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Phenomenology of a horizontal gauge boson in e+e collisions
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The effects of an extra neutral gauge boson Z predicted by the Sp(8) XU(1) model, are studied
both on and off the Z resonance in e+e collisions. Distinctive features are pointed out.

The family repetition of quarks and leptons strongly
suggests that there should be a larger flavor group than
the familiar SUI (2)XU&(1) group. ' Given the six left-
handed quarks and leptons, it would be desirable to in-
clude them in a single, six-dimensional representation 6
of a simple flavor gauge group GF. There are two obvi-
ous physical constraints on GF. First, the theory must
not be anomalous. Second, we must be able to embed the
usual SUr(2) in GF such that 6~3X2. Out of a few

possible candidates for GF, it was shown that there is a
unique extension of SUt(2)XU&(1) into the anomaly-
free Spt (6) X Ur(1) = GF. Under Spt (6), the left-handed
fermions (leptons and quarks) transform like 6, while all
right-handed fermions are singlets. Note that this exten-
sion seems rather natural since Sp(2) =SU(2). A doublet
of Spt (2) [SUr (2)], for one generation, is readily gen-
eralized to a sextet of Spr (6), for three generations.
Sp(6) can be naturally broken into [SU(2)] =SU(2)

&

XSU(2)~XSU(2)3, where SU(2); operates on the ith gen-
eration exclusively. Thus, the standard SUI (2) is to be
identified with the diagonal SU(2) subgroup of [SU(2)] .
In terms of the SU(2); gauge boson A;, the SUr (2) gauge
bosons are given by A=(1/&3)( A~+ Az+ A3). Of the
other orthogonal combinations of A, , it was found that
A' =( I/&6)( A, + A~ —2 A3) has a mass scale bounded
by & 1 TeV. They would give rise to interesting physics
at the TeV energy range.

We turn now to the possible existence of a fourth gen-
eration of fermions. If they exist, GF may be generalized
to Spt (8)XUr(1) (Ref. 4). In this case, we would have
A= —,'( A&+ Az+ A3+ A4). There will again be addi-
tional gauge bosons, the lightest being A
=(I/&12)( Al+ Az+ A3 —3A4). In this work we will
concentrate on the neutral member, Z. We wish to ana-
lyze the effects of the presence of Z on e+e collisions,
both on and off the Z resonance.

Several articles have dealt with the effects of an addi-
tional neutral gauge boson in e+e collisions. In gen-
eral an additional neutral gauge boson, here Z, will mix
with the standard Z, resulting in physical states which
are mixtures of Z and Z. Hence, the physical Z will have
different mass and couplings, which can be revealed as
deviations from the standard-model predictions on and

off the Z resonance in e+e collisions.
With the additional gauge boson Z, the neutral-current

Lagrangian is generalized to contain an additional term

—LNc= eJ~em~ q+gz JIZ„+gzJz~Z„,

where gz
——Q(1 —xtv)/3gz ——g/v'3, xtv=sin Htv, and

g =e/si n8 tv. In this paper we use xtv ——0.23. The neu-
tral currents Jz and Jz are given by

graf r"(g(+g~A 1/5) Pf (2)
f

Jz=-,' & Sf1'"gv+g~rs)kf
f

where gtv=(T3t —2xu, g)f, g„=(T3t )f, and gv=g„f -f -f
=(T3t )f Here (T3I )I and Qf are the third component
of weak isospin and electric charge of fermion f, respec-
tively. Let P denote the mixing angle between Z and Z,
then the physical (mass eigenstates) gauge bosons, denot-
ed by Z, and Z2 are given as linear combinations of Z
and Z,

Z]
(4)

2.

(3)

cosP sing Z
—sing cosp Z

and the neutral-current Lagrangian reads

2

LN( gz y y ofy (g( +gg y5)ef
i=1 f

where gf and g„are the vector and axial-vector cou-
I

plings of fermion f to physical gauge boson Z;, respec-
tively. In the Sp(8) X U(1) model they are given by

l z fg( w
= g( w cos4+ gv a s'n01' l gz

(6)

l . &z
gf, ~ =— gf, ~ »nb+ gvf—, A cos42' 2 2 Rz

The change of the fermions couplings provided by Eqs.
(6) and (7) will aff'ect measurements in e+e collisions.
Among the quantities that are sensitive to this change are
the forward-backward and the left-right asymmetries.
The forward-backward asymmetry AF~ is defined by
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I o(e+e ~@+A, )d cos9 —1 t7(e+e ~p+p )d cosg
o dcos0 -1d cosO

dI 0 (e+e p+ p )d cos6)
—1d cosO

where 0 is the angle between the incident electron and the outgoing muon. On the other hand, the left-right asymmetry
is defined by

~LR
+L ++R

where o L (o R ) is the cross section for scattering of a left- (right-) handed electron on an unpolarized positron. With
the fermions couplings provided by Eqs. (6) and (7), the general expressions for the above asymmetries are written ex-
plicitly as

2 2

~FR 2 X gAe)gA Re~j+ X (gv gA„+gA gv„)(g(gA„+gA gf„)Re(~j~l& )

j=1 j,k=1

P, 2

~LR= 2 r gv. gA, Re~J+ y 2gv, gA, (g(,g(„+gA gA„)R (e~)~l )

j=1 j, k =-1

(10)

where the superscript f refers to the final-state lepton, P, is the degree of longitudinal polarization of the electron beam,
and

2 2

D=l+2 g gvg( Rehl+ g (gvgv, +gA gA, )(g(g( +gA gA )Re(blok),
j=1 j,k=1

where

x (1—x )[(s M)+iM— 1 ]j j j
(13)

here Mz and I z are the mass and total width of gauge
J J

boson Z, respectively.
On the Z1 resonance, the cross section is dominated by

the pole in the Z1 propagator and the forward-backward
asymmetry is approximated by

aF, (&s =Mz, )=3
gV)gd l

(gv )'+(gA, )' (14)

gV)gA)
ALR(&s =Mz ) P, ——

(gv, )'+(gA, )'
(15)

where e-ltt-r universality provided by the Sp(8)XU(1)
model is assumed in deriving Eq. (14). With the same ap-
proximation, the left-right asymmetry on the Z, reso-
nance is given by
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&&G. 1. The forward-backward asymmetry A+& for
e+e ~p+p at &s =Mz as a function of the mixing angle (().
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FIG. 2. The left-right asymmetry 3« /P, , for e+e ~p+p
at &s =Mz as a function of the mixing angle P.
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In general, P, depends on the specific e+e machine.
For example, at the SLAC Linear Collider (SLC), beams
with polarizations of =50%%uo will be available. Beam po-
larization at the CERN collider LEP is much less certain.
In Figs. 1 and 2 we present the Sp(8)XU(1) prediction
for A~s and AL~/P, at &s =Mz, respectively, as func-

tions of the Z-Z mixing angle P.
Measurements of the total width and branching frac-

tions into known fermions at the Z, peak provide anoth-
er means of determining the mixing angle P. The total
width is defined by

I (Z, all)=g I (Z, ff )

f

(16)

where Nf is a color factor (Nf ——3 for quarks and Nf ——1

for leptons). With Mz ——92 GeV, the total width and
l

branching fractions for Z, are shown, respectively, in
Figs. 3 and 4 as functions of the mixing angle P. Figure 4
shows that the branching fractions are less sensitive to
variations in P.

The Z& factories, SLC at SLAC and LEP I at CERN,
are proper places to look for the effects of the presence of
Z in e+e collisions at the Z, peak. They can achieve a
maximum collision energy of 100 GeV and will be opti-
mized to run on the Zt (Ref. 6). With the designed lumi-
nosities they will be capable of providing copious (up to
10 per year) Z, events. This will allow precise, high-
statistics studies on the Z, resonance.

Constraints on the mass and the mixing angle of the
additional neutral gauge bosons can be obtained from ex-
isting data on neutral-current experiments. In spite of
the impressive agreement between the standard
SU(2) X U(1) electroweak model and experiment, the ex-
perimental data allow for an extra neutral gauge boson.
In Fig. 5 we present constraints on Mz and t() obtained

2

from neutral-current data and from predicted measure-

ments of the forward-backward and left-right asym-
metries in e+e collisions. We show the 90% C.L. in
the Mz -P plane that results from a fit to existing data on

2

parameters involved in neutral-current processes. The
neutral-current constraints allow large mixing and put a
lower limit on Mz, Mz & 103 GeV. We also show boun-2' 2—
daries in the Mz -(() plane expected from measurements of

2

A~s and AL)t at &s =Mz with 10, 10', and 10 Z', s.
1

The boundaries are almost independent of Mz ', the bend-

ing of the boundaries near the bottom of the graph is due
to the finite-width effects of Mz . With 10 Z& events and

2

a 1% systematic uncertainty, a measurement of ALz in
the p+p channel will confine the mixing angle to within
b, (() =+1'.

Now we would like to extend our investigations and
consider the effects of the presence of Z in regions of en-
ergies off the Z, resonance in e+e collisions. First we
note that the corresponding effects on top of the Z& are
demonstrated in Figs. 1-4 as deviations from the
standard-model predictions. These deviations are sensi-
tive to the Z-Z mixing angle and can be used to probe the
gauge-boson mass via a comparison with the neutral-
current constraints given in Fig. 5. However, it is possible
that there is not much mixing between Z and Z. In this
case, no such deviations will show up on the Z, reso-
nance. But, as we will show, pronounced effects can
show up off the Z, resonance regardless of the value of
the mixing angle. As such, measurements of the
forward-backward and left-right asymmetries off the Z&

resonance provide another means of testing new physics
from the Sp(8) XU(1) model.

In Fig. 6 we consider different values of Mz and for
2

each value we present the expected forward-backward
asymmetry as a function of &s for the minimum and
maximum values of the mixing angle allowed by con-
straints from neutral-current experiments. For compar-
ison, we also present the forward-backward asymmetry
predicted by the standard model. We find a distinctive
modification of the standard-model predictions featured
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FIG. 3. The total width of the Z, gauge boson as a function
of the mixing angle P.

FIG. 4. The branching fraction of the Z& gauge boson for uu,
dd, e+e, and vv final states as a function of the mixing angle P.
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Quigg. The Z~e+e production rate in pp collisions at
&s =2 TeV is presented in Fig. 8 as a function of the
gauge-boson mass which is taken as free parameter. For
comparison, we also present the corresponding rate for a
gauge boson with couplings identical to the standard Z
but with mass a free parameter. At a level of Bo ) 10
nb (a reasonable lower limit at the Fermilab Tevatron),
the accessible mass of Z is & 300 GeV.

In conclusion, the effects of an additional neutral gauge
boson suggested by the Sp(8)XU(1) model are studied
both on and off the Z, resonance in e+e collisions. On

the resonance, lepton asymmetries and total width of Z&
are found to be sensitive to the Z-Z mixing angle and can
be used to probe the gauge-boson mass. Off the reso-
nance, the forward-backward and left-right asymmetries
showed pronounced effects. Experimental tests of these
effects are feasible in the near future.
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