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A systematic formalism is developed for the spin observables of the NN~NA reaction, according
to the polarization states of the four baryons involved in the transition. This formalism allows us to
express all observables by means of a compact formula. Special emphasis is put on the search for re-

lationships between different spin observables and particularly on relations equivalent to the so-

called "Bohr's rule" in NN~NN. These relationships are useful when choosing specific sets of
orthonormalized 6-spin operators adapted to analysis of experimental data.

I. INTRODUCTION

In recent years a great interest has been taken in the
production of the nucleon isobar 5(1232) in proton-
proton' and proton-nucleus interactions. ' The role of
the propagation of isobaric intermediate states in
particle-nucleus collisions has also been pointed out ~

In view of the importance of the isobaric resonance in
intermediate-energy physics, a precise knowledge of the
NN ~Nb, transition is more and more necessary. Exper-
imentally, information can be extracted from the
NN ~NN~ reactions. " Furthermore, recent data from
Argonne provide us with the first set of spin observables
of the 6 production on a wide energy range.

From the theoretical point of view, we are facing the
amplitude analysis of the NN~NA transition as well as
its interpretation in terms of various models. From the
number of helicity states, and using parity conservation,
16 complex functions are needed to specify the full spin
dependence of the NN~Nb reaction. ' They corre-
spond to the 16 independent operators describing this re-
action in the spin space. They lead to a total number of
512 possible experimental quantities, though not indepen-
dent. In Ref. 3 formulas are presented in terms of the
spin amplitudes for observables in which up to two nu-
cleon spins (such as those of beam and target or of beam
and recoil nucleon) are measured. There are 19 such ob-
servables.

The purpose of the present paper is to develop a sys-
tematic formalism for the spin observables, according to
the polarization states of the four baryons involved in the
transition. This formalism allows us to express all ob-
servables by means of a compact formula. Special em-
phasis is put on the search for relationships between
different spin observables. Particularly, we derive rela-
tionships due to the invariance under reflection with
respect to the scattering plane, the equivalent of the so-
called "Bohr's rule" applied, for instance, in the
nucleon-nucleon elastic scattering. ' These relationships
are useful when choosing specific sets of orthonormalized

6-spin operators adapted to the analysis of experimental
data.

Much of the material presented here can be found in
previous work, such as the earlier paper by Csonka,
Moravcsik, and Scadron, ' published some 20 years ago.
However, because spin observables are not easy to han-
dle, except in some well-known trivial cases, we found it
useful to treat explicitly the NN~NA reaction, which
involves a spin- —,

' particle.
The outline of this paper is as follows. In Sec. II the

decomposition of the NN~Nh transition in spin-space
amplitudes is shortly recalled, and we describe the con-
struction of polarization tensors for the b particle. Rela-
tionships between transition and polarization matrices
are also given. Section III contains the derivation of a
compact formula for the spin observables, and relation-
ships among these observables are established. Section
IV deals with a particular set of 5-spin operators well
adapted to the analysis of the experimental situation.

This paper is thus devoted to the algebraic formalism,
the first unavoidable step towards discussion and inter-
pretation in terms of models. This last aspect, as well as
comparison with experimental data, will be the subject of
a forthcoming publication.

II. SPIN FORMALISM

A. Transition spin amplitudes

A convenient spin-space decomposition of the
NN ~hN antisymmetrized production amplitude is
given by

(2.1)

where cr2 stands for the usual Pauli operator acting on
nucleon 2, assuming nucleon 1 to undergo the transition
and to become the h. A right-handed orthonormal basis
(1,m, n) is used as the reference frame. The unit vectors
are defined by
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1=k, n=
k k

kXk~
I

' (2.2)
While contracting the rank-2 tensor T, use is made in Eq.
(2.3) of the dyadic notation defined by

where k and k& are, respectively, the initial-beam-
nucleon and final-6 center-of-mass three-momenta, 0 be-
ing the production angle.

For purposes of implementing parity conservation,
note that a„is a pseudovector while I, and m are true po-
lar vectors. All the dynamics is contained in the 16
complex-spin amplitudes f, (8) and g;(8), analogous to
the spin-nonflip and spin-flip amplitudes of pion-nucleon
scattering. The eight Q, in Eq. (2.1) are spin-space opera-
tors which transform as true scalar because of parity con-
servation. We recall them for the sake of completeness:

(a T b):—[[2 ( —3, -,')],e [ae b], ]', (2.8)

(a T.b)= —,'[(S a)(cr b)+(S b)(tr a)] . (2.9)

Because of the trace condition, we have

a=1,m, n

(a T a}=0 .

B. h, -spin-space operators

with a, b = I,m, n. This dyadic product is related to S
transition and o. Pauli operators acting on the same nu-
cleon by

Q3 (S m)(o2 m), Q~= — (1 T n)(o2 m)v'3

Q5=(S n)(a2 n), Q6= (/ T m)(o2 n),v'3

(2.3)

Q7=(l T /), Qs= —[(m.T m) —(n T n)] .8

They satisfy orthonormality conditions:

—,'Tr(Q; QJ )=5,",
(2.4)

2J

2j+1
x g (1'Jrn'M

I j~ &
I jest & &

j'~'
I

mm'
(2.5)

in terms of the Clebsch-Gordan coefficient and reduced
matrix element taken with Racah's definition.

For spin- —,
' particles, the unit matrix and the three

Pauli-spin matrices o can be obtained from Eq. (2.5) by
setting j =j'= —,', for J =0, and 1, respectively. The cor-
responding reduced matrix elements are

(2.6)

Similarly, the S and T operators of Eq. (2.3) are gen-
erated by setting j=—,', j'= —,', for J = 1, and 2, respective-
ly. The reduced matrix elements are chosen to be

—,'Tr[Q;QJ(o2 a}]=0 with a=l, m, n .

The S and T quantities in Eq. (2.3) are the rank-1 and -2
irreducible tensorial operators which link the nucleon 1

spin space to the 6 spin space, respectively.
Anticipating further developments, it is instructive to

recall how operators in the spin space can be generated
by means of the Wigner-Eckart theorem. Indeed, the
spherical component of a rank-J irreducible tensor opera-
tor is connected to the j'~j transition by

&-,'II~J=OII-,' &
—= &-,'113 II-,

'
& =2

(-', llr, , ll-,'& ==(-', ll~, ll-,
'

& =2v'15,

&-,'II~J=3ll-', & = &-', 11~3ll l & =84''2 .

(2.10)

The dyadic notation of Eq. (2.8), used for the N~A
transition, can be further extended. Thus, we have

( a 'Tg 'b ) = [[T( ——) ]p [a8 b ]2]0 (2.11a)

and similarly,

( T3abc)o= [[T( —,', —', )]3 [a [bc]2]3]o . (2.11b)

This notation has the advantage of underlining the in-
variance properties under the exchange of the basis vec-
tors a, b, and c.

The rank-2 and -3 tensorial operators defined above
can be expressed in terms of crz. It leads to (see Appen-
dix A)

(a T&.b)= —,'[(crz a}(a&.b}+(crz b)(oz a)].—5(a'. b. )

It is quite obvious that Eq. (2.5) can be used to build a
complete basis of spin-space operators for a particle of ar-
bitrary j. Together with a convenient orthonormal vec-
tor triad like the [I,m, n) basis of Eq. (2.2}, such a set of
operators is particularly suitable to describe the polariza-
tion states or the density matrix.

For the familiar j=—,
' case, this set involves only I and

rr (as quoted above), and the polarization states are fully
defined by the four matrices }(,0"I, o m, and o"n. In or-
der to promote a compact notation& these four matrices
can be recast into P(a), with a=0, I, m, or n, respective-
ly.

In the case of a j=—,
' particle such as the 6, the same

procedure generates 16 spin-space operators, which cor-
respond to the spherical components of irreducible ten-
sors [T(—'„—,')]J with rank J =0, 1, 2, and 3, respectively.
By convention they will be denoted as the unit matrix 3.,
generalized Pauli spin operator crz, Tz, and T3 tensorial
operators. The explicit values of their reduced matrix
elements are listed below:

r, , ll-,
'

& =—&-,'lls

&-,'llr, , ll-,
'

&
=—&-', IITII-,

'
& =5&3 .

(2.7)
and

(2.12)
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(T3abc)o= —,'—[(a'a)(o' b)(o' c)+(cr~ a)(cr~.c)(o~ b)+(cr~ b)(o~.c)(o' a)

+(oz.b)(cr z a)(cr& c }+(oz.c)(o z.a)(o z.b)+(o'z. c)(o'z b)(cr &.a)]

+» [(or~ a)(b.c)+(cr~.b)(c a)+(crz.c)(a b)] . (2.13)

Note that the expression (2.11a) refers to nine operators.
Symmetry and trace conditions reduce them to five in-
dependent ones:

(aT.b)=(bT a),
(2.14)

(a T'a)=0.

C. Relationships between transition and spin-space matrices

Various relationships can be established between the
set of operators building P(a), P&(P} and the Q opera-
tors describing the NN~Nh transition. They are very
useful to study the spin observables.

The first one concerns commutation rules of 02 n with

operators of P2(a), acting in the spin space of nucleon 2:

Similarly, out of the 27
only seven independent
ance under permutation
into account:

quantities defined by (T3abc)0,
operators remain, once invari-
and trace conditions are taken

P2(a)(o2 n) =(cr2 n)P2(a}Z (2.16)

with Zo ——Z„=+1, Zl ——Z = —1. Similarly, the com-
mutation rules of P2(a) with the QJ can be expressed
with the help of a set of diagonal matrices s(a):

b=l, m, n

(T3abb)0=0 Va. (2.15) 8

QJP2(a)=Pp(a) y Q/, s//, (a),
k=1

(2.17)

Relationships connecting N~A transition, nucleon- and
6-spin-space operators are displayed in Appendix A.

As for the case of the spin- —,
' particle, we have com-

bined the 6-spin operators I, cr z, Tz, T3 and a con-
venient orthonormal triad (I,m, n). In this way, we have
constructed 16 independent quantities (4X4 matrices)
which are Cartesian components of the 6-spin-space
operators in the chosen vector basis. They will be useful
to describe polarization states of the 6 particle or to
write its density matrix. In order to introduce a compact
notation, the quantities I, (o~a), (aT&b), and
(T3abc)o will be denoted P'(P), with P=O, (a), (a, b),
and (a, b, c), respectively. Note that these P'(P) are not
yet orthonormal. This will be examined in Sec, IV. Ex-
plicit expressions of Pa(P) in terms of projectors are
given in Appendix B.

with the properties

s(0)=1, s(a, )s(a2)=s(
~
a, Xa2~ ) (2.18)

U(0)=1, v (a)=1,
U(a')U(ap) =U(ap)U(at) =U(

~
a] Xa2

~
)

(2.20)

for a„a2=l, m, n. These matrices are given explicitly in

for a1 and a2 ——I,m, n.
Connecting the spin-space operators of nucleons 1 and

2 through the Q/ operators defines a set of matrices u(a):
8

Q, »(a)=P2(a) X Qkv, k(a»
k=1

with the properties

TABLE I. Quantities defined in Eq. (2.21).

(a, a)

(o& a)

(a'Tg a)

w(a)

—5+w (a)

(a,b)
with a&b

(a, a, a)

(a T~ b)

( T3aaa)o

aXb —,'[w(a)w(b) —w(b)w(a)]

—",' w(a) —w'(a)

(a,b, b)
with a&b ( T3abb)0 —", w(a) —z[w(a)w (b)+w'(b)w(a)]

(a, b, c)
with

a&b&c ( T31mn)0

——'
I w(l)[w(m)w(n) —w(n)w(m)]
+ w(m)[w(n)w(l) —w(l)w(n)]

+ w(n)[w(l)w(m) —w(m)w(l)]]
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Appendix C.
The rules are completed by the relationships, which

link the spin-space operators of nucleon 2 with those of
the h.

8

P~(p)Q, =qP2(u) g Qk&jk(p» (2.21}

where q =1 or i and p =0, I, m, or n. The I( matrices q
and p depend on the p value. Seven cases have to be con-
sidered and can be found in Table I. The matrices K(p)
are real. They are given in terms of matrices m which are
displayed in Appendix C, and are defined by

8

(oa a)Qj P2(a) X Qk~jk(a)
I& =1

with a=l, m, n.

(2.22}

III. OBSERVABLES OF THE NN ~NLL TRANSITION

A. Definition and general expression

It is very convenient to denote the spin observables of
the XN~Nb transition according to the four indices in-

troduced by Bystricky, Lehar, and Winternitz' in the
case of nucleon-nucleon elastic scattering. This is done
by using the symbol X, , where u, refers to the spin

~a~&~2

orientation of the beam particle (nucleon 1), a2 to the tar-

get particle (nucleon 2), (p) to the outgoing b, particle,
and a2 to the recoil nucleon. Here each index p, az, a, ,

and a2 stands for its associated particle having a vector
or tensor polarization along one of the directions

I l, m, nj. For the b, particle the possible expressions of p
are listed in Table I. In the case of an unpolarized initial
particle, or if the polarization of a final particle is not
detected, the corresponding index is set equal to 0.

Bystricky, Lehar, and Winternitz' propose to call the
observables defined as above "pure" center-of-mass ex-
periments. This is somewhat unfortunate and we prefer
to call them IFE, which stands for "initial-frame experi-
ments. " When helicity frames have to be used, linear
combinations of these quantities are performed with ap-
propriate coefficients. '

In terms of the M amplitude of Eq. (2.1), the spin ob-
servables for NN ~Nb take the form

oX)p), ———,'Tr[M Pa(P)P2(a2)MP)(a) )Pz(a2)],

(3.1)

where o is the differential cross section for unpolarized
particles up to phase-space factors, so that X[o]ooo ——1.
Substituting Eqs. (2.1) and (2.16), Eq. (3.1) becomes

8

crX)&), ——g (f;*fj+g,*gjZ ) —,'Tr[Q, Pa(P)P2(az)QJP)(a) )P2(az)]
i j =1

8

+ g (f;"gj+g fjZ ) —,'Tr[Q; P~(P)P2(az)Qj(o z n)P, (a, }P2(a2)] .
i j =1

Making use of the relations between operators given in Eqs. (2.17), (2.19), and (2.21), we can write

8

P~(P)P~(a2)QjP)(a) )P~(a2)=qP2(a~)P~(p)P2(a) )P~(a~) g Q;[E(P)v(a, )s(a2)],,
i=1

If we restrict ourselves to physical polarizations which conserve parity, we obtain

P2(az)P2(P )P2(a) )P2(a2) =COI+ C) (o 2 n),
and we get

(3.2)

(3.3)

(3.4)

8 8

oX, ,
= g (f,'f, +g g, Z )qCo[K(P)v(a, )s(a2)]j, + g (f,'g, Z +g f, )qC)[E(P)v(a, )s(a2)s(n}]j, .

1,J =1 l, J =1

(3.5)

The quantities Co and C, , which depend on a, , cx2, az, and p, are displayed in Table II.
By symmetrizing or antisymmetrizing the expressions appearing in Eq. (3.5), it is possible to exhibit the real and

imaginary part of the amplitudes. The spin observables become

8 8

oX, ,
=Req ReCO g Re(f;*f +g,'g Z )F, +ImCO g Im(f,'f +g,.'g Z }F;,

i j =1 i j =1

8 8

+ReC) g 2Re(f,'g )G,"+ImC) g 2 Im(f,'g )G,"
i j =1 i j =1

8 8

+Imq ReCO g Im(f,*f +g,'g Z )F, —ImCo g Re(f,*"f +g g.Z )F;
i j =1 i j =1

8 8

+ReC) g 2Im(f, 'g )G; —ImC) g 2Re(f,'g )G,"
i j =1

(3.6)
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with

F, =[K(P)u(u, )s(a2)];, ,

G,, =[K(P)u(a, )s(a2)s(n)],,
(3.7)

We recall that the CQ and C& coefficients are displayed in
Table II. The Z and q quantities are defined by Eqs.

(2.16) and (2.21) and listed in Table I. The s(a) and u(a)
matrices are defined by Eqs. (2.17) and (2.19) and
displayed in Appendix C. The K(P) matrices are defined
in Eq. (2.21) and in Table I in terms of w(a) matrices
which are given by Eq. (2.22) and displayed in Appendix
C.

&y X

II II

&g
~ ~ ~ X & (Q (Q
(g &p (g, ~ (QX=X

&+X X
&g = = X &g &0 &5 X &g ~ &9 —&c4 &0

~ ~ A~A ~ ~ ~~~~ ~ ~ (Q &Q
&a «« '~ &e «« '~

&~ x =&~ &~ (9
~ y~gII«« II II &. &~ II II « II &««

O ~ O OU+ Iua+ IVV+u I+ I

In the X notation, the target-polarization asyminetry
AQ„becomes X[Q]QQ„, the depolarization of the target D,&

becomes X[Q) QQ and the polarization transfer from beam
to recoil particle E,I, becomes X[Q],bQ.

Although the expression (3.6) looks rather extended, it

may end up in a compact formula for some observables.
Two particular examples are given below.

For the case a, =a2 ——l, a2=p=n, Table I gives q =1,
p=n, and K(n)=w(n). Table II gives Co ——1 and one
gets

8

~.i.ll= g «(f f, gg—, )[w("n)u(i)~(i)];, . (3.8)

For the case a, =a& ——n, a2 ——0, p=(l, m), Table I gives

q =i, p =n, and K(l, m) = —'[w(l )w(m) —w(m)w(l )).
Table II gives C, = 1 and we obtain

8

oXII ~„„,
——g 2 Im(f gi)[K(/, m)u(n)s(n)]u . (3.9)

For the NN~Nb reaction, 1024 IFE can be defined.
Each spin-space operator of Pa carries 64 observables;
each of the three nucleons can be unpolarized or polar-
ized along l, m, n. Accounting for the parity conserva-
tion, the number of IFE is reduced by a factor of 2. In
practice, the nonvanishing experiments correspond to an
even number of l and m indices among the four sub-
scripts p, nz, a, , and a2.

&C

II

o
o

II

cO

~I

0
ch

II

Cv0
II o

II

c5

X

II II

VV

&~ X

II II

—"X
&y (Q
&o. '~

II Il

VV

(0

X
&0

II II

(g

(g (C4(Q
X

C4- &5 &C4

II «& II

4+ IU

& (Q
X

(a(g «&+
II «« II

V+

8. Invariance relations bet+'een observables

The 512 observables defined above are not indepen-
dent. A very useful method for checking relations among
them relies on the search for operators satisfying

Pa(p)P2(a2)MP)(a, )P2(a2) =M . (3.10)

Note that this relation is equivalent to the so-called
Bohr's rule used in Ref. 13 in NN ~NN and obtained by
invariance under reflection in the scattering plane.

Applying the relations given in Eqs. (2.17), (2.19), and
(2.21), the g~ part of M leads to

o
o

II

II

II

~ C4

II

V

o
II

o
II

&C4

(Q
&C4

II II

VV

Pg(p)P2(a2)gJP, (a, )P2(o'2)

=qP2 2)P2 p)P2(~1)P2( 2)
8

X g Q, [K(i2l)u(ai)Xs(a2)], , (3.11)

o o
s. CV

o o
II II

o
II
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The operators Q (oz.n) obey the same kind of relation

with an extra Z coefficient [see Eq. (2.16)].
2

Finally we find that Eq. (3.10) is verified for

[—,'(T,nnn)p —
—,
) (cr~.n)](o 2.n)M(o, -n)(o 2 n) =M .

(3.12)

At this stage, it is helpful to define a new 6-spin-space
operator

(o"a)(o"b)=a.b+io" (aXb) . (3.15}

Multiplying now what we call the first Bohr's relation Eq.
(3.12) by X(m) and using Eq. (3.14), we obtain the second
Bohr's relation

X(l )(cr2 I )M(o ).1)(crz.l ) =X(m}(o2.m)

analogous to the well-known relation with Pauli opera-
tors

X(a)= —,'( T3aaa)() —
—,'(o ~ a) (3.13) XM(o, m)(o, m) . (3.16)

which satisfies the relation

X(a)X(b) =a b+ i X(a && b ), (3.14)

Using properties and relations of this new X operator
given in Appendix A, we can write six other Bohr s rela-
tions:

—(1+—,'n Tc, n)(oz n)M(o, n}(o2 n)=(cr().n)M,

[—,'(T3mnn)o ——,)(oz m)](o~ m)M(cr, m)(o2 m)=((re, l)(o2 1)M(o, 1)(cr2 I),
[—,)(T31nn}p——,)(cr~ 1)](oz 1)M(o, l)(oz 1)=(o~ m)(cr2 m)M(cr, m)(oz m),

[—,'(T3nmm)o —,'(cr~ n—))(cr2 n)M(o, .n)(o2 n)= —(1+—,'1 T~.l)M,

(m Ta n)(o2 l)M(o, l)(cr2 l)=(n Tc, l)(cr2 m)M(o, m)(cr2 m),

(T3lmn)o(cr2 n)M(cr, .n)(cr2 n)=(l T~ rn)M .

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

It is easy to see that the 16 components of P~ (or their
combinations) are all contained in the eight Bohr's rela-
tions. Taking into account these relations divides the
number of independent observables by a factor of 2, so we
are left with 256 of them.

In order to exemplify the way the Bohr's rules are
translated into observables, we look at the first and the
last ones, which give

—+ Y'6-- (nnn)bcd 5-- (n)bcd —-- (0)b'c'd'

—++(Imn)bcd — (Im )b'c'd'

(3.23)

(3.24)

The indices b', c', and d' are related to the indices b, c,
and d, respectively, by the transformations

O~n and 1~m .

l ~ 1 ~
6
~ (nnn)000 5

~ (n)000 ~ (0)nnn

(lll)nmn 5~ (l)nmn ' 6~ (mmm)010 5~ (m)010 ~

I
(p)lom + 2X(nn)l m}oX(n)mnl

1~
( mnn)001 5 ( m )001 ( I)nnm

(3.25)

(mn)010 +(nl)nmn & +(Imn)min +(Im)lm0

Taking account of the antisymmetrization of the two

As can be verified, because of the Z coefficient, the
Bohr's rule holds only between operators with p =0 and
n, on the one hand, and p =1 or m, on the other hand.
The + sign appearing in (3.23) and (3.24) is due to rela-
tions between Pauli-spin operators [see Eq. (3.15)]. For
instance, we have

identical initial nucleons leads to a relation between the
observables at 0 and m —0. We can show that

(3.26)

where a + sign is assigned to observables written with

f f, and g,*gi products, and a —sign to those written
with f,'gj products. When the a, and az indices are
identical, this equation simply defines the symmetry char-
acter of the observables. When a, and a2 are difFerent, it
defines a relation between two observables. For each 6-
spin-space operator with p =0, we have

X(p)~(8)= +X(p)~(n8) 0 re.l—ation,

X(p) ~(8)= —X(p) po(n. —8) 0 relation,

X(p)p p ( 8): X(p)pp ( (r 8 ) 1 relat&on

X(p) o(8) =X(p) o (m. 8) 3 relations,

X(p)b p( 8): X(p)bp ( m. —8 ) 2 relations

X(p)p ( 8 ) = +X(p)p ( rr 8 ) 0 relation

X(p)()b ( 8):—X(p)p b ()r—8) 1 relation

X(p)b,d ( 8}= +X(p) bd. ( ~ 8) 3 «lations,

X(p) (8)= —X(p), (vr 8) 0 relation, —

X(p)bb (8) X(p)b b(rr 8) 2 «lations, —

(3.27)

where b&c&d. These 12 relations reduce the number of
independent observables from 32 to 20 for each polariza-
tion state of the h. For the 6-spin-space operators with
p&0, the number of such relations is the same, although
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the relations are different.
To sum up, using the parity conservation, the so-called

Bohr's relations, and the Pauli principle, the number of
IFE describing the XX~Xb reaction reduces from 1024
to 160. It is still more than enough to overdetermine the
16 complex spin amplitudes f, and g, , only 31 indepen-
dent experiments being necessary (the overall phase is ir-
relevant). Nonlinear relations between observables as in
the %%~XXcase' ' ' can certainly further reduce this
number, but it is not the subject of this paper to look for
them.

with

Q, (n }=X(n }, Q2(n) = —
—,
' [X(n)+ (o z n)],

Q3(n }= —[(T3nl 1)o—( T3nmm)o],
4&3

Q~(n)= —/ T~ m, Q, (/)=X(/),
2&3

X(1 ) +o q. I
Q (/)=—2 2 2

IV. ORTHONORMALIZATION OF THE 5-SPIN-SPACE
OPERATORS

As was stated previously, the 16 components of Pz(P)
given in Sec. IIB are not orthonormal. For practical
purposes, it is more convenient to deal with an orthonor-
mal basis. Let us denote by Qi(p), combinations of the
16 components of P~(P}, where p =O, l, m, n and I runs
from 1 to 4. These operators satisfy

(4.1)

( Ti/nn)0 —( T3/mm)o
+2 4&3

Q3(/) =—
2

X(l)+op 1

2

l ( T3/nn)0 —( T3lmm)o
+2 4&3

Q~(l)= m T~ n, Q, (m)=X(m),
2&3

(4.10)

and

~ fr[ Qs(p)Qr(p')]=/iver &pp . (4.2)

X(m)+o~ m
Q (m)=—2 2 2

One of the aims is to search for a complete basis sim-

plifying the use of the Bohr's rules. As noted in Sec. III,
it implies connections between p =0 and n, and p =/ and
m, only. Thus we can write

v 3 ( T3mnn)0 —( T3ml 1 )o
+

2 4v'3
T

X(m)+o~ m
Q3(m) =

2 2
(0)12M1, 12 ——Qi(n)(o'2 n)M(o, n)(o, n),

Qi(l )(o2 1 )M(o, 1)(o2 I)

=Qr(m)(o 2 m)M(o, m)(o'2m) .

(4.3)

(4.4)

( T3mnn)0 —( T3ml 1)o

2

The two equations are verified if

Qi(n}=Qr(0)X(n),

Qr(l)X(1)=Qi(m)X(m} .

(4.5)

(4.6)

Qi(l ) =Qi(0)X(l ),
Qr(m)=Qi(0)X(m) .

(4.7)

(4.8)

The operators X(a) have been defined in the preceding
section. The last equation suggests the simple choice 8

Ql(P )O' /~2(P } y Qk[KIs(P)U(P)]jk
I4 =1

(4.11)

with q =1 for I=1,2, 3 and q =i for I=4. The four
(8)& 8) matrices Kr are defined by

Q4(m)= n T~ 1 .
2&3

With this Qi(p) orthonormal basis, the b, polarization
states are no longer labeled by P as before but specified by
the values of I and p. An equation similar to Eq. (2.21)
can be written

By virtue of (4.5), (4.7), and (4.8), it is sufficient to
specify the four Qr(0) to reach a complete knowledge of
the 16 operators. Among many possibilities, our choice
is dictated by the fact that n is invariant in the outgoing-
5 and incident-nucleon helicity frames. Therefore, we
take

K, =1, K2= —,'[w (n) —5],

K, = —[w'(/) —w'(m)],
4&3

—
( w(/)[w(m)w(n) —w(n)w(m)]

12&3

(4.12)

Q, (0)= l, Q~(0) = —,'n T~.n,

Q3(0) = —(1 Tq 1 —m T~ m), (4.9)

+w(m)[w(n)w(/) —w(/)w(n)]

+w(n)[w(/)w(m) —w(m)w(/)] j .

Q~(0}= —(T, lmn)0 .4 2~3 3 0 '

After multiplication by X(n), X(/), and X(m), we are left

They are explicitly given in Appendix C.
For a b, polarization state defined by (I,p) indices, spin

observables can be written by means of expressions simi-
lar to Eq. (3.6):
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8

oX, ,
= g [ReCpRe(f f.+g g Z )+ImCpIm(f;*f +g g, Z )][Kls(p)v(p)v(a, )s(az)],

i j =1

+[2ReC, Re(f;*g }+21mC,Imf, 'g, ][Kls(p)v(p)v(a, )s(az)s(n)];,

for I= 1,2, 3 and

8

o X~4 ~, ——g [ReCpIm( f;*f1 +g;*gj2 ) —ImCpRe( f f~+g;*g~Z )][K~s(p)v (p}v(a, )s(a2)]J
ij =1

+[2ReC~Im(f g ) —21mC&Re(f g )][K4s(p)v(p)v(a~)s(az)s(n)];

(4.13}

(4.14)

We recall that the Co and C, coefficients are displayed in
Table II as functions of p, a2, a„and az. Products of s
and U matrices can be simplified by taking into account
properties of these products as given by Eqs. (2.18) and
(2.20). The Z coefftcient is given in Eq. (2.16). As an

2

example, for a b, polarization state described by Q4(n)
and a polarized beam along n, i.e., p =a, =n and

a2 ——a2 ——0, we get Co ——1 and C, =0 from Table II. Thus
Eqs. (4.14) redues to

8

0'X(4 )p p = g Im(f f +g;"g )[K4s(n)];
t)J=1

(4.15}

Finally, Eqs. (4.13) and (4.14} describe in a rather com-
pact and simple way the 512 observables of the NN ~Nh
transition, once the polarization states of 6 are expanded
on the Qi(p) orthonormal basis. The density matrix
method can also be used through a decomposition on this
basis.

V. CONCLUSIONS

The present work has been devoted to vector- and
tensor-spin observables in the NN ~N b, transition.
Within the relations between transition and spin opera-
tors, we have established a compact formula for spin ob-
servables (IFE). These observables are connected to the
16 spin amplitudes describing the NN ~Nb transition by
only nine 8)&8 matrices. With the parity conservation,
the so-called Bohr's relations, and the Pauli principle, the

number of IFE is reduced from 1024 to 160. A particular
set of 5-spin operators well adapted to the analysis of the
experimental situation is given.

The dynamics of the 5 production is contained in the
16 spin amplitudes f; and g;. They can be reached either
by model calculations or by phenomenological analysis.
Studies of experimental data from this point of view will
be the subject of a forthcoming paper.
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APPENDIX A: PROPERTIES OF TRANSITION
AND SPIN OPERATORS

The NA-spin transition operators S and T defined by
Eq. (2.6) are identical to those of Refs. 2, 3, and 7. For
the b-spin-space operators, the Pauli-spin operator oz
for spin- —,'particles as well as Tz and T3 tensors of rank 2
and 3 are defined in Sec. II B. Note that nz is the same
as in Ref. 7, where the 4/4 matrices are explicitly given.
The reader can refer to Ref. 18, where some of these
operators are given with various notations and reduced
matrix elements.

Below we list some relations among operators which
are needed in the derivation of Eqs. (2.19) and (2.21) for
the calculation of v and tv matrices (see Appendix C):

l(S.a)(o"b) = ——(S a Xb) + (a T b),
2

(cr~ b)(S a)= ——(S aXb)+(a T b),
2

(a-T.b)(o .c)= —,
' [3(S.a)(b.c)+3(S.b)(c.a) —2(S.c)(a.b)]+—(a.T-b Xc+1.T.a Xc), (A3)

A
(cr~.c)(a T b)= —'(3(S a)(b.c)+3(S b)(c a) —2(S.c)(a.b)) ——(a T bXc+b.T aXc) .4 2

(A4)

In particular, we note that (cr~ S)=(S cr ) =0. Equation (2.9) is directly obtained from Eq. (Al). Writing expressions of
Tz and T3 in terms of the crz Pauli operator in Eqs. (2.12) and (2.13) and, more generally, demonstrating the invariance
rules requires tensorial products of different P~(P) operators. We first recall the well-known formula of a tensorial
product:
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(A5)

with the usual notation for 3-j and 6-j symbols. For j=j' =j"=—,', j3 =j4 ——1 it gives

(cr~ a)(o~ b)=5(a b)+i(tr~ aXb)+(a.T~ b) . (A6)

Using the fact that (a T~ b) is invariant under a, b exchange, this last equation leads to Eq. (2.12). To obtain Eq. (2.13),
use is made of the additional expression

(oz a)(b T~ c)=—,'[—,'(o~ b)(c a)+ —3(o~ c)(a b) —(sr~ a)(b c)]—i(c T~ bXa+b T~ cXa)—(T,abc)o .

Other relations, which are needed in setting up the so-called "Bohr's rules" (Sec. III), are listed below:

(tr~ d)(T3abc)o= —,'[(d T~ a)(b c)+(d T~ b)(c a)+(d T~ c)(a b)]

—[(d a)(b T~ c)+(d b)(c T~ a)+(d c)(a T~ b)]

+ i [(T3(d X a)bc )o+ ( T3(d X b)ca)0+ ( T, (d X c)ab)0]

and also

(A8)

(a Tz b)(c Tz d)=12(a c)(b d)+12(a d)(b c)—8(a b)(c d)

——", i[[trz (aXb}X(cXd)]—2(crz aXc)(b d) —2(oz bXd)(a c)l

—2i [(T3(a X c)bd)0+ ( T3(b X d)ac)o]. (A9)

In particular, we get

(I Tz n)(m T~ n)= —12i[—,'(T3nnn)0 —
—,'(n~ n)],

(A 10)

Finally, we give the traces needed for orthonormalizing
6-spin-space operators in Sec. IV:

—,'Trl = 1, —,'Tr(a~ a) =5,

X(a)—:—,'(T3aaa)o ——,'(tr~ a), (Al 1)

and two similar expressions for circular permutations of
(l, m, n). These combinations of T3 and cr~ are found to
be very powerful operators. They are denoted by

—,'Tr(a Tz a} =16,
—,'Tr(a Tz a)(b Tz b)= —8,
—„'Tr(a Tz b)~=12,

—,
' Tr( T3 Imn )o = 12, (A15)

and obey the relation

X(a)X(b)=(a b)+iX(aXb) . (A12)
(12}

—,
' Tr( T, aaa )„=

This is to be compared with the analogous expression for
the nucleon Pauli-spin operator

(o"a)(o" )b=(a b)+i(cr aXb) . (A13)

Using the X operator, we can write

(o z.n)X(n) = —[1+—,
' (n.Tz n }],

(crt 1)X(n)= —i[—,'(T, mnn)o —
—,'(o z m)],

(o q m)X(n }=i[—,'( T31nn)0 ——,'(cr~ I )],
(A14)

[1+—,'(I.T~.I )]X(n)= —[ —,'(T3nmm)o —
—,'(o'q. n)],

(n Tz. l)X(n)=i(n Tz m),
(I.T& m)X(n)=(T&lmn) o,

which lead to Eqs. (3.17)—(3.22).

—'Tr( T3aaa)0( T,abb)0=—(12)~

—,'Tr( T3abb )0= —", ,

—,'Tr( T3abb)o( T3a c c)0= ——", ,

for a&b&c chosen in set (I,m, n).

APPENDIX B: P~ OPERATORS
IN TERMS OF PROJECTORS

In Sec. II B construction is made of 16 Pz operators in
terms of irreducible tensors of 6-spin-space operators and
an orthonormal set of vectors (l, m, n). Relations be-
tween spherical and Cartesian components are given for
the choice 1 =u„m =u„n=u, and the spin projectors

l
—,', g) & —,', g'

l
are denoted by l2$) &2g'

l
for the sake of

simplicity:
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1=T'=(
I

3&&3
I +

I

—3&& —3
I
+

I
1 &&11+

I

—I&& —1I }

~~ l=TY=3(
I

3&&3
I

—
I

—3&& —3
I
)+(

I
»&1I —

I

—»& —1I }

—(Ti ' —T& }=2( Il&& —I I+ I

—1&&1I }++3(Il&&3
I
+

I

—I&& —3
I
+

I
3&&1I +

I

—3&& —1I }1

-(Ti '+Ti }=—2((
I

1&& —I
I

—
I

—1&&1I }+~&3(
I

1&&3I —
I

—I&& —3
I

—I3&& I I+ I

—3&& —1I »1

—Tz=4(13&&3
I
+

I

—3&& —3
I

—
I

1 && I
I

—
I

—I&& —1I »v'30

m T~ m —n T~ n= —(Tz +T2}v'5

=4+3(
I

I& &
—3

I
+

I

—1 & & 3
I
+

I

—3 & & 1
I
+

I
3 & &

—1
I »

l T~ m= (T2 ' —Tz)=2v'3(
I

I &&3
I

—
I

—I&& —3
I
+ 3&&1

I

—
I

— && —'
I

}
2&S

l Tz n= —(T2 '+ T2 }=i2v 3(
I

1& &3
I +

I

—1 & &
—3

I

—
I

3 & & 1
I

—
I

—3 & &
—1

I ),
2&S

—(T2 ' —T2)=l2&3( —
I

1 && —3
I + I

—1&&3
I +

I

—3&&1I —
I

3&& —1I }2v'S

(T3l I l)o= — —T3= ——", l I
3&&3

I

—
I

—3&& —3
I

—3( Il&&1I —
I

—I&& —1I )l

(T3lmm}o —(T3ln»o= — —(T3 '+ T3 }=4&3(
I
» &

—3
I

—
I

—» & 3
I
+

I

—3 & &1I —
I

3 & &
—1I »v'21

( T3/mn)o= ( T3 ' —T3 ) = i 2v'—3(
I

1 & &
—3

I
+

I

—1 & & 3
I

—
I

—3 & & 1
I

—
I

3 & &
—1

I
),2v'21

(T3ml l )o (——T3 T3 )
210

l —v'3(
I

1&& —1I+ I

—1&&1I )+
I

1&&3 I+ I

—I&& —3 I+ 3&&1 + I

—3&& —1I ]

(T3 '+T3}=— I+3( Il&& —1I —
I

—1&& I
I
}+

I
1&&31 —

I

—I&& —3
Iv'210

—I3&&1I+ I

—3&& —1I],
(T,mmm)o —(T3m n n)o+ —'(T3m I l )o — —(T——3

—T3)= —12(
I

3 & &
—3

I + I

—3 & & 3
I
),v'14

( T3nnn)o —( T3nmm)o+ -' ( T3nl l )o = —( T3 '+ T3 ) = —12'(
I
3 & &

—3
I

—
I

—3 & & 3
I

) .
v'14

APPENDIX C

In this appendix we give the explicit expressions of matrices u, w, and s of Eqs. (2.19), (2.22), and (2.17):

0 0 —&3n1

2

—v'3y2

With the choice of the (l, m, n) fixed basis, the beam nucleon only is in its helicity frame. For outgoing particles, helici-
ty projections can be formed as linear combinations of Pz with appropriate rotation coefficients.

1

2
—&3/2

u(n)=

1

2

—&3y2

1

2

—&3/2

—v'3Z2
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0
0

0 1 0
0 0 —1

&3/2 0 0

u(l ) =
&3/2 1

2
0 0

0 0 +3/2 1

2

1 0
0 —1

0
0

0

0
0

0

1

2

&3/2

&3/2
1

2

0

0

0
1

2
&3/2

u(m)=

—&3/2

0

&3/2 0

0

0

0

—&3/2 1

2

0

0

0 &3/2
5

2
—&3/2

0
5

2

—&3/2

0

3
2

u)(n) =
—&3/2 3

2

0

0

0 0

0 0 1 0
0 0 0 3

&3/2 0 0

3

2

0

1

2

0 3&3/2

3&3/2 0

3
2

—&3/2
3
2

w(l ) = 0 0 —
—,
' &3/2

0 0 &3/2

1 0
0 3

0
0

0
0

—&3/2

w(m)= 5
2

—&3/2

&3/2 0
3
2

0

0 &3/2 3
2

0

3&3/2
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0
0
0

—1 0 0 0
0 —1 0 0
0 0 1 0
0 0 0 1

—1 0 0
0 —1 0
0 0 —1

0 0 0 —1

0

looo
0 1 0 0
0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 —1 0
0 0 0 —1

—1 0 0 0
0 —1 0 0
0 0 1 0
0 0 0 1

s(zn)= —1 0 0 0
0 —1 0 0
0 0 1 0
0 0 0 1

We recall that U (0) and s(0) are the unit (8 X 8) matrices. The matrices defined in Eq. (4.12) are also displayed below:

2

&3/2

&3/2 0

0

0

0

0

0

v'3/

&3/2
—1 0
0 1

0 0 1

2

0
0

—&3/2

0 0 —&3/2 l

2

l

2
0

1

2

0

&3/2 0

0 &3/2
1

2

0

—&3/2

0 —1

—1 0
0 0

0 0 I

2

0 0

&3/2

K4 ——

0 —1 0 0
1 0 0 0
0 0 0 1

0 0 —1 0
0 —I 0 0
1 0 0 0
0 0 0 1

0 0 —1 0

We recall that E, is the unit (8X 8) matrix.
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