. (5), and yields

s —m
A (s, t, u)= +C(s, t, u),F2

C(s, t, u)= {4a,(s —2m ) +az[s +(t —u) ]) .
2F4

(12)

In order to include pion loop effects one must specify
how one regulates the theory. We will use the result of
Gasser and Leutwyler, who utilize dimensional regulari-
zation with a renormalization scale p. The renormalized
coefficients of the chiral Lagrangian then become func-
tions of the choice of p. In this case the pionic amplitude
is given by

s —m
A (s, t, u)= +B(s,t, u)+C(s, t, u),F2

(13)

where

in terms of the phase shift 5i. In practice this form is
useful up to about 1 GeV.

At lowest order, the Weinberg results on m-m scatter-
ing can be obtained from

s —m 2

A (s, t, u)=
F2

B(s, t, u)= 3(s —m )J(s)+[t(t —u) —2m t+4m u —2m ]J(t)
6F

+[u(u —t) —2m u +4m t 2m ]J(u)— [2—1s +5(t —u) +8m s —26m ]
96m.

(14)

J(tt) = 1

16m.

' 1/2
4m1—

a

1/2
4m

1 — —1

ln ' 1/2
4m

1 — +1
+2 (15)

and C(s, t, u) has the same functional form as C(s, t, u), Eq. (12); but with a; replaced by a,. where the renormalized
coefficients are given by

m
a", "=n,+,ln

96m p

m~
o.z'" ——o.2+ ln

48' p
(16)

Note that the scattering depends on a3 and a~ only implicitly in that they enter the relation between (F,m ) and the
physical values (F„,m ). This distinction makes very little difference in our results, as we get much of our information
above the threshold region. Gasser and Leutwyler have estimated

m =(1.01+0.01)m, F =0.94F (17)

at order E, and we will accept these values. The tree-level amplitudes are then easy to work out. We find
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p 1 2
40m 8m (s —4m „)

Tp=
2 7m~+ 2 (at+a2)+(s —4m ) 2+

2
(4a, +3a2)+

2
(22a&+14a2)

32mF F F2 3F

1 4m s —4m„
T', = (s 4m—„} 1+ (a2 —2a, )+(az —2a, }

967TF F2 F2
(18)

327TF

8m 4m 4 (s —4m )

F2 (a&+a2) +(s —4m „} 1 — (2a&+3a2) —— (a&+2a2)F2 3 F2

2a2+ 1 2 2 2 2a1+a2 2 2
T2 ——

&
(s —4m ), T2 —— (s —4m „)

2407TF 4807TF

Contained within these formulas are the Weinberg results
for the scattering lengths, defined in terms of the thresh-
old behavior

tors of a„a2 to a„a2 and add to each amplitude a contri-
bution BI from the B (s, t, u) term in Eq. (14). For exam-

ple,

2s —4m„
ReTp ——ap+bp +

4

2Q2+ Q1 2 2 0
T2 ——

2
(s —4m ) +B2 .

24077F
(22)

s —4m
ReT1 ——a1 +

4

7m~

327TF

2—m
a

7r

167TF

p 1
bp ——

47TF

—1
bp=

87TF

These are at lowest order

(19}

(20)

Im80 ——p 7T

( 32~F2 )~

Irn81 ——

(961TF )

' 1/2
s —4m

(s —4m )
s

' 1/2
s —4m

(23)

The imaginary parts of BI are calculable analytically, and
are simply those values which will unitarize the lowest-
order (order-E ) amplitude. Specifically

1/2
s —4m

(2s —m )
s

1

247TF

Irn80 ——

327TF

Im82 ——Irn82 ——0 .

(s —2m )

s

s —4m„2
(21)

Note that the lowest-order results will violate the most
basic consequence of unitarity,

' 1/2

Because of the logarithmic factors in B(s,t, u} the real
parts of the partial-wave projection cannot be accorn-
plished analytically. Instead, we have calculated it nu-

merically, with results displayed in Fig. 2.

at about 700 MeV for Tp and 1 GeV for Tp. Tree-level
amplitudes are necessarily real and do not respect unitari-
ty. In order to generate the proper unitary phase shifts,
one must include rescattering through real, physical in-
termediate states. These are valid low-energy processes,
and are included in the energy expansion through loop
effects, such as given in Fig. 1.

When loops are considered, one must change all fac-
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FIG. 1. The pion loop diagrams which contribute to the
scattering amplitudes, renormalized to one-loop order.

FIG. 2. The real parts of the loop corrections factor defined
using Eqs. (14) and (22). The curves a, b, c, d, and e refer to T', ,
T2, T2, To, and To in order.
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Data on m-m scattering come from a variety of sources.
The most reliable is that from E ~m. +m. e v, where
rescattering in the final state leads to an observation of
6~—6&, which is essentially pure 6O in this energy range.
This information is available only at low energy (for obvi-
ous reasons) but is very free of theoretical problems. It is
also traditional to obtain vr-~ scattering results from
~p~amp or ~p~m. ~A by an extrapolation to the pion
pole in the t channel. The extrapolation required makes
these measurements somewhat more problematic, and ex-
periments will often disagree with each other outside of
their quoted error bars. The constraints on the extrapo-
lation at t =0 and the inclusion of absorption or lack of it
have been developed pragmatically in this field, but have
not been justified by solid theory to the best of our
knowledge. Often the assumed details of the extrapola-
tion are more significant than the quoted statistical er-
rors. This seems at present to preclude a truly reliable
determination of the scattering, aside from the low-

energy E,4 data. Our procedure has been to take some of
the good recent and older results which reflect the range
of values found. For example, in To there are other ex-
periments which fill in the gap between the data of Refs.
6 and 7, but we do not know any way to favor one value
or another in this range. However, the general trends in
the data are reasonably clear, and it is fortunate that use
of just these general features yields a surprisingly good
determination of the chiral parameters. This is due to
the constraints of five independent channels on only the
two parameters a, ,a2. That a good fit can be obtained at
all is some important evidence for the chiral-Lagrangian
framework.

The comparison of the data with chiral symmetry is
traditionally given in terms of the scattering lengths and
slopes at threshold. In any given channel these are rela-
tively poorly determined by a single experiment. Howev-
er, by tying together different channels into the single
function A (s, t, u), and using analyticity assumptions, one
can gain in power. This approach, the Roy equations, '

uses data over a larger energy range in order to learn
about the threshold parameters. The disadvantage of the
method is that the rather complicated machinery in-
volved obscures the dependence of the results on differing
and often conflicting experimenta1 inputs. We will in-
stead simply compare the chiral predictions directly with
the data over the full relevant energy range. This pro-
cedure must be compatible with the Roy equations, as the
chiral amplitude must satisfy the analyticity properties,
at least order by order in the energy expansion. If a good
representation of the data is found throughout the region
modestly above threshold, then the scattering lengths
must also be in good agreement. In fact the full energy
range gives more stringent constraints than just the
scat tering lengths. For example, the Gasser and
Leutwyler values of a, and o.2, determined from scatter-
ing lengths, yield the shaded region in Fig. 3 at only the
lo. level. Small variations at threshold are amplified as
the energy increases. Inspection of the formulas for T&

shows that a much fuller compatibility of the data with
chiral symmetry is tested by using a larger energy range.
In addition, the limits and strengths of the theory are
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FIG. 3. The range of ReTO implied by the threshold deter-
mination of a& and a, in Ref. 3.

much more transparent.
Some applications of chiral symmetry, such as Skyr-

mions, deal with tree-level Lagrangians. We may attempt
to determine the best tree-level chiral Lagrangian. Such
a method could never reproduce the imaginary part of a
scattering amplitude. The only amplitude where the
imaginary part is important is Te. Here we fit the real
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FIG. 4. Tree-level n.-m scattering amplitudes. The key on the
data is as fo11ows: (i) For To, ~, Ref. 6; o, Ref. 7; 0, Ref. 8; ~,
Ref. 9; 6, Ref. 10; (ii) for T~, ~, n m; 0, a+no;, m+m, from
Ref. 11;6, Ref. 10;0, Ref. 9; (iii) for To, 0, Ref. 12; ~, Ref. 13;
(&, Ref. 14; ~, Ref. 15; (iv) for Tz, Q, Ref. 11;~, Ref. 16; (v) for
T22, ~, Ref. 11; Q, Ref. 12;,Ref. 17; ~, Ref. 15. Curve a is the
lowest-order prediction, while curve b is the best fit, described
in the text.
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FIG. 5. The values of ReTO which are spanned by varying
the fit parameters aI and a& by 0.002.
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FIG. 6. The best fit to pion scattering at the one-loop level.

a )
———0.0092, a2 ——+0.0080 (24)

a, (500 MeV) = —0.010, a2(500 MeV) =0.0075 .

al ———0.007, aq ——+0.013 . (25)

Again a satisfactory fit is obtained up to energies of about
700 MeV. The renormalized coefficients a, ()Lt) are given
at 1 GeV by

a, (1 GeV) = —0.011, a2(1 GeV) =0.0046,

or at —,
' GeV by

as can be seen in Fig. 4.
When the data have obvious disagreements, it is hard

to assign a well-defined error bar to these fits. However,
shifts of these values by 0.002 produce demonstrably
worse fits, as shown in Fig. 5, so we heuristically will as-
sign error bars of this value. A similar exercise yields the
solid line in Fig. 6 for the formulas including loops. The
resulting parameters are

The latter values are very similar to the tree-level param-
eters.

If we go to threshold, we can also compare with the
low-energy behavior found in the E,4 experiments. Fig-
ure 7 displays these results in a clearer fashion. The
curves display the various solutions discussed above. We
see that the threshold behavior is reasonable, with a
slight flavoring of the results based on the one-loop calcu-
lations.

We can also address some issues which are somewhat
related to the present problem. One is the often used pro-
cedure of keeping only the leading nonanalytic terms
from loops. ' In our case this consists of keeping the log-
arithmic factor in J, Eq. (15), and setting a", "=a&'"——0,
such that

1 p 1 pal —— ln, a2 —— ln
96~2 m 2 '

48~2 m 2

Specifically the leading nonanalytic (LNA) loop correc-
tion is of the form

(8+C)LN~ —— 3(s m)K(s)+[t—(t —u) —2m t +4m u 2m ]K(t)—
6F4

2

+[u(u —t) —2m u +4m t —2m ]K(u)+ (6s —7m )m ln
16m p

where

K(a)= 1

16m.

1/2
4m

a

I /2
4m„

1 — —1

—ln
4m„

1 — +1

2m
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FIG. 7. Comparison of our fits to the phase differences6:—50 —5I obtained from E,4 data (C', Ref. 8;, Ref. 18). The
curve a is the lowest-order chiral prediction, curve b is the tree-
level fit, while curve c is the full one-loop-level calculation.
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Notice that these formulas are finite in the chiral limit,
m ~0. The resulting amplitudes are displayed in Fig. 8
for p=1 and —,

' GeV. Neither provides a reasonable
description to the data.

Another issue consists of soliton solutions to this
effective action. In the study of Skyrmion models ' ' of
the proton, one looks for soliton solutions for the chiral
field of the form

X=exp[is"PF(r)] . (26)

Often researchers will use a completely unjustified trun-
cation of the chiral Lagrangian to include only one four-
derivative Lagrangian, rather than the two which appear
in reality, and will treat its coeScient as a free parameter.
Instead one should take the full Lagrangian, with the pa-
rarneters given to us by nature, and ask about the ex-
istence and properties of a soliton solution. The parame-
ter space for this more complete soliton has been ex-
plored. ' To convert X4 to the standard parametriza-
tions of the Skyrmion community

FIG. 8. The leading nonanalytic corrections to the one-loop
amplitude do not yield a good fit by themselves. The curve a is
for @=0.5 GeV, while curve b is p= 1 GeV.

where the numbers follow from our tree-level fit. This is
the appropriate usage, as loop corrections have not yet
been added to Skyrmion calculations. There is an insta-
bility in the Skyrme soliton for positive y &0.12. How-
ever, our small negative value avoids this. For this value,
an expansion in y, such as given in Ref. 21, is feasible.
Using this formalism, the nucleon mass is

3
mp

——M+

73F
( 1 —0.77y ) = 1.3 GeV,

e F
(1+1.ly)=0. 3 GeV,

53.3

m =1.6 GeV .

Tr[[(B„X)X,(B,X)X ] I32e

we note that

1 o'z =0.0010,
32e2 8

y CX] +CX2 = —0.0003, y = —0.075,8e' 4

(27)

This value is about 70% high.
Overall, we have displayed the quality of chiral-

symmetry predictions in m-~ scattering. The effect of
nonleading chiral Lagrangians is clearly visible and high-
ly constrained by the data. The limits to these predic-
tions become obvious at energies of around 0.7-0.8 GeV.
The understanding of threshold and moderate-energy
scattering amplitudes forms a complex test of chiral sym-
metry.
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