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Relativistic treatment of light qnarks in D and B mesons and W-exchange weak decays
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A relativistic bound-state equation is applied to formulate the nonspectator (or 8'-exchange) de-
cay rates of D, D„and B mesons, and their leptonic decay constants. The nonspectator decay rates
are also calculated here in the Dirac-equation limit. In this limit we show that up to a logarithm the
nonspectator rate grows with heavy-quark mass like m, faster than the spectator rate of m'. In-
cluding an analysis of experimental D+, D, and D, decay rates shows that the enhancement of D
decays from the nonspectator diagram is about a quarter of the contribution from the spectator dia-
gram. The relativistically calculated weak decay constant fs is in the 260-300-MeV range. Predic-
tions are also made for nonspectator B, B„and B, decay rates including the ratio ~ y/~ 0-2.B B

I. INTRODUCTION

In order to evaluate the relativistic corrections to
bound-state spectra in QCD, and to understand and es-
tablish the relativistic nature of the parts of the QCD po-
tential, a relativistic expansion of the Dirac field equation
was formulated by Bander, Silverman, Klima, and
Maor' using a valence-quark-antiquark pair in the
lowest order. This type of equation applying a multi-
quantum intermediate-state expansion has a long history
from Greenberg, Gross, and Johnson. It includes suc-
cessful QED calculations of the O(a ) contributions to
the hyperfine splitting in positronium and muoniurn
(p+e ). In the relativistic valence-quark bound-state
equation we used a relativistic vector-gluon exchange
corrected by an asymptotically free coupling strength,
along with a linear confining potential which was estab-
lished to have a scalar nature. The resulting equation,
after partial-wave projection, is a single-variable integral
equation for the radial wave functions in momentum
space with the mass of the state as the eigenvalue. It
reduces to the 8 reit-Fermi interaction in the
Schrodinger-equation limit, and to the Dirac equation in
the limit where one quark mass is much heavier than the
other. In the first papers, ' the studies were concerned
mainly with the spectra, emphasizing the relativistic
spin-spin and spin-orbit e6'ects. The spectra and wave
functions were calculated for all mesons except the
chiral-symmetry-dominated ~ and K mesons.

The relativistic nature is most important in short-
distance or high-momentum phenomena and in cases in-

volving light-mass quarks where the Schrodinger equa-
tion is a poor approximation since the momenta are typi-
cally larger than the light-quark (u, d, or s) constituent
masses.

In the annihilation decays of mesons we are examining
short-distance processes, and in the case of mesons with
one or both quarks being light, a four-component relativ-
istic treatment. In this paper we formulate and calculate
the nonspectator decay rate of D, D,—,B, and B+-

mesons, which involve a short-range exchange of a virtu-

al %boson between the constituent c and u quarks (in the
D ) converting thetn into light s and d quarks and emit-
ting a gluon to avoid helicity suppression. We also calcu-
late the weak decay constants for D, D„B, and B,
mesons.

A number of experiments have shown that D mesons
decay faster than D +mesons —

by an excess decay rate
about the same as that of D* itself. The weak decay of a
charmed quark by itself, or spectator contribution, is
present for both rnesons, Fig. 1. The D also has the
internal-W-exchange graph, which does not exist in D*
decay, with an emitted gluon to avoid helicity suppres-
sion, Figs. 2(a) and 2(b). This is called the nonspectator
(or W-exchange) contribution. The original calculation
of this contribution by Bander, Silverman, and Soni was
approximated in an extreme nonrelativistic mode, with
the virtual-quark propagator taken with momentum con-
sidered small with respect to trt„, and fn estimated only
from a nonrelativistic wave function. In this paper we
remedy both of these approximations with first, relativis-
tic wave functions, where the equivalent to the nonrela-
tivistic g(0) or fn is embedded in the calculation and
second, with a relativistic propagator for the u quark
which includes both positive- and negative-energy poles.
We find that the nonspectator decay rate is then rather
insensitive to the up-quark mass since the propagator is
dofninated by the larger up-quark momentum.

The D, meson also has nonspectator diagrams of the
constituent c and s quarks annihilating into a virtual W
with the emission of a gluon to avoid the helicity suppres-
sion, which are exactly the same as the Fierz transforms
of the nonspectator D decay graphs.

The rates of the nonspectator D, D„B,and B, decays
depend on the value of the strong coupling constant a,
due to the emission of a gluon from the quark. More
work will be required to find the appropriate value of a,
including the calculation of QCD radiative corrections to
the decay. We call a,s the product of a, (rrt~ ) multiplied
by the higher-order QCD corrections and find that agree-
ment with the data for D decays occurs for a,&-0.39. In
this analysis, the nonspectator process gives about a 25%
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(D ) -(4)

FIG. 1. Spectator diagram for D-meson decays.

FIG. 2. The F-exchange or nonspectator diagram for D de-
cay with gluon emission from (a) the u quark and (b) the c
quark.

(i% m, )—P(x) = [gA (x)+S(x)]f(x) . (2. 1)

The bound-state equation is obtained from the matrix ele-
ment of Eq. (2.1) between the bound state of four-
momentum 8 and an antiquark state of mass m2,
momentum p, and spin A, :

(iV m, }(p,A,
~

P—(x}~B)

= g (p, A,
~
gA(x)+S(x)

~

n )(n
~
g(x) (

B), (2.2)

where a complete set of states has been inserted. Up to
this point the equation is exact. The approximation we
are going to apply consists of keeping only the antiquark
state

~ p, A, ) in the sum. The justification for this approx-
imation is that, at least at larger distances, the valence-
quark model appears to work quite well; in this model the
mesons are made up of only a quark and an antiquark
which is put on mass shell. This then leads to a linear in-
tegral equation for the matrix elements (p, A,

~
f~(x)

~

B ).
By using the gluon propagator and source,

3"(x}=gf d x'DP (x —x')P(x')y„g(x')

II. FORMULATION OF THE.RELATIVISTIC
BOUND-STATE EQUATION

A. Formulation of the integral equation

The relativistic bound-state equation' we use is based
on the equation for the quark field P(x) with mass m, ,
coupled to a vector gauge potential A„(x) and a scalar
potential $(x):

(2.3)

with a similar equation for S(x), and converting to
momentum space, we obtain

enhancement to the D decay, and for D* decays a 60%
reduction from the spectator rate due to Pauli interfer-
ence is required. In the case of the nonspectator 8 de-
cay we predict a ratio I (B )ll (B ) =1.9, ignoring the
interference effect which has been found to be very small
here.

In Sec. II we summarize the relativistic bound-state
equation that was previously formulated and used in cal-
culations of the mesonic spectra. In Sec. III we formu-
late the decay amplitudes for the nonspectator decays of
D, D,*,B, and 8, mesons and present our calculations
in terms of the wave functions derived from the fits to the
spectra. In Sec. IV the weak-leptonic-decay constants

fD, fD, fz, and f& are formulated in terms of the rela-
S S

tivistic wave functions. We then calculate the leptonic
weak decay rates of D, D„B,and B, mesons. In Sec V.
we apply the results of the rates of nonspectator decays
and the leptonic decays to explain the lifetime differences
among D, D*, and D,* mesons, and to predict the life-

time difference between 8 and 8*mesons. We also cal-
culate the rate and photon spectrum for D ~y +any-
thing.

d 77l
(&-&—mi)+(i»&)= y f, , [V,((p —p')')y„+(p', ~ )U(p', ~ )y"U(p, ~)+ ~s((p —p') )+(p', ~ )U(p', ~ )U(p, ~)],

(2m) ri)'
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where

2cosco(p )
' 1/2

%(p, A, ) =(2m } (p, A.
i g(0}

i B), M —co —m&

f+
(p)

Ro

cuz ——(B +M }' and co=(p +m~z)'i
(2.5) dp'Ko p,p' p', 2.12

go

4 &(p)= g 4 (p, A, )u&(p, A, ) . (2.6)

The wave equation for 4 becomes, by Eqs. (2.4) and (2.6),

(g —gf —m, )4(p)

+ Vs((p —p')')e(p')](gf —m, ) .

(2.7)

In the meson's rest frame Eq. (2.4} is a linear eigenvalue
problem for the bound-state mass 8 =M. The interac-
tions are denoted by V„and Vs. Since %(p', A, ') always
appears summed with u(p', A,'}, it is appropriate to intro-
duce a 4&(4-component wave function 4 where the rows
are the components of the quark and the columns that of
the antiquark: —4a—', (4m /9)

—q ln(1 —q /AR)
(2.13)

where q is the four-momentum transfer squared. While
the large-q (or small-distance) modified Coulomb part is
due to a vector exchange, the long-distance infinitely ris-
ing part cannot be pure vector since it would lead to a
Klein paradox. To avoid this we subtract off the linear
part from Vz. The resulting vector interaction is

16m
Vr(q }=—4|r

27

where Ko(p, p') is the 2 X 2 kernel matrix' containing the
angular momentum projections of the interactions for
J=0.

For the interactions we start with the QCD gluon in-
teraction which is considered to have a vector propagator
modified by an asymptotically free coupling strength,

We introduce the analogs of Dirac components in 2X2
submatrices:

X —q ln(1 —q /AR )
2 2 (q')' (2.14)

G„

F„

Gd

F„ (2.8)

4(p)(P+ m, ) =0, (2.9)

which means that G„, F„can be taken as dependent on
G„,Fd by

where u and d stand for upper and lower q components
and G and F stand for upper and lower quark corn-
ponents. We note the restrictions arising from Eq. (2.6)
that

For the scalar interaction we have the linear confining
part with slope ~. This interaction is cut off at a distance
b or equivalently at a height ~b for numerical calcula-
tions: i.e.,

VI (r)=Kr6(b r)+Kb8(r—b) . — (2.15)

We chose ramps at values of ~b )3 GeV and the results
were insensitive to the value of the height at or above this
value. Taking the Fourier transform of Eq. (2.15) and
generalizing to q ~—q we have

Vs(K, q =( —q )' }=(2m) Kb(co/m )5 (q)
o'p — — o'pGg= Gd Fg = —Fdco+ m~ Q7+ mp

(2.10) + (4m K/q )[bq sin( bq)

In order to do the spin and angular momentum decompo-
sition we convert the 2 representation for the antiquarks
to a 2 representation by defining Gd ——Gd v and
Fd Fdo~ We then ——ex.pand Gd(p) and Fd(p) in terms of
FL i(p) and 2X2 projection operators for S=O and
S =1 states, coupling them to the total J, MJ. For the
unnatural-parity 0 states we will be treating here, since
J=O the expansion simplifies into two wave-function
components:

Fd(p)= f+(p)~ L =/+1=1,S=1)(L=J+1=1,S=1 ~,
(2.11)

Gd(p)=go(p)
I
L =1=0,S =0) (L =1=0» =0

Expanding the interactions in Legendre polynomials of
cos8=p-p' and performing the angular integrations, we
obtain the desired integral equations of the wave func-
tions containing the bound-state mass as an eigenvalue

+2cos(bq) —2] .

(2.16)

S,(Ao,p ) =
1+@,

A, +p
(2.17)

The integral equation diverges slowly at large momen-
tum no worse than logarithmically. Before that becomes
important the neglected multiquanta states become im-
portant in competing for probability or amplitude with
the valence-quark channel. We shall approximate this
effect by introducing a large momentum, or in effect, a
small-distance cutoff. We introduce into the kernel of
Eq. (2.12) and into all other interactions of the valence-
antiquark states a cutoff function S,(Ao,p), with c, )0,
which approaches 0 for p))A, and approaches 1 for
p «A, :
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with A, =AO(1+a)'~ . Expanding this for small p /A„

1 1

(1+p /A, )'+' I+(1+a)p /Ao(1+e)

1

1 +~2/+2
(2.18)

shows that the cutoff, in the predominant region where

p & Ao, is independent of c.
The parameters used in the fits to the spectra of the

mesonic systems are, hence, the quark masses m, , m2,
the QCD potential scale Az, the linear slope ~„and a
cutoff S,(Ao,p) on the slowly diverging integral equa-
tions. We have found that a=1.0 is sufficient to give
convergent results for all physical quantities, and that the
results vary little for 1&a&2. The value a=1.0 is used
for calculations throughout the paper. The values from
the spectral fits were Az ——0.4 GeV, x=0. 15 GeV,
Ao(D) =3.0 GeU, and Ao(B) =3.7 GeU.

B. Pseudoscalar-meson case

@(p)=y 5[a(p)+b{p)S /m j(P m—) .

Reducing this to the form of Eq. (2.8) yields

Gd ——(co+ m ) —a(p)+ b(p)
M
m

Fd= —p a(p)+ b(p) rr p.
m

(2.19)

(2.20)

Using Eq. (2.11) and expanding G&(p), Fd(p) by using
Clebsch-Gordan coefficients gives

For the pseudoscalar-meson case, the wave function
4(p) can be easily written in Dirac form. From the sub-
sidiary condition 4(p)(P+ m ) =0, Eq. (2.9), and since the
wave function 4(p) obeys the integral equation (2.7) and
has a definite parity, 4(p) for 0 mesons can be ex-
pressed as {we denote m2 ——m from here on)

Gd(p) =go(p) Yo(p)
~
S=0,m, =0) & S=O, m, =0 ~,

r

Fd(p)=f+(p) —Y', (p)
~

S=l,m, = —1)&S=l,m, = —1
~

—— —Yo(p) ~S=1,m, =0)&S=l,m, =0~

(2.21}

+ Y& '(p) ~S=l, m, = —1)&S=l,m, = —1
~

Working out the projection operators gives
r

0 1

iS=O, , =O)&S=O, , =Oi =
b(p) = — go(p)+ f+(p)4v'2~ co+m I

The normalization condition'

(

0 1

~s=l, m, =o&&S=l,m, =O~ =

1 0
~S=l, m, =l)&S=l,m, =l

~

=
0 0

———,'(I+a, ),
2.22)

m 2d
(

I go I'+ If+ I')=I
(2n) M ~(p) ~(p)+m

becomes

(2.25)

2m d
N

L

Substituting Eq. (2.22) into Eq. (2.21) we find

0 0
I
S=1,m, = —1)&S=l,m, = —1~ =

0 1 , (I u, ) . ————
(2.26)

go go
Gd —— —0. or Gd ——

&8~ ' &S~ '

f+ „ — f+
Fd ——— —cr.per„or Fd ——— a".p .v'S~ ' v'S~

{2.23)

III. FORMULATION OF THE AMPLITUDES
FOR THE NONSPECTATOR D, D„AND B DECAYS

A. Ratio of D-meson lifetimes and the weak Hamiltonian

a(p) = 1 1

4v'2~ co+ m
—go(p)+ f+(p)co+ m

(2.24}

Comparing with Eq. (2.19) then gives a(p) and b(p) in
terms of the solutions to the bound-state integral equa-
tion f+(p) and go(p):

The first measurements of the ratio of D lifetimes relied
on the fact that the weak Hamiltonian for a c~sl+vI
transition is the same for D and D+ in the spectator
model, so that I (D + I+X )= I (D +~ l+—X). With this
equality, the ratio of inclusive semileptonic branching ra-
tios for the D and D+ may be related to the ratio of
their lifetimes:
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r...(D')

r...(D+)
r(D+ )

r(D )

B (D+ 1+X) r(D+ l+X)
0

B (D L+X) r(D l+X) r„,(D+ )

(3.1)

The lifetimes of the D and D+ have also been ob-
tained directly by several collaborations by measuring the
decay distance in bubble chambers, silicon strip vertex
detectors, and proportional tube vertex chambers. The
world-average values of the D and D+ lifetimes from
these experiments are

Recently, the Mark III Collaboration' at the SLAC
e+e storage ring SPEAR performed a high-statistics
measurement of the inclusive semileptonic branching ra-

tios by an analysis of the electron content in the recoil
spectrum from fully reconstructed D decays of known

charm and charge. The results are

r(D+)=(10.29+'04", )X10 ' sec,

&(D )=(4 43+ ' )&(10 ' sec (3.3)

B(D+ ~L+X)=(17.0+1.9+0.7)%,
B(D'~L+X ) =(7.5+1.1+0.4)%,

2 3+O.s+0. 1

(Do)
= -04-01

(3.2)

r(D+) =2.39+0.16

( D 0
)

' —0. 14 '

This is in very good agreement with the ratio given above
based on the inclusive semileptonic branching ratios.

The charm-changing weak Hamiltonian" is

6
H.,6c=-1= —

I (f++f )["y„(1 ys)c. u—"y"(1 ys)d. l—+(f+ f )P—y„(1—ys)d. u "y"(1—ys)c. )1 .
2 2

(3.4)

From renormalization-group techniques, "' we have

f~=[ a( L4)l a(M 1)1]
*,

where

6
7+ 33

(3.5)

(3.6)

B. Spectator decay rate

Before proceeding with the nonspectator calculation,
we review the spectator decay calculation since we will be
using its result. If only Cabibbo-favored spectator ampli-
tudes are included, the nonleptonic decay proceeds via
c~sud, and the semileptonic decay via c~sL+v&. For
the nonleptonic decay, it is useful to rewrite the Hamil-
tonian again as a sum of color-singlet and -octet parts in
the cs channel. To do this, we use the Fierz identity

[y„(1 ys)].(—s[y"(1 ys)],s—

12
y 33—2Nf

(3.7) = —[y„(1—y )l. [y"(1—y )), (3.8)

For the decay of the charmed quark, there are three
lighter quarks which may participate (Xf ——3) so

+ 9 and y 9

k(~ ) I ~ k~ I+2~ I~ k

on the (f+ f ) term in Eq.—(3.4) to get

GF
H ~c,= —[—,'(2f++f )s y„(1—ys)c u "y"(1—ys)d„+ ,'(f+ f )s y„(1——ys)V kck"—y (1 ys)~nid1~ .

2

(3.9)

The first term of H is the color-singlet part and the second term is the color-octet part. Hence, they do not interfere.
To simplify the notation, write H'" for the first term of H and H' ' for the second term. In order to calculate the de-

cay rate, it is necessary to separately square H'" and H' ', sum the results over the final-state spins and colors, and
average over the initial-state spin and color. After performing the color calculations,
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mknl mknl

(3.10)

k min a ab km In a b

Following the notation of (3.9) we have

I Hw, ac= i I

'~ 3[-,'(2f+ +f }1'+", [ ,'(f—+-f—

I H, wc= —i I

G3
( f' +f' )[dy (1 y,—)u cy (1

(3.11)

The spin calculations must now be performed and the
result integrated over the available phase space. This
task is greatly simplified by noting that, if the u and d
quarks are considered massless, the Hamiltonian above is
equivalent to that of the decay p ~e v, v„. The spec-
tator decay rate is then

G'm'
I (c sud ) =(2f + +f ) g(m, /m, } . (3.12)

192m

B(c~sl+v&)=16%. The semileptonic branching ratio
obtained here is in agreement with that of the D+ [recall
by Eq. (3.2), B (D+ ~!+X ) =(17.0+ 1.9)%],but very far
from that of the D [i.e. B(D ~I+X)=(7.5+1.1)%].

There are two conventional mechanisms for correcting
this problem. One is the destructive (Pauli) interfer-

ence, ' due to Fermi statistics, between the spectator an-

tiquark d in D+(cd ) decay and the identical d arising in

the final state from the nonleptonic c decay (c~sud).
This interference increases the D+ lifetime, while the D
is totally unaffected. The second mechanism is an impor-
tant enhancement in nonleptonic decays of the D since

there is an amplitude for D decay which is forbidden to
the D+. This is the so-called nonspectator diagram (or

W-exchange diagram) shown in Fig. 2, which in lowest

order should be small due to helicity suppression at the

light-quark vertex. A distinct machanism has been ad-

vanced for the lifting of helicity suppression by Bander,
Silverman, and Soni. It is the explicit radiation of soft

gluons shown in Figs. 2(a) and 2(b), which produces, non-

relativistically, a contribution to the D width given by

The function g(m, /m, ) is a phase-space factor which
corrects' ' the decay rate for the nonzero strange-quark
mass.

The semileptonic decay rate is again like that for p de-
cay giving

INs

I,„
mD

=(0.35)

2~a, (f++f '
fD

27 2f2 +f2

fD -0.13-3.6 .
mu

2

(3.16)

GFm
I (c~sl+vl)= g(m, /m ) .

192~
(3.13}

I, ,(D+)=I (c sud)+I (c se+v, )+I (c sp v„)

G2 5

=(2f2++ f +1+1)
3 g(m, /m, ) . (3.14)

192m.

The semileptonic branching ratio for D + is

The total D+ decay rate is given by the sum of the non-
leptonic and semileptonic decay rates

The factor of m„comes from the propagator
1/(gf —m„) and the extreme assumption of p„&&m„. fn
comes from the wave function at the origin. The values
used in Eq. (3.16) were m„=250 MeV and fD ——150—800
MeV. Since this calculation was an approximation, and
it was performed in the extreme nonrelativistic limit, we
need to have a precise relativistic calculation, which can
give us more accurate results.

C. Calculations of relativistic amplitudes
for the nonspectator D, D„B,and 8, decays

r(e-sI+v, )
B(c~sl+vl ) = 1

2f' +f' +2
(3.15)

1. D mesons

If the values from the leading-logarithm calculation,

f+ ——0.74 and f =1.8, are used, the branching ratio is

In this section we are going to calculate the decay rate
of the nonspectator diagrams of Figs. 2(a) and 2(b). From
the reduction formula for gluons, a gluon with momen-
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turn k', spin A, ', can be removed from the final state giv-

ing for the nonspectator D meson decay amplitude

& s 'd "g'
l

D ') = e„'(q, X')
[(2n. ) 2q0]'

y f d4x eiq x(s ldk
l

Ja(x)
l
D 0)

(3.17)

J'„(x ) =—,'g, 1i '„(x)A,;„yA"„(x), (3.18)

where g„represents the u-quark field. By inserting the
intermediate c-antiquark states, the current element can
be written as

where i, k, and a are color indices of the s, d, and gluon g,
and J' is the color-current operator. At first we treat the
current of the u quark, Fig. 2(a),

(s'd"
l
J'„(x)

l
D ) =g, g g f d p(s'd"

l
g'„(x)

l
c pcs, ) ,'V—y„ei'"(clps,

l
g"„(0)

l
D )e

J S

(3.19)

where s, denotes the spin, p is the momentum of the inserted c-antiquark state, and B is the four-momentum of the
bound-state D meson. Hence, the decay amplitude becomes

—lg(s'd"g'l D ) = —,'e„'(qA. ') g f d pd x(s'd"
l
P'„(x)

l
c Jps, )A,;„y„(c'ps,

l
g"„(0)

l
D )e'q+~

(3.20)

The bound-state wave function appears in (c lps,
l
g"„(0)

l
D ). We know the relativistic bound-state wave function al-

ready from the bound-state equations (2.5), (2.6), (2.12), and (2.24). By Eq. (2.6) and the definition of %(p, A, ) in Eq. (2.5),
we can express the wave function as

' 1/2

(c 'ps,
l
g(0) l

D ')=, 5,„(2n. ) 3
"

2coDco p
4 &(p)u&(p, s, ) . (3.21}

We repeat the reduction formula on the matrix element (s 'd"
l

tTt'„(x)
l
c lps, ) until we remove all particles from in and

out states and reach the vacuum expectation value of a product of field operators:

(s 'd"
l
g'„(x}

l
c ps, ) = i f d—y d z d w[Ud(z)(iP md)][—V, (y)(iP —m, )]

where

x (0
l
T[P'„(x)P(x)fd(z)g,'(w)]

l
0)(iV m, ) V, (—w), (3.22)

V, (y)= 3 (m, IE, )' u(p, s, )e
(2~) ~

U&(z)= 3&&(md/Ed)' u(pd, sd)e
(2m. )'i

(3.23)

V(w)=
3 (m, IE, )' u(p„s, )e(2~}3"

and E, =co(p), Ed, and E, are the energies of the c, d, and s quarks. Now we will evaluate

r(x, y, z, w)—:(0
l
T[P'„( )Px( )fx(zd)P,'( )]wl 0)

to first-order perturbation theory in the weak Hamiltonian from Eq. (3.4).
There is no term in (f+ f ) here, because it is a—ssociated with

5,J5l„A,;„=5;„A,;.„=g A, ;; =0 .

This is because the gluon is a color octet and the Anal sd must be in a color octet to make a colorless initial state. Refer-
ring to Eq. (3.4), s and d quarks are partly in the color octet in the (f++f ) term, but are pure color singlet in the
(f+ f ) term. —

After using the standard method we obtain
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(s'd"
~

g'„(x) ~c Jps, )= — (m, mdm, lE,EdE, )' e " ' (f++f )
2 (2m)

1
X &,,&i~ l„u(p s, )r„(1 r—)

g —P f——m„+ie

where

l„=u (pd, sd )y„(1—y, )u (p„s, ) .

(3.24)

Finally, substituting Eq. (3.24) into (3.20), the decay amplitude becomes
' 1/2

m,(s'd"g'~D )„=A k, e„(q,A.')l„g fd p
'

u(p, s, )y„(1—ys) . r,&c'ps,
I
0".(0) ID')

S C 8 —P —g —m„+Ie

(3.25)

where

A ki ——— 9~&(mdm, lEdE, )' ' (f++f )Ak, (2~) fi' '(q+pd+p, —8) .
2 2 (2m)

' 2(2qo)'~ (2m)6

Using Eqs. (3.21) and (3.25), we finally obtain the decay amplitude in terms of the wave function of the D:

(3.26)

(s 'd"g'~ D )„=AkIe„(q, A')l„ f, d p Tr y„(1—ys) y,@(p)
8 —p' —y —m„+ie

where

(3.27)

JQ g g

(2n ) +2MD +3

This amplitude can also be deduced from Feynman-graph rules that include the relativistic bound-state wave function
by the additional rules:

closed fermion loop

on-shell quark in loop

bound-state wave function

Trace

f d p m

(2m )

+(p)

Referring to Fig. 2(b), we now analyze the charm-quark color-current term

J'„(x)= —,'f,'(x)A, ;„y,g,"(x) .

By the same perturbation method, we obtain

(3.28)

(s'd"g'~D ), =Ak, e„(q,i,')l„fd'p Tr y„(1—ys)@(p)y„C V & P —P+g —m, +is
(3.29)

m,
(s 'd "g'

~

D )„=Akie„(q, k, ')l„f d'p
(8 —p) —2q (8 p) m„—+ie—

Again, this can be derived from the Feynman-graph rules. Using the subsidiary condition 4(p)(P+m, )=0 and the fact
that the c antiquark is on mass shell, the amplitudes of Eqs. (3.27) and (3.29) become

XTr y„[ gy +2(8 —p).—y—„(&—p —m. )]@(p)

—y„y, —gy„+2(8 —p)„—
(8 —p ) —m„2 2

8„4(p)
q B

(3.30)
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&s 'd "g'
I
D '&.= Af i&.(q ~')i„fd'p E' . Tr[(y„y—„y,)@(p)( 2—p„+yg)] .

F-, —2p -q+ic
L

(3.31)

We have made one modification, which is the replacement of y„(g —p —m„) with I [(8 p)2 m 2]/q. B )8
axi»-vecto««m in Eq. (3.30} in order to reach a gauge-invariant amplitude. We did this by the fact that the integral
equations of Eqs. (2.4) and (2.7) give, to the lowest order in a„

(8 —P —m„)4=0
or multiplying by (8 —gf+ m„) gives

(3.32)

(8 —p) —m„ 8„4(p}q'8

4ie —„~ (ap~ bB~—)+4I [q, —2(8 p)„+—(MD+m, m„——28 p)B,/(qMD)](ap„bB„)—

Tr y„[—4y.+2(8 —p}.—y.(8 —P —m. ) 1@(p) y„—y s
—4y.+2(8 —p»}.—

[(8—p) —m„]4(p) =0 . (3.33)

If the higher-order intermediate states had been included, the gauge invariance would be obtained without using the ap-
proximation of Eq. (3.33}.

Now, let us substitute 4(p}=y5[a(p)+b(p)$/m, ](P' m, ), f—rom Eq. (2.20), into Eqs. (3.30) and (3.31). The trace
parts can be evaluated as

Trl(y„y„ys—)@(p»}( 2p, +—y 2') 1

+q„(ap„bB„) —g„„q~(a—pz bB&)j—, (3.34)

=4ie „~ (ap~ bB~)+—4[(2p, q„)(ap—„—bB„) q„(ap„——bB„)+g„,q~(ap bB )]—. (3.35)

=Fqq„+F~B„.

The values of Fq and Fs can be obtained by multiplying q„and 8„ times Eq. (3.36). Qne gets

One of the integrals over momentum p can be written, by Lorentz covariance, as a four-vector form in terms of q„and
B„with coeScients F and F~:

m, a (p)p„b(p)8„—
d p (3.36)

E, (8 —p) —2q (8 —p) —m„+is

1 3
m a(p)(p q) —b(p)(q 8)

F~ —— d p (8 p) 2q (8 —p) —m—„+—ie
An ™ginarypart appears due to the existence of the pole in the denominator in Eq. (3.36). Writing

(8 —p)' —2q. (8 —p) —m„'= A +8 cos8,

where

A =2( MD+q)E, +M—D+m, 2MDq —m„—
and

B= —2pq

we have

=—ln i mO( A ——8)8( —A —8),d cosO 1 A+8
A +B cosO+iz B A —8

where 0 is the unit step function. Then

m, a (p)(E, —p cos8)/MD b(p)—
Fg= Gf p 3 +B cosO+ic.

(3.37)

(3.38)

(3.40)

T
I'

dp ~ a (p) E, +—p + MDb(p) ln
2m

&
m p A A +B

D c 8 3 —B
—2pa(p)

~c p2
in f dp — a(p) E, +—p +Mob(p) 8( A —8)0( —A 8)—

E, B B (3.41)
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F = p a p —pin —2p +i~ p ap —pg A —B —A —B
mc p A A+B mc p A

E, B B A —B E, B B
(3.42)

The regions, in terms of q and E„where the imaginary parts appear are shown for the D decay in Fig. 3. The pole
at low q has positive energy, (8 —p —q)o& m„, and the pole at large q has negative energy, corresponding to the c
quark decaying to a final state u on its mass shell.

Another integral has a tensor form with indices p and v which can be expressed as the sum of all possible tensor
forms as

p.[a (p)p„b(p—»„1
0 p E, (8 —p) —2q (8 —p) —m„+i e

=keg„,+lq„q, +mq„B +nB„q +rB„B, . (3.43)

We can find the values of k, l, m, n, and r by the same method. Again, from the pole, all of the Fq, F~, k, l, m, n, and r
will have imaginary parts.

Finally from Eqs. (3.30), (3.34), and (3.36)—(3.43), we get, for the decay amplitude due to the gluon coupled to the u

quark, Fig. 2(a),

(s 'd "g'
~

D )„=4AkIe,(q, A, ')l„[iF&e"" q Bl'+(S~ql'8 "+SzqMDg""+S38 "8")],
where

S& ——[—2+(MD+m, —m„)/(qMD)]F +Fs —21+(1 2MD/q—)m,

Sz ——(2MD /q )k Fs, —

S3 ——[—2+ ( MD +m, —m „)/( qMD ) ]Fs (2MD —/q )k 2n +—( 2 —2MD /q )r .

(3.44)

(3.45)

For the second amplitude for Fig. 2(b), given in Eqs. (3.31) and (3.35), we use the same method to expand the integral
by Lorentz covariance:

m, a(p)p„b(p)B„—
Jdp " "=Gq„+G 8„,—2p q+i E

m, P„[a(p)p„b(p)B„)—
Jd p

" . " =cMDg, +dq„q„+eq„B„+fB„q+hB„B„.
p 'q+l 6,

(3.46)

(3.47)

Again, the values G and Gs can be obtained by multiplying q„and 8„ in Eq. (3.46). c, d, e, f, and h can be obtained
by the same method. Since there is no pole in the denominator p q =poqo —p q=E, qo —pq cos8=q(co —p cos8), where
E, =co and qo =

~ q ~

=q, all of G~, Gs, c, d, e, f, and h are real.
Using Eqs. (3.31), (3.35), (3.46), and (3.47), we finally have, for the decay amplitude due to the gluon coupled to the c

quark, Fig. 2(b),

(s 'd "g'
~

D ), =4Akle, (q, A')l„[iG&e"" q. B~+(T~q"8'+ T&qMDg""+ T38"8")],
where

T, = —Gs —e, Tz ——Gz —(MD/q)c, T3 ———h .

Using Eqs. (3.44) and (3.48), the total amplitude is

(s Idkg
~

D 0) (s ldkg
~

D 0) + (s ldkg
~

D 0)

(3.48)

(3.49)

=4Akte (q, k')I ji(Fs+Gs )e"' q B~+[(S,+ T, )q "8 +(S~+T~)qMDg""+(S3+ T3)B"8']I .

(3.50)

Gauge invariance, or the vanishing of Eq. (3.50) upon replacing s,~q„, implies

S~+ T~ = —(S, + T, ) and S3+ T3 —0 .

Hence,

(s 'd"g'
~

D )„+, 4Ak, e, (q, i')1—— I &Fk, e" , q B~+F„[q"8'+(q 8)g"']I,

(3.51)

(3.52)

where

F~ =qo(FB +G~ ) and F~ =- qo(S, + T, ) . (3.53)
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The decay rate of the D through the nonspectator mode is obtained by integrating over q, p„and pd, and summing
the result over the gluon state helicities A,

' and colors a:

q 8 PgCf PdI Ns=~( —g )mmmm, 3
5' '(p~+p, +q B—}Tr(lpl p')

qo2E, 2Ea

XtiFve„„p q B +Fz[q„B +(q B)g„„]II iFv—e„.„. . .q B +F&[q„,B„,+(q B).g„„.]I,
(3.54)

'2

16X4X4X
6' g 1 1 f+ f-
2 3 2~" 2M 2

The trace term over l„l„.gives

Tr(lyly ) =2[py,ps +ps,pg —g» (py.ps)+)ep pp~pgps ]Imgms .
P P P

(3.55}

To calculate the three-body decay rate, we first integrate over pz and p„and set Q =B—q. This gives, by Lorentz co-
variance,

3 2

2~s 2E
d psd pg (4)

Pd Ps )[Pd Ps +Ps . Pd g»'(Pd Ps }+ ~)s'p)snpdps ] +lg»'++2Q)sQ)s'
s d P P P P

(3.56)

E) and K2 can be found by the same method as we used in Eq. (3.36) or (3.43). Multiplying g„„.and Q„Q& on both
sides of Eq. (3.56), we get

K) ————Q and E2 ———.2

6 2

Then introducing fd Q ('3' '(B —q —Q} into the integral, we obtain

d3
I Ns=& f q fd~Q5'4'(Q+q B)—Q—2 —g»+ IiFvs„q Bp+F„[q„B„+(qB)g„„])

(3.57)

XI ~'Fve„" ~ q Bp+F„[q .B"+(q B)g„",]] (3.58)

Now we come across the integral of a two-body decay rate: namely, B~q+ Q. In order to handle the integral over
the gluon energy part qo=

~ q ~

=q properly, and simplify the integral, we introduce JdS 5+(S —Q )=1 into the in-

tegral. This gives

I Ns
——A(n MD/3) f dS f dq 5 q—

Fina11y, the nonspectator decay rate for D is

1286 a, f++fr,(D') =
9(2n. }

MD q —q (F„+Fv)dq,

MD —S
& I&—2q

2 q 3 )&2 (MD+S)(F„+Fv) .
2MD 2MD (S+q )'~' (3.59)

(3.60)

where

m, p'~ MD(p —~) ~ ~ +BF„(q)= f "dp '
p a(p)+ b(p) —ln

M. ~ - qa
'

a (P}p' A 3+8—a(p) co+ —p +MDb(p) lnB A —8

2
C

a(p) MDb(p) ln ——2 a(p)+4pa(p)co+p pco
~—p



38 RELATIVISTIC TREATMENT OF LIGHT QUARKS IN D AND. . .

m 2A Mn(p —co)—im. p p ap+ b p
MD 0 a) qB B

+ — —a(p) co+ —p +MDb(p) 8( A B)—0( —A B)—,
a(p)p' A

q B (3.61)

mc A A+8 co+pFv(q)= I dp p —a(p) ~+—p +MDb(p) ln +MDb(p) ln
MD o co B A —B N —p

—im p p —a p co+—p +MDb p 8 A —BO —A —B
MD 0 co B (3.62}

Recall that all of the imaginary parts, in both F„and Fz,
come from the effect of the pole in the propagator in Fig.
2(a), referring to Eqs. (3.36)—(3.43).

The terms

2

a (p) ln —2 a(p)
q co —p q

(3.63)

0 60-
Q8
3 5.0—

in Eq. (3.61) give a logarithmic divergence in I'Ns in the
jdq as q ~0. These terms come from the coefficient c in
the expansion of the integral in Eq. (3.47). In order to
avoid the divergence we need to apply the infrared cutoff
on q. This is also necessary because the soft gluons with
smaller energy will be trapped into the quark-gluon struc-
ture of the final-state hadrons, and cannot be included in
the inclusive calculations. The value of the cutoff is tak-
en to be 200 MeV. Our calculation shows that the value
of I Ns changes by no more than 10% if we change the
cutoff on q from 200 to 100 MeV, and is, therefore, in-
sensitive to its exact value.

In the nonrelativistic limit, p «m„co=m„ the q ~0
divergent term becomes

2 mmc N+p pN mc p pN
ln —2 a(p) = —2 a(p)

q co —p q qco q

2a( )p p(m,' —~')
qco

—2a (p)p ~0
qm

(3.64}

compared to the other terms in Eq. (3.61}. Hence, there
is no divergence problem in the nonrelativistic case.

The I'Ns in Eq. (3.60) contains the strong coupling con-
stant a, . It should also be multiplied by the higher-order
QCD corrections to the decay. This combination we will
call a,& which we now replace a, by. After substituting
the wave functions a (p) and b(p), obtained from the
spectral fits to the D and D' mesons, ' into Eq. (3.60), we
finally find the nonspectator decay rate as

I (NDs)=0a, (fs++f } 0.87&(10 ' GeV . (3.65)

To check the extreme nonrelativistic results (p «m„)
from our relativistic formula, we may make a reduction
by applying p «m, and co=m, . Using the relation

P (0)=(MD/12)fD, we have

2m3 MD
1((0),

m, m„

0
~ 40-
UJ

~ 5.0—

~ 2.0—

~ i.o-
CP

C

A

and

INs ——NR

2773

ML,

m, —m„
g(0),

m, m„

G2~ f2
MD .

648m m„

(3.66)

0.0'
O.O 0.2 0.4 0.6

q (Gev)
0.8 I.Q

FIG. 3. The regions of q and m where the imaginary parts of
the u-quark propagator contribute to the D-meson nonspectator
decay.

These are all consistent with the previous nonrelativistic
results. The nonrelativistic results are poor approxima-
tions since the momentum in the propagator is not small
compared to m„.

In the nonrelativistic case A &0, B &0, and A —B
= [0.018—0.057q —(M —q)p /(2m, )+2pq] & 0 for
p &0.28, so that 8(A B) gives zero. —Thus, all of the
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imaginary parts in F~ and Fv disappear in the nonrela-

tivistic limit.
When the value of m„ is varied extremely from 0 to

1.57 GeV, the relativistic I Ns is only changed by a factor
of 2.6, and shows that I Ns is much less sensitive to m„
than in the extreme nonrelativistic limit, Eq. (3.68),
where I Ns behaves as 1/m„. Around the fitted value of
m„=0.25 GeV there is very little variation of I Ns with

changes in m„.
For comparison with the calculation with a heavy anti-

quark and a light quark we deduce the Dirac bound-state

equation from the relativistic bound-state equation ky
setting

Mn ——m, +E' and letting Mz& and m, ~ co (3.67)

such that E' is fixed. From the normalization condition
(2.26) we see that in this limit go/+m, and f+ /+m,
are normalized independent of m, . Thus, we find that
Fz ——O(m, /q) and Fz O(——m, '

) &&Fz and, hence,

Fv can be neglected. The forms of F„and Fv for the
Dirac case are then Fv ——0 and

(3.68)

E' f+—2 i m — dp+M
I

E'
I p &M

E'
l

D
Cz

q
(3.69)

F„(q)= —m f dp p —ln
mc ~ A A+B —2 b(p) im —f dp p b(p)8—( A —B)8(—A B)—
q 0 B A —B 0 B

In this limit A =E' p m—„2—E'q—and B= —2pq. From the rate equation (3.60) and the fact that the meson mass

mn —m, we see that q is of O(m, ) also. In the Dirac limit of mn —m, —+ cc, the potential is independent of m„and by

the normalization conditions Eqs. (2.25) or (2.26), the scaled wave functions go/gm„ f+ /Qm„Qm, a, and Qm, b

are normalized independent of m, . In the Dirac limit, A and B are proportional to q=0(m, ) and their ratio,
A /B ~p /E' is independent of m, . F„ then becomes

M 3/2

F„(q)= — f dp
q 4v'2~ 0 p

MD MD
ln

2 2 Amoco

We see the important result that, up to logarithms,

I Ns(mg)~O(mg) .

(3.70)

Thus, the ratio of nonspectator to spectator becomes

where C~ is independent of q. Although this asymptotic
form behaves as 1/q, the large m, form, Eq. (3.68), does
not have a q ~0 singularity, so we use (3.69) and cut off
the q integration in (3.60) at q =A&co. This gives, in the
MD~ 00 limit,

1286 a, ++
I Dirac(g0) r + C2

9(2n )

In the relativistic case we find that the contributions to
I Ns come more from F~ than from F„,and that the real

parts in F~ and Fv contribute more than the imaginary

parts.
The lower-component wave function f+ (p} is close to

go(p) for p)1 GeV. f+(p) and go(p) give almost the
same contribution to ReF„and ImF„. This shows the
importance of the relativistic treatment. The contribu-
tions to ReFi, and ImFv are still dominated by go(p).

In the Dirac case go(p) always comes along with

1/(co+m) in the expression of the wave functions a(p)
and b (p), Eq. (2.24). Hence, in the Dirac limit as

m, ~ co no contribution to F„will come from go(p).

2. D,+ mesons

I Ns(m&)
~O(mg)I,p(mg )

I Ns"'(D )=a,s(f++f ) 0.42X10 ' GeV . (3.71)

This is about one-half of the relativistic result, Eq. (3.65}.

and grows as the heavy-quark mass increases. We, thus,
expect and find that this ratio is larger for the B meson
than the D meson, and expect further enhancements for
the T or top-containing rnesons.

The nonspectator decay rate I Ns in the Dirac limit
from Eq. (3.68) is

The nonspectator process for D,—
+ meson decay by cs

annihilation into a QCD-dressed W and an accompany-
ing gluon uses the same diagrams as in Figs. 2(a) and 2(b)
with the bound-state u quark replaced by an s quark, and
the final-state s by a u quark. The associated gluon-
corrected weak Hamiltonian is the same one as in the
case of D mesons. From the requirement of a color sing-
let in the final state for u, d quarks and gluon, the ud pair
should belong to the octet state, which is included in the
(f+ f ) term in H~, Eq. (3.—4). Hence, only the term
in (f+ f ) will survive in—the decay amplitude. These
annihilation amplitudes are the same as the Fierz trans-
forrnations of the nonspectator amplitudes. We can write
down the decay rate at once from Eq. (3.60):
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1286 a, f+ f—
I Ns(D, )=

9(2n )
r„(B')= Ub,

a,tt(f +f )'4. 3X10 "GeV,
(3.75)

M~ /2

xf 'q
2

—q (F„+Ft.)dq, (3.72) I Ns(B') =
2

Ub,

0 045 ett f+ +f—)

where F„and Fz are given by Eqs. (3.61) and (3.62) and
M~ is replaced by M~ .

S

Since D and D, mesons have the same mass scales, they
will have the same values of f+ and f from the theoret-
ical expressions of Eq. (3.6). By Eq. (3.72), we obtain the
nonspectator decay rates for D,* (see also Table I):

I Ns(D,
—+)=a,s(f+ f ) —0.50X10 ' GeV,

(3.73)

X4.4X10 '3 GeV (Dirae case) .

For B, , the nonspectator process is b+s ~ccg via 8' ex-

change with KM amplitude Ub, and rate
'2

r„(B,') = ",tt(f, +f

I Ns(D,*)=a,a(f+ f ) 0. 1—1X10 '3 GeV
X2.OX 10-"GeV,

'2 (3.76)
(Dirac case) .

The contribution from F„ to I Ns is much less than that
from Fv, due to the cancellations between f+ and go in

F„. The fact that most of the contributions to F~ are
from go(p) shows that the D, meson is close to a nonrela-
tivistic case.

3. Bo, B,, and B,+ mesons

r„(B,') =
0 045

X 1.8 X 10 '~ GeV (Dirac case) .

For Bp, we have b+c~udg and csg which contribute
equal amounts when neglecting fina-state masses to give

The decay-rate calculations for B and B, are the same
as for the D case and that for B, is the sam—e as for the
D,+ case. One—difference is the values of f+ and f . For
the B and B, mesons, they are given for four Aavors by

I Ns(B.*)= Ub.

0.045 '~f+

&(0.071)& 10 "GeV,

f = 1+ a, (mb) ln
25
6m mb

where y+ ———
—,', and y

12

(3.74)
f+ =0.89, f =1.26

for mz ——4.9 GeV, a, (mb)=0. 17, and Mu, =80 GeV .

Another difference is that we need to add the
Kobayashi-Maskawa (KM) mixing element

~ Ub, ~

. Our
numerical values for B are (where we have used the
value'b for Ub, =0.045+0.008)

I Ns(B,*)=
'2

Ub.

0.045 '~f+

(3.77)

X0.062X10 ' GeV (Dirae case) .

In the relativistic case, the contribution to I Ns from F„
is much more than that from Fv because B mesons are
close to the Dirac limit where we have shown that
F„=O(mb /q) and Fv =O(mb ) &&F„.

Since most of F„comes from the f+ (p) part in both

TABLE $. Nonspectator decay rates and leptonic decay constants for D and D, mesons.
m„=mz ——0.25, m, =1.57, m, =0.41 GeV. f+ ——0.65, f =2.37. a,s ——0.39 (nortnalization such that
f = 132 MeV).

Spectator (D ) (10 " Gev)
Nonspectator (D ) (10 ' GeV)
fg) (MeV)
0 (0) {MeV'")

Re1ativistic

12.5
3.1

580
230

D meson

Dirac case

1.5
360
150

Nonspectator (D, ) (10 " GeV)
f~ (MeV)

e~ (0) (MeV'")

0.58
590

D, meson
0.13

380

160
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B and B, , the B and B, mesons are very relativistic
cases.

IV. WEAK LEPTONIC DECAY CONSTANTS

f~, fg, fs, AND fg AND LEPTONIC DECAY RATES

16&3rrB„
(0~ J„~D &= ", sin8

(2lr) (2M' )' Mll

X f dp p [ a(—p)co+b(p)Mn] .

A. Formulation of the weak leptonic decay constant

fn fa, fs. an& fs

The leptonic decay constant is defined through the
current matrix element for D ~l vI decay,

(0
~ J„~D &:— l, fnB„sin8C, (4.1)

(27T) (2M )'

where B„is the four-momentum of the initial bound-state
meson, 8C is the Cabibbo angle, and fn is the leptonic
decay constant. This matrix element can be expressed in
quark fields as

(0
~ J„~D & = (0

~ g, (x)y„(1—ys)g&(x)
~

D &sin8C .

(4.2)

or (4.7)

28 l/2M fdp p gop —
+ f+ p ~

(In the Dirac-equation limit, we have

, fdpp [ a(p)+b—(p)],2&3

(4.6)

Equating Eqs. (4.1) and (4.6) and from the relations be-
tween a (p), b (p) and go(p), f+ (p) in Eq. (2.24), we find

m,
fc =, f dp p'[ a(p—)~+b(p»}M& 1

m M~

After we insert the intermediate states of an on-mass-
shell c antiquark, the amplitude of the current is associat-
ed with the bound-state wave function. We have with the
3/&3 color factor

V'3
2 go(p}

QMnfn =
~
—f dp p

lr &8n QMn

(4.8)

«
I J„ I

D-
& = g fd'p «

~ y, (x}
~ p, s, &y„(1 »}—

X & p s, I
g~(x) I

D &&»in8c .

From the normalization condition (2.25) in the Dirac lim-
it go/QMn is independent of m, =ma. From Eq. (4.8)
we see as m, ~ ~ that fn ~ I/QMn in the Dirac limit. )
The calculated values are (see Table I)

Using

(4.3} fn=580 MeV, fn ——360 MeV Dirac case . (4.9)

mc
(0

~ g, (x)
~ p, s, &

=e'~"
(2~)'"

1/2

U(p, s, ),
The Dirac-case value is slightly above the experimental
upper bound, '

(4.4) fn &290 MeV, (4.10)

iB x
(0

[ J„[D & =&3sln8
/2M/ ( 277 }

X fd p
'

Tr[y„(1—y, )4(p)] . (4.5)

Replacing

using the expression of the bound-state wave function
(p, s,

~
Pz(x)

~

D & from Eq. (2.5) and (2.6), and sum-

ming over the spin states of the c antiquark, we have

and in the range found in a lattice calculation including
fermion loops. ' The fully relativistic value of fn ——580
MeV is perhaps a factor of 2 too large, consistent with
the calculation of the analogous vector process of the lep-
tonic decay of the f whose alnplitude is also a factor of 2
too large. ' The leptonic decay rate of the Y carne out
about right, giving us more confidence in fs, which is
presented later.

The values of fn, fs, and fs are given in Tables I and
s C

II for the relativistic and Dirac cases. Our conventions in
Eq. (4.1) are those in which f =132 MeV. With these
conventions the leptonic decay rate for D ~p +v„ is
given by

4(p)=y, a(p)+b(p) (P —m, )
m

in Eq. (4.5), and using Id 0-p =0, we get

2

I'„(D p v )= fllm~m 1—2 2
ep 8~

2 2

2
2

sin ec
mg)

(4.11)
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TABLE II. Nonspectator decay rates and leptonic decay constants for B, B, , and B,— mesons,
m„=mz ——0.25, m, =1.57, m, =0.41, m& ——4.9 GeV. f+ ——0.89, f =1.26, a,z——0. 17, Ub, ——0.045.

Relativistic Dirac case

Spectator (B,B+—
,B, ,B,+} (10 " GeV)

Nonspectator (B ) (10 " GeV)
f~ {MeV)
4' (0) (MeV )

Nonspectator (B, ) (10 ' GeV)
~, (0) (M.V'")

S

Nonspectator (B,+) (10 ' GeV)
fs (MeV)

+& (0) (MeV' ')
C

3.9
3.4

300
200

1.6
220

0.0017
480

350

B meson

B, meson

B,+ meson

5.8
260
170

1.4
190

0.0015
420

300

with similar formulas for D ~~ v„and for D, , B+—
,

and B,—+ leptonic decays.

V. SPECTATOR, NONSPECTATOR,
AND LEPTONIC DECAY RATES

OF D, D„AND B MESONS

In this section, we are going to apply what we have
learned in the previous sections to discuss the difference
in lifetimes of the D and D* mesons, the total decay
rates of D,*, the prediction of the difference in lifetimes
between B and B*,and the decay rate and spectrum of
D ~y+anything.

G'm, '
I (c~sl vi)=

3
cos Ocg(m, /m, ),

192m.
(5.1)

where g(x) =1—8x —24x 1nx+8x —x . Assuming
that e, p, u, and d quarks are massless compared to c
and s quarks, and using m, =0.41 GeV and m, =1.58
GeV, we get

g(m, /m, ) =0.61 . (5.2)

The spectator decay rate of D or D, is

A. Lifetime difFerence of D and D +

and the total decay rates of D,+

The spectator decay rates of D and D, are the same as
the sum of the decay rates of c ~se v„sp v„, and s ud.
The decay rate for c~sl vl is given by 13, 14

I, (D )=I, (D )=I, (D, )

=I (c se v, )+ I (c s)M v, )+ I (c s ud )

G2 5

=[2RsL+(2f++f )RH]g(m, /m, )
192m

(5.3)

In Eq. (5.3) we have included the factors RsL and RH to
represent the effect of higher-order QCD corrections to
the spectator rate.

As we have mentioned at the end of Sec. III B, there
are two mechanisms to explain the lifetime-difference
problem in D and D* mesons. A calculation of the in-
terference effect' in a nonrelativistic approach yields a
large effect in reducing the D decay rate. However, in a
relativistic quark model' or in a nonrelativistic approach
in which the Fermi motion of the c quark is taken into ac-
count, the effect was estimated to be considerably small-
er. Recently, the interference effect was calculated in the
relativistic bag model ' and found to reduce the hadronic
rate of D+ by 41%. The other mechanism is the non-
spectator decay of the D .

We are hampered in making a unique prediction of the
nonspectator rate by not having a well-determined value
of a, to use at this mass scale. Also, the calculations of
the interference effect in the D—+ decay range over a wide
set of values. There is now, however, a large enough set
of data on D, D +—

, and D, decays to determine a set of
values for the various theoretical contributions. We car-
ry out this analysis below. We use the recently reported
results of E691 at Fermilab for the three decays since
they have small errors and related systematics. This is
important since we will be taking differences of rates to
find the nonspectator contribution.

In using the experimental data we just use the semilep-
tonic branching ratio of the D+ and its total decay rate
to find the semileptonic decay rate of the charmed quark:



230 DENNIS SILVERMAN AND HERNG YAO 38

& sL~'(D+ ) =0.17+0.019,
I'" '(D+) =(6.04+0.22) X10—"GeV

(5.4)

(5.5}

to get

I sL(D+ ) =(1.03+0. 12)X 10 ' GeV . (5.6)

=(1.30X 10 ' )R sL GeV,

We compare this to the theoretical value of the semilep-
tonic decay rate [Eq. (3.13)]:

6'm,'
1(c~sl v&)=(0.61) cos eRsL

192m.

I'Ns(D )=(3.1+1.5)X10 ' GeV . (5.14)

The nonspectator contribution is, thus, about 25% of the
spectator decay rate. This is in agreement with recent
treatments of D decays, ' where two-body spectator de-
cay modes accounted for 80% of the D width.

We finally turn back to the D+ decay rate to find the
needed suppression from interference. With the 17%
branching into each semileptonic channel, the hadronic
branching is (66+2.7)% giving

(0.66)I""~'(D+}=R (I, (D+)—21 (D+ }), (5.15}

where R& is the interference effect suppression. From
Eqs. (5.5), (5.6},and (5.12) we find

where' Re=0 38+0 06 (5.16)

2a, (m, )
RsL ——1 — f(m, /m, )=1—0.56a, (m, ) . (5.7)

Agreement of Eq. (5.7) with Eq. (5.6) indicates a satisfac-
tory range of a, (m, ) to be a, (m, )=0.37+0.16. For
consistency we use the experimental value in Eq. (5.6).

Next, we find the spectator decay rate from the D, de-

cay rate which has a very small calculated nonspectator
rate. The D, decay rate comes from its spectator, non-
spectator, and leptonic decay rates

This is a rather large suppression that is required by the
set of data we have used.

In order to calculate the nonspectator decay rates, or
to find the experimentally indicated value of a,z, we need
to know f+ and f separately. For charm quarks the
leading-logarithm estimation may not be considered a
good approximation. We, nevertheless, carry on using it
in the simple form abstracted from Eqs. (3.5)—(3.7), that

(5.17)

I (D,*)=I, (D,—)+ I s(D;)+ I (D,* pv„)

+I (D, ~rv, ) . (5.8)

The spectator decay rate is given by

I,„= 2+(2f' +f' ) I,
SL

(5.18)

The leptonic decay rates depend on fz . We know from
S

the experimental bound on fn & 340 MeV that our rela-
tivistic calculations of fn are at least too large by a factor
of 2 and this should apply to fz as well. Using fz &300

S S

MeV also gives a small contribution of the leptonic de-
cays of D„mostly from D, ~rv, (D,*~pv„ is only a
tenth of this) and a theoretical range

and using Eq. (5.6) for I sL and Eq. (5.12) we find

(2f++f )RH(f+, f )=(10.1+1.7)RsL .

RH is given by

RH =1+ a, (Q )h,2
3m.

(5.19)

I (D,* iv, ) =(0.5+0.5) X 10 ' GeV . (5 9) where

With our final parameters below we find

I Ns(D,
—)=1X10 ' GeV .

Using the experimental result

I '"~'(D,—) = ( 14.0+ l. 3 ) X 10 ' GeV

we find then from Eqs. (5.8}—(5.10) that

I, (D,—)=1,„(D—)=I, (D )

(5.10)

(5.1 1)

31 19 f' f+—
4 4 2f2 +f2

+3
a, (Q ) —a, (Ms, ) f+p++f p

a, (Q'} 2f' +f' (5.20)

and for four Aavors p+ ———0.47 and p =1.36. The
strong coupling constant which includes two-loop effects
is given by

=(12.5+1.4) X 10 ' GeV (5.12)

I'"~'(D ) =(15.6+0.5) X 10 ' GeV

since the spectator decay rate of the charm quark is by
definition the same in each charmed meson.

We now subtract the spectator decay rate from the D
decay rate ' to get the nonspectator rate

4~ P, ln[ln(x)]
CX 1—

Po ln(x) p021n(x)
(5.21)

where Pa=11 —
—,'nI, P, =102—", n&, and —x=Q /AMs

(MS denotes the modified minimal-subtraction scheme).
Solving Eq. (5.19} using (5.17), (5.7), and (5.20) with
Q = 1.5 GeV and AMs ——150 MeV gives

(5.13) f =2.37+0.24 f+ =0.65+0.04 . (5.22)

With Eq. (5.12) this gives For comparison the solution to (5.19) and (5.17) without
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the QCD correction gives f =3.07+0.29 and

f+ ——0.57+0.03. If one uses constituent masses for u

and d quarks of 250 MeV, the g(m, /m, ) =0.61 factor in

the hadronic decays is reduced' to F(m„m, m„)=0.35
requiring a larger f =3.18 with f+ ——0.56. From the
result of the relativistic calculation of the nonspectator
decay rate, Eq. (3.65), we have

D, is small, we recall Eq. (3.73):

(D, )=a,s(f f—)'0. 50X10 "GeV .

Using Eqs. (5.22) and (5.24) gives

I Ns(D, ) =0. 58 X 10 '3 GeV

consistent with that used in the D, analysis.
r Ns(D 0)=a s(f ++f ) 0.87X10 ' GeV .

Using Eqs. (5.22) and (5.14) we find

(5.23)

B. The prediction of the lifetime difference
between B and B+ mesons

a,g ——0.39+0.19, (5.24)

which is a reasonable value for a, times higher-order

QCD corrections at this low-mass scale.
To check for consistency that the nonspectator rate for

For the spectator decays of the B meson, its rate equals
the sum of that for b~ce v„cp v„, c~ v„cud, and
ccs. The interference effects have been found to be small
in the B system. The spectator decay rate is then

I, (8 )=I', (8*)
=I (b ce v, )+r(b cp v„)+I'(b cud)+I (b cr v, )+I (b ccs)

62 5

= [(2+2f+ +f )F(mb, m„O)+F(mz, m„m, )+(2f+ +f )F(mb, m„m, )]
~

U&,
~

192m.
(5.25)

where F(m&, m„O), F(mb, m„m, ), and F(mb, m„m, )

are mass correction factors' ' calculated to be 0.47,
0.10, and 0.14, respectively. We obtain

of 43% over the spectator rate from I Ns.
The ratio of lifetimes between B—+ and B from Eqs.

(5.26) and (3.75) using a,s(m& ) =0.17 is

I, (8 ) = I',„(8*)

'2
Ub,

3 9y10 ' GeV .
0.045

(5.26)

7 +
ratio=

I, (8)+I (8)
r„(8)

(3.9+3.4) X 10
1.9 . (5.30)

3.4g 10

2I, + I Ns

2
2

(3.9+a,z9.9)X 10 ' GeV .
0.045

(5.27)

Equating this to the experimental result

re"&'(8)=(5.9+o~ 07) X 10 ~3 GeV

gives a poorly determined value

u,&
——0.20+0.21 .

(5.28)

(5.29)

If we take a typical value at mb of a,s =a, (m„)=0.17 for
A—

s
——150 MeV, we would expect an increase in I,„(B)

Combining this spectator decay rate with the nonspecta-
tor decay rate from Eq. (3.75) and including f~ from Eq.
(3.74), we obtain We predict the lifetime ratio between the B* and B

mesons is about the same as that for the D mesons, but
from different effects. This ratio is roughly independent
of the particular f+ used.

C. Decay rate of D ~y +anything

The form of the amplitude of D ~y +anything is the
same as that of the nonspectator diagram except for two
different features. One is the color matrix —,

'X' is re-
placed by 36, . This will add a factor of —,'. The second
difference is the requirement of a color singlet in the final
state for the decay of D ~y+anything. s and d quarks
are in a pure color singlet in the (f+ —f ) term and the
(f+ +f ) term when crossed to the sd channel using the
color identity in Eq. (3.8) has a color singlet in sd with
coeScient —,. These two sd singlet contributions are then
added. With the electromagnetic coupling constant re-
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I.5—
O

X
~ i.o—
O
UJ
CL
M

+ 0.5—0
Ox
0

I
'

I ~NS (D' @+X)
dg

862

MD
X —e lF~(tI)+Fv(tI)f

f'(Do —+y+X) =0.0061' 10 ' GeV .

and is depicted in Fig. 4. The total rate is

(5.31)

(5.32)

0.0
0.0 0.2 0.~ 0.6

q (GeY)
0.8 I.O

This has a branching ratio of the order of 0.04% and is
very sensitive to the values of f+ and f

FIG. 4. Photon spectrum dl /dq for D ~y+X.
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